

17 S. Gordon's Alley, Suite 3 Atlantic City, New Jersey 08401 Phone (609) 300-5171 www.sciulloengineering.com

May 7, 2020

SCA 003.01

# Patricia Racz, Planning Board Secretary City of Pleasantville 18 North First Street Pleasantville, NJ 08232

# RE: Preliminary & Final Major Site Plan Application Spyglass QOZB, LLC Block 255, Lot 1 Franklin Boulevard & Ansley Boulevard City of Pleasantville, Atlantic County, New Jersey

Dear Ms. Racz:

Sciullo Engineering Services, LLC ("SE") is the consulting engineer assisting Spyglass QOZB, LLC (the "Owner/Applicant") with the above referenced project. On behalf of the Owner/Applicant, we are submitting this Preliminary and Final Major Site Plan application for approval of a mixed-use project on the former Pleasantville High School site.

The project site is in the Lakes Bay Redevelopment Area. The proposed development conforms to the standards in the redevelopment plan for that area prepared by Rutala Associates on behalf of the City. There are no variances or design waivers requested as part of this application. As you can see in the attached documents, the development consists of 180 market rate apartments in 6 buildings, a waterfront commercial area along the bulkhead of Tunis Basin, and a new boulevard style roadway to replace the portion of Ansley Boulevard against the bulkhead. There are also provisions for a bike path to connect Franklin Boulevard to the future redevelopment of Jokers Field to the east of this site that will become a Green Acres open space park as part of a separate future project. The project was designed to connect the recent streetscape improvements on Main Street that will extend east on Ansley Boulevard to the Lakes Bay waterfront. There is also additional public benefit in the form of upgraded storm sewer systems and sidewalk around the site.

We understand there are challenges regarding holding public hearings due to current public health directives. Please be advised our team has recently participated in multiple public hearings using electronic platforms and take no issue with this project being scheduled for a public hearing in that manner. As such, we respectfully request to be heard for approval as soon as possible to ensure the project timeline is not delayed.

Enclosed please find the following for your review:

- 1. City of Pleasantville Application Package for Land Use Approval (1 original, 3 copies);
- Submission Waiver Justification Narrative prepared by SE, dated May 6, 2020 (4 copies);
- 3. Engineering plans prepared by SE entitled "Spyglass at Lakes Bay, Preliminary & Final Site Plans" dated May 5, 2020 (4 sets, 13 sheets each);
- 4. Stormwater Management Report prepared SE, dated April 2020 (4 copies);
- 5. Architectural plans prepared by Thomas J. Brennan Architects, dated May 1, 2020 (4 sets, 7 sheets each)
- Landscape plans prepared by Sikora Wells-Appel, dated May 5, 2020 (4 sets, 3 sheets each);
- 7. Traffic Engineering and Air quality Assessment report prepared by Shropshire Associates, dated May 3, 2020 (4 copies);
- 8. Topographic Survey prepared by Stephen C. Martinelli Land Surveying, LLC, dated August 18, 2017 (4 copies, 1 sheet each).

Thank you for your assistance with completion of this application. We look forward to working with you through the approval process. Please advise when we are deemed administratively complete and let us how many additional copies of any documents may be necessary for distribution to the Board and/or their professionals. Should you have any questions or require additional information, please feel free to contact me at (609) 300-5171 or jsciullo@sciulloengineering.com.

Sincerely,

# Sciullo Engineering Services, LLC

Jason T. Sciullo, PE, PP, CFM Principal Engineer

Cc: Sean Scarborough, Applicant (via email) John Ridgway, Esq. (via email) Tom Brennan, Brennan Architects (via email) Joe Sikora, Sikora-Wells Appel (via email) Nathan Mosley, Shropshire Associates (via email) Mike Lucey, Waters Edge Environmental (via email)

# APPLICATION PACKAGE for LAND USE APPROVAL

pursuant to the

# LAND MANAGEMENT CODE (Chapter 300) CITY OF PLEASANTVILLE Atlantic County, New Jersey

Jesse L. Tweedle, Sr. Mayor

> with offices located at 18 North First Street Pleasantville, New Jersey 08232 Planning Board Secretary: (609) 677-4805 Zoning Board Secretary: (609) 677-4805 Zoning Officer: (609) 484-3614 Fax: (609) 677-4804

ORIGINAL

300 Attachment 1:1



# APPLICATION STATUS CHECKLIST (To Be Completed By Municipal Staff)

| Application Filed:                                             | //       |
|----------------------------------------------------------------|----------|
| Application Fees & Escrow Deposits Paid-In-Full:               | //<br>\$ |
| Application Referred to Zoning Officer for Completeness Review | //       |
| Application Deemed Complete:                                   | //       |
| Proof of Public Notice Submitted (where applicable):           | <u>/</u> |
| ( ) Planning ( ) Zoning Board Meeting Schedule for:            | //       |
| Application Approved:<br>with conditions (specify):            | //       |
| Application Denied:                                            | //       |
| Unused Escrow Returned:                                        | //<br>\$ |
| Additional Escrow Deposit Requested:                           | //<br>\$ |
| Final Plan Certification:                                      | //       |



### Table of Contents

- 1.0 Introduction
- 2.0 Submission Procedures
- 3.0 Types of Applications
- 4.0 Completeness
- 4.0 Public Notice Requirements
- 5.0 Post Hearing Actions
- Form 1 Notice of Application to Property Owners within 200' of Subject Property Notice of Application for Publication Affidavit of Service Application for Land Use Approval Ownership Information & Corporate Disclosure Project Information Zoning Conformance Project Professionals Certification of Payment of Taxes Certifications
- Form 2 Consent to an Extension of Time for Official Action (as applicable)
- Form 3 Request for Certified List of Property Owners

Application Checklists

| Checklist A. | General Requirements & Instructions                                    |
|--------------|------------------------------------------------------------------------|
| Checklist B. | Zoning Permit                                                          |
| Checklist C. | Preapplication Conference                                              |
| Checklist D. | Minor Site Plans & Minor Subdivision Plats                             |
| Checklist E. | Preliminary Major Site Plans & Preliminary Major Subdivision Plats     |
| Checklist F. | Final Major Site Plans & Final Major Subdivision Plats                 |
| Checklist G. | Appeal or Interpretation/Special Question (N.J.S.A. 40:55d-70a or 70b) |
| Checklist H. | 'c' Variances ( <u>N.J.S.A.</u> 40:55d-70c)                            |
| Checklist I. | 'd' Variances ( <u>N.J.S.A.</u> 40:55d-70d)                            |
| Checklist J. | Applications for Certificate of Nonconformity                          |
| Checklist K. | Certificate of Redevelopment Plan Conformance                          |
|              |                                                                        |

Schedule of Required Application Fees & Escrow Deposits



# 1.0 INTRODUCTION

- 1.1 This Land Use Application Package provides a summary of the requirements for making Application for Land Use Approval to the City of Pleasantville. As such, this Package is intended to provide Applicants and prospective Applicants with the information necessary to prepare and submit complete and comprehensive applications for:
  - Zoning Permits;
  - Site Plan Approval;
  - Subdivision Approval;
  - Variance Relief;
  - Appeals or Interpretations of decisions of the Zoning Officer;
  - Certificates of Nonconformity; and/or
  - Certificates of Redevelopment Plan Conformance.
- 1.2 All applications require conformance with Pleasantville's Land Management Code. Certain applications may require conformance with the following agencies, whose review processes are beyond the scope of this Application Package:
  - The Atlantic County Planning Board;
  - The Cape Atlantic Soil Conservation District;
  - The New Jersey Department of Environmental Protection;
  - The NJ Department of Transportation; and/or
  - City of Pleasantville Storm / Wastewater Management Division
  - City of Pleasantville Fire Official

# ACCORDINGLY, APPLICANTS AND PROSPECTIVE APPLICANTS ARE ENCOURAGED TO CONSULT EXPERIENCED LAND USE PROFESSIONALS<sup>60</sup> PRIOR TO MAKING ANY APPLICATION.

Additional information regarding the Land Use Application process may be obtained by consulting:

A. The Land Management Code (Chapter 300) of the City of Pleasantville, with updates as indicated therein.<sup>61</sup>

<sup>&</sup>lt;sup>60</sup> Including, but not limited to, Attorney's, Professional Engineers, Professional Land Surveyors and Professional Planners licensed to practice in the State of New Jersey. By Law, corporations must be represented by an attorney.

<sup>&</sup>lt;sup>61</sup> On file with the Pleasantville City Clerk and available for purchase with applicable copy charges as established by Ordinance.



- B. The New Jersey Municipal Land Use Law (N.J.S.A. 40:55D-1 et seq.)
- C. Patricia Racz, Planning Board & Zoning Board Secretary @ (609) 677-4805
  Kevin Cain, Pleasantville Zoning Officer @ (609) 484-3614
  Norman Zlotnick, Esquire: Planning Board Solicitor @ (609) 344-1173
  Ronald Bloom, Esquire: Zoning Board Solicitor @ (609) 677-5551
  David S. Scheidegg, P.E., P.P. CME: Planning Board Engineer @ (609) 625-7400
  Jennifer Beahm, P.P.: Planning Board Planner @ (732) 462-7400
  Debra Wahl, P.E., P.P., Zoning Board Engineer @ (609) 646-3111
  Stuart B. Wiser, P.P. AICP: Zoning Board Planner @ (609) 645-7110



#### 2.0 SUBMISSION PROCEDURES

Throughout this Application Package, references to "Subject Property" shall mean the property(ies) for which Land Use Approval is being requested.

- 2.1 All Applications for Land Use Approval shall consist of the following, to be submitted to the Zoning Office or Planning or Zoning Board Secretary as applicable. Applicants are urged to submit all required items in as complete a manner as possible so that the City can expeditiously process the application. Legal time limits to approve applications will not commence until the application is deemed Complete.
  - A. The required number of copies of the completed Application Form, all necessary plans, plats and drawings, narrative and other information pursuant to the applicable Application Checklist(s). Applicants are reminded that certain types of documentation require preparation by a New Jersey licensed professional;<sup>62</sup>

Applicants are required to sign and date the bottom of *each page* of the Land Use Application Form, including all pages of all applicable Application Checklist(s). By so signing, the Applicant or agent for the Applicant certifies that he/she has read and understood these instructions and that the Application Form and all Checklists have been completed honestly and truthfully.

- B. Verification from Pleasantville Tax Collector that all taxes due and owing on the Subject Property have been paid or that adequate provision for their payment has been made in a manner satisfactory to the City;
- C. Samples of public notices to be published and mailed, as required; and
- D. All appropriate Fees and Escrow Deposits.

<sup>&</sup>lt;sup>62</sup> Including, but not limited to, Attorney's, Professional Engineers, Professional Land Surveyors and Professional Planners licensed to practice in the State of New Jersey. By Law, corporations must be represented by an attorney.



#### 3.0 TYPES OF APPLICATIONS

- 3.1 Applications which do not require Site Plan approval, Subdivision approval or Variance relief may be processed administratively by the Zoning Officer.
- 3.2 Applications for Minor Site Plan approval, Minor Subdivision approval, Preliminary and/or Final Major Site Plan approval and/or Preliminary and/or Final Major Subdivision approval are typically granted by the Planning Board. Submission requirements differ for each type of application.

Explanation of what constitutes a Minor or Major application and a Preliminary or Final application may be found in the City's Land Management Code.

3.3 Any of the foregoing may involve the need for bulk (generally, but not limited to, lot size or setback) variance relief. Such variances are known as 'c' variances.

Applications for 'c' variance relief, including Site Plan and Subdivision applications, may be approved by the Planning Board, or by the Zoning Board of Adjustment in cases where 'd' variance relief is also required.

3.4 'd' Variances include permission to use (or expand the use of) lands or buildings in areas (Zoning Districts) where the proposed use is not permitted, deviation from what is termed a Conditional Use standard under the City's Land Management Code, an increase in the floor area ratio or density permitted in a Zoning District and building height above 10' or 10% of what is permitted in a particular Zoning District. 'd' variances may only be approved by the Zoning Board of Adjustment.



#### 4.0 COMPLETENESS

- 4.1 All Applications shall be submitted <u>WITH</u> the appropriate Application Fees and Escrow Deposits for the Approval(s) being sought. For Completeness review, only one (1) copy of the Application Package need be submitted.
- 4.2 Upon receipt of an Application Package, the Board Secretary shall date-stamp the Application and verify that the proper forms and Checklists are completed and that the appropriate Fees and Escrows have been paid.
- 4.3 Once the Board Secretary is satisfied that the Application contains the appropriate Forms, Checklists Application Fees and Escrow Deposits, the Secretary shall deliver the Application Package to the Zoning Officer for a determination as to whether the Application complies with the submission requirements of Land Management Code (§300-27 Completeness).

The Zoning Officer, along with the City Planner or City Engineer, shall convene to review Applications for Completeness (typically) on the  $2^{nd}$  and  $4^{th}$  Tuesdays of the month. Applications must be submitted to the Board Secretary no less than seven (7) days prior to a particular meeting date for such Application to be reviewed for Completeness.

Under the New Jersey Municipal Land Use Law,<sup>63</sup> a determination of Completeness (or Incompleteness) must be made within 45 days of initial submission or said Application is automatically deemed Complete.

# HOWEVER, NO APPLICATION WILL BE REVIEWED FOR COMPLETENESS UNLESS ALL APPROPRIATE APPLICATION FEES AND ESCROW DEPOSITS HAVE BEEN SUBMITTED.

Neither the Applicant nor the Applicant's professionals need appear at the Completeness review.

Applicants (or their professionals, as appropriate) shall be notified by the Board Secretary as to the determination of Completeness within seven (7) days of the review. Such notice shall either indicate that the Application was deemed Complete and scheduled for Zoning Officer review (in the case of an Application for a Zoning Permit) or a Board meeting (for all other Applications), or that the Application has been deemed Incomplete. In the latter case, the notice will include deficiencies found in the Application.

<sup>63</sup> N.J.S.A. 40:55D-10.3



- 4.4 Applications deemed Incomplete will not be scheduled until all deficiencies have been resolved and the Application is deemed Complete.
- 4.5 Complete Applications for Zoning Permits will be processed by the Zoning Officer within 10 days of the Determination of Completeness.
- 4.6 Complete Applications requiring Planning or Zoning Board Approval shall be processed as follows:
  - A. Applicant's shall submit to the Board Secretary the full number of copies of the Application Package as required by the applicable Application Checklist. Once such copies are submitted, the Board Secretary shall schedule the Application to be heard by the Appropriate Board.
  - B. Applicants must attend the Board meeting. Corporate Applicants must be represented by an attorney.
  - C. Planning Board meetings are (typically) held on the 1<sup>st</sup> Tuesday of the month. Meetings of the Zoning Board of Adjustment are (typically) held on the 4<sup>th</sup> Monday of the month. All meetings are held in the Municipal Court Room (Council Chambers) at the Pleasantville Police Complex, 17 N. First Street, Pleasantville New Jersey. All meetings begin promptly at 7:00.

Legal Holidays can impact the aforementioned meeting dates. Applicants are therefore urged to carefully note the *actual date* the Application has been scheduled.

While Applications are typically decided at a single meeting, the Planning Board and Zoning Board of Adjustment, as the case may be, reserve the right to continue the hearing on an Application for more than one meeting should the complexity of the Application so require. In such instance, and unless otherwise directed by the respective Board, no additional public notice shall be required.

Both the Planning Board and the Zoning Board of Adjustment attempt to set realistic meeting agendas, to hear applications on the date scheduled and to render decisions at the meeting the application is heard. However, situations do occur where an application can not be heard or completed on the date scheduled. In such an instance, the Board and Applicant will reschedule the hearing to a mutually-agreeable date, with no additional public notice required.



- 4.7 APPLICANTS ARE HEREBY ADVISED THAT A REVIEW FOR COMPLETENESS IS LIMITED TO CONFORMANCE WITH THE CHECKLIST(S)<sup>64</sup> APPROPRIATE TO THE SUBJECT APPLICATION. DETERMINATION OF COMPLETENESS (OR INCOMPLETENESS) SHALL NOT BE CONSTRUED AS A DETERMINATION AS TO THE TECHNICAL SUFFICIENCY OF ANY SUBMISSION ITEM.
- 4.8 Questions regarding this procedure shall be addressed to the Zoning Officer @ (609) 484-3614.
- 4.9 ALL LAND USE APPLICATION FORMS SHALL BE TYPED OR LEGIBLY PRINTED. DIFFICULTY READING AN ITEM MAY CAUSE CONFUSION WHICH MAY DELAY PROCESSING OF THE APPLICATION AND THE MEETING ON THE MATTER.

<sup>&</sup>lt;sup>64</sup> Contained in this Land Use Application Package.



# 5.0 PUBLIC NOTICE REQUIREMENTS

Once an Application has been deemed Complete and a meeting date scheduled, all applications to the Planning Board or Zoning Board of Adjustment are required to issue notice of the Subject Application by certified mail or hand delivery to all property owners within 200' of the Subject Property.

A Certified List of such property owners may be purchased from the City's Tax Assessor and is required to be included in the Application Package as part of the Completeness review. The List **must be less than three (3) months old** to be considered current.

Such notice must be accomplished at least 10 days prior to the scheduled meeting date (with the date of the meeting not counting toward the 10-day period).

In addition to mailed or hand delivered notice, notice must be published in either The Press of Atlantic City or the Mainland Journal at least 10 days prior to the scheduled meeting date (with the date of the meeting not counting toward the 10-day period). It is the Applicant's responsibility to make such notice.

An Affidavit indicating Proof of Notification must be submitted to the Board Secretary not less than seven (7) days prior to the Board meeting on the matter. For Certified mailings, such Affidavit shall be accompanied by the (white) "Return Receipt Requested" slips from the postal service. For hand delivered notices, such Affidavit shall be accompanied by a copy of the notice which has been signed and dated by the noticed property owner. For published notice, a copy of the legal advertisement, with publication name and date shall be provided.

Such Affidavit shall be signed by the Applicant, whose signature shall be attested by a Notary Public.

Failure to notice properly or to provide evidence of proper notice will prevent the respective Board from meeting the application as scheduled; thereby requiring a rescheduling of the Application and the requirement that the Applicant reissue proper notice at his/her own cost and expense. An example of appropriate notice language is included on the following page(s):



# 6.0 POST HEARING ACTIONS

After completion of the hearing, the Planning Board or Zoning Board of Adjustment, as the case may be, shall vote to approve the Application, deny the Application or approve the Application with conditions.

The City shall advertise the action taken by the Board in The Press of Atlantic City or the Mainland Journal not more than 10 days after the Board action.

The action taken by the Board will be memorialized by a Decision & Resolution of the Board, which will be prepared by the Board Solicitor after the vote and approved by the Board at the next Board meeting after the vote is taken. An Application is not considered officially approved until the Decision and Resolution has been approved.

The Applicant shall submit all final plans and other documentation made a condition of the approval. In addition to paper copies, plats or plans shall be submitted in portable document format (".pdf") on CD-ROM. [This requirement may be waived, at the discretion of the Planning Board or Zoning Board of Adjustment, as the case may be, in cases where Applications require no professional assistance.]



# FORM 1: NOTICE OF APPLICATION TO PROPERTY OWNERS WITHIN 200' OF SUBJECT PROPERTY

#### TAKE NOTICE THAT:

As the owner of a property listed on the official tax records of the City of Pleasantville as being within 200' of my Property, you are hereby notified that I, \_\_\_\_\_\_, being the undersigned Applicant, have made application to [check <u>one</u>] ( ) the Planning Board of the City of Pleasantville or ( ) the Zoning Board of Adjustment of the City of Pleasantville for [check <u>all that apply</u>]:

- ( ) Preliminary Major Site Plan Approval;
- () Final Major Site Plan Approval;
- ( ) Preliminary Major Subdivision Approval;
- () Final Major Subdivision Approval;
- ( ) Waiver of Site Plan Approval;

- ( ) 'c' Variance Relief;
- ( ) 'd' Variance Relief; and/or
- ( ) Certificate of Nonconformity
- ( ) Certificate of Redevelopment Plan Conformance.

In accordance with the requirements of the Land Management Code of the City of Pleasantville (Chapter 300 of the Pleasantville City Code). Such Approval(s) / Relief / Certificate will permit me to:

Description of Application, including requested deviations from the specific section(s) of the Pleasantville Land Management Code and the nature of such deviations:

at my property located : \_\_\_\_\_

Block: \_\_\_\_\_ Lot(s): \_\_\_\_\_

in the City of Pleasantville, Atlantic County, New Jersey.

A Public Hearing has been scheduled on this matter for (insert date) \_\_\_\_\_\_, 201\_\_\_\_ at 7:00 p.m. in the Municipal Court Room, Police Complex, 17 North First Street, Pleasantville, New Jersey, at which time you may appear either in person or by agent or attorney to present any objection, support or other comments you may have regarding the Subject Application.



Documentation related to this Application, including all maps, plans, plats, surveys and other information, is available for pubic inspection at least 10 days prior to the aforementioned hearing in the office of the Board Secretary, City Hall Annex, 132 West Washington Avenue, Pleasantville, New Jersey during regular business hours (8:30 a.m. to 4:30 p.m., Monday through Friday).

This Notice is sent to you as the owner of a property listed on the City's official tax records as being within 200' of the Subject Property by order of the Pleasantville [check one] ( ) Planning Board or ( ) Zoning Board of Adjustment in compliance with N.J.S.A. 40:55D-11 et seq. and N.J.S.A. 40:55D-12 et seq.

Respectfully,

Macau Acarl Signature of Applicant

Ulay 1, 20 Date



# FORM 2: NOTICE OF APPLICATION FOR PUBLICATION

### TAKE NOTICE THAT:

\_, being the undersigned Applicant, has made application to [select <u>one]</u> ( ) the Planning Board of the City of Pleasantville or ( ) the Zoning Board of Adjustment of the City of Pleasantville for [select all that apply]:

- ) Preliminary Major Site Plan Approval; (
- ) Final Major Site Plan Approval;
- ) Preliminary Major Subdivision Approval; (
- ) Final Major Subdivision Approval; (
- ) Waiver of Site Plan Approval; (

- () 'c' Variance Relief;
- ( ) 'd' Variance Relief; and/or
- ( ) Certificate of Nonconformity
- ) Certificate of Redevelopment Plan ( Conformance.

In accordance with the requirements of the Land Management Code of the City of Pleasantville (Chapter 300 of the Pleasantville City Code). Such Approval(s) / Relief / Certificate will permit:

Description of Application, including requested deviations from the specific section(s) of the Pleasantville Land Management Code and the nature of such deviations:

at the property located :\_\_\_\_\_ Lot(s): \_\_\_\_\_

Block:

in the City of Pleasantville, Atlantic County, New Jersey.

A Public Hearing has been scheduled on this matter for (insert date) \_\_\_\_\_, 201\_\_\_\_ at 7:00 p.m. in the Municipal Court Room, Police Complex, 17 North First Street, Pleasantville, New Jersey, at which time individuals may appear either in person or by agent or attorney to present any objection, support or other comments regarding the Subject Application.



Documentation related to this Application, including all maps, plans, plats, surveys and other information, is available for pubic inspection at least 10 days prior to the aforementioned hearing in the office of the Board Secretary, City Hall Annex, 132 West Washington Avenue, Pleasantville, New Jersey during regular business hours (8:30 a.m. to 4:30 p.m., Monday through Friday).

This Notice is made in compliance with N.J.S.A. 40:55D-11 et seq. and N.J.S.A. 40:55D-12 et seq.

Name of Applicant



### FORM 3: AFFIDAVIT OF SERVICE

# STATE OF NEW JERSEY) ss.

#### COUNTY OF ATLANTIC)

| I                                  | , of full age, being        | duly sworn according    | to law, under oath,    |
|------------------------------------|-----------------------------|-------------------------|------------------------|
| deposes and says, that I reside at |                             |                         | in the City of         |
| ,                                  | County of                   |                         | _, State of            |
|                                    | , that I am the App         | plicant or Agent for    | the Applicant in a     |
| proceeding before the Planning Bo  | ard and/or Zoning Board o   | of Adjustment for the C | City of Pleasantville, |
| Atlantic County, New Jersey, be    |                             |                         |                        |
| Pleasantville, New Jersey, which h |                             |                         |                        |
|                                    |                             |                         | , Lot(s)               |
| on the off                         | icial Tax Map of the City o | of Pleasantville.       |                        |

I further depose and say that I gave notice to each and all owners of property affected by said application as required by <u>N.J.S.A.</u> 40:55D-11 et seq. and <u>N.J.S.A.</u> 40:55D-12 et seq. as well as the Pleasantville Land Management Code by personal service or by Certified mail on \_\_\_\_\_\_, 201\_\_\_\_\_, such date being not less than 10 days prior to the scheduled hearing on such matter.

A true copy of such notice is attached to this Affidavit as Exhibit A hereto, together with a list of owners of property within 200' of the Subject Property upon whom notice was served, with Block and Lot number indicated, as prepared by the City Tax Assessor (attached as Exhibit B. hereto).

Applicant's Signature

sorn to and subscribed before me this  $,20^{\circ} 20$ . Day of MM

AMY BARRON

NOTARY PUBLIC OF NEW JERSEY My Commission Expires May 18, 2021



# FORM 4: APPLICATION FOR LAND USE APPROVAL

# TO BE COMPLETED BY MUNICIPAL STAFF

| Application Filed://          | Applicat |
|-------------------------------|----------|
| Received By:                  | Applicat |
| Application Found Complete:// | Escrow   |

/ \_/\_

# TO BE COMPLETED BY THE APPLICANT

#### Applicant

Application Found Incomplete: \_\_\_\_

| Applicant's N                     | ame: Spyglass QOZB, LLC                                      |
|-----------------------------------|--------------------------------------------------------------|
| Address:                          | 6 W. Roosevelt Boulevard                                     |
| -                                 | Marmora, NJ 08223                                            |
| ]                                 | Phone No.: _609-904-5444 Fax No.:                            |
| Agent for Applic                  | ant (if applicable)                                          |
| Agent's Name                      | e: <u>N/A</u>                                                |
| Address:                          |                                                              |
|                                   | Phone No.: Fax No.:                                          |
| Subject Property<br>Street Addres | s:Franklin Boulevard & Ansley Boulevard                      |
| Block(s):                         | 255 Lot(s): 1                                                |
| Zoning D                          | Districts: WFC & Lakes Bay Redevelopment Plan                |
| Application is b                  |                                                              |
| () Zon                            | ing Officer () Zoning Board of Adjustment (X) Planning Board |

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>MI Acam Acces</u> Signature of Applicant

Date 1,20

1

300 Attachment 1:18



# **APPLICATION IS BEING MADE FOR:**

- () Zoning Permit under <u>N.J.S.A.</u> 40:55D-18
- () Preapplication Conference under <u>N.J.S.A.</u> 40:55D-10.1
- ( ) Minor Site Plan Approval under N.J.S.A. 40:55D-46.1
- (X) Preliminary Major Site Plan Approval under N.J.S.A. 40:55D-46
- (X) Final Major Site Plan Approval under N.J.S.A. 40:55D-50
- ( ) Waiver of (under <u>N.J.S.A.</u> 40:55D-10.3): (
  - ) Preliminary or
  - ) Final Major Site Plan Approval, or
  - () Both
- ( ) Minor Subdivision Approval under <u>N.J.S.A.</u> 40:55D-47
- ( ) Major Subdivision Approval under N.J.S.A. 40:55D-48
- () Variance Relief under <u>N.J.S.A.</u> 40:55D-70(c)
- ( ) Amendment or Revision to Existing Approval
- () Extension of Prior Approval under <u>N.J.S.A.</u> 40:55D-52
- (X) Certificate of Redevelopment Plan Conformance under N.J.S.A. 40A:12A-1 et seq.

[As relates solely to the jurisdiction of the Zoning Board of Adjustment]

- Directing the issuance of a building permit for construction ( ) in the bed of mapped street, public drainage-way, flood control basin or public area under <u>N.J.S.A.</u> 40:55D-60(b) or ( ) on a lot not abutting an approved public street under <u>N.J.S.A.</u> 40:55D-60(c)
- ( ) Appeal from action of the Administrative Officer under N.J.S.A. 40:5D-70(a)
- ( ) Map or other Interpretation or Special Question under <u>N.J.S.A.</u> 40:55D-70(b)
- () Variance relief under <u>N.J.S.A.</u> 40:55D-70(d)
- ( ) Certificate of Nonconformity under <u>N.J.S.A.</u> 40:55D-70(d)
- ( ) Any of the foregoing where Application for Site Plan approval is to follow.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>Mu Accu Accu</u> Signature of Applicant

5/1/20 Date

2

300 Attachment 1:19



FORM 5: OWNERSHIP INFORMATION & CORPORATE DISCLOSURE

(To be completed by the Owner of Record of the Subject Property)

| Owner's Name:      | Spyglass QOZB, LLC                                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------|
|                    | 6 W. Roosevelt Boulevard                                                                                    |
| -                  | Marmora, NJ 08223                                                                                           |
| Phone No.: 6       | 09-904-5444 Fax No.:                                                                                        |
| Email Addres       |                                                                                                             |
|                    | nased the Subject Property: <u>12 31 2019</u><br>Property purchased from the City of Pleasantville: (X) Yes |
|                    | ( ) No                                                                                                      |
| If not the Own     | ner, Applicant's standing to bring Application:                                                             |
|                    | ( ) Lessee ( ) Contract Purchaser ( ) Other                                                                 |
| Attach Lease,      | Contract to Purchase or other proof of relationship as applicable.                                          |
| Applicant is a(n)  | (check one):                                                                                                |
|                    | () Individual () Corporation () Partnership                                                                 |
| (X)Lim             | nited Liability Corporation (LLC) ( ) Limited Liability Partnership (LLP)                                   |
| If Applicant is no | t an individual,                                                                                            |
| Name of Cor        | poration, Partnership, LLC or LLP: Spyglass QOZB, LLC                                                       |
|                    | owered to complete this Disclosure on behalf of the Corporation, Partnership, LLC or                        |
| LLP:               | Sean Scarborough                                                                                            |
| Address:           | 6 W. Roosevelt Boulevard                                                                                    |
|                    | Marmora, NJ 08223                                                                                           |
| Phone No.: 6       | 609-904-5444 Fax No.:                                                                                       |
| -<br>Email Addre   |                                                                                                             |

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

<u>Enay</u> 1,20 Date

300 Attachment 1:20



Pursuant to <u>N.J.S.A.</u> 40:55D-48.1, Applicants must disclose the names and addresses of all persons owning 10% or more of the stock in a corporate applicant or 10% or more interest in a partnership applicant. <u>N.J.S.A.</u> 40:55D-48.2 provides that such disclosure applies to any corporation or partnership which owns 10% or more interest in any entity subject to disclosure under <u>N.J.S.A.</u> 40:55D-48.1.

Where a corporation / partnership owns 10% or more of the stock / interest in the Applicant or in another corporation / partnership so reported, this requirement shall apply to all non-corporate stockholders / individuals / partners qualifying under the 10% ownership criterion.

| INVAINIE; 25 AND<br>QUIAILIEVAINIC II<br>DINIIII | NDRAIDOWNL/                             |     | BIR | 108 | 'TTAXX IID<br>NROAVIBBR<br>((iin)) | POSITION | %<br>IINIDDRINSII |
|--------------------------------------------------|-----------------------------------------|-----|-----|-----|------------------------------------|----------|-------------------|
| M. Sean Scarborough                              | 6 West Roosevelt B<br>Marmora, NJ 08223 |     | 1   | 1   |                                    | Member   | 50%               |
| S. Todd Scarborough                              | 6 West Roosevelt B<br>Marmora, NJ 08223 | vd. | /   | /   |                                    | Member   | 50%               |
|                                                  |                                         |     | 1   | /   |                                    |          |                   |
|                                                  |                                         |     | 1   | /   |                                    |          |                   |
|                                                  |                                         |     | 1   | /   |                                    |          |                   |
|                                                  |                                         |     | 1   | /   |                                    |          |                   |
|                                                  |                                         |     | 7   | 1   |                                    |          |                   |

(use additional sheets if necessary)

Signature of official empowered to complete the following Disclosure on behalf of the Corporation, Partnership, LLC or LLP (if additional sheets are necessary, such signature shall appear on each sheet):

Accel fcan,

Date May 1,20

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

<u>May 1,20</u> Date

4

300 Attachment 1:21



#### FORM 6: PROJECT INFORMATION

Project Name: Spyglass at Lakes Bay

Present Use of the Subject Property: Vacant (Former High School)

Proposed Use of the Subject Property:

- ( ) Sale of Lot(s) (no construction proposed)
- ( ) Construction of owner-occupied residential dwelling
- (X) Construction of (189 rental or () for-sale residential dwellings
- ( ) Construction of owner-occupied commercial or other use.

Specify: \_\_\_\_\_\_

(X) Construction of rental or for-sale commercial or other use. Specify: 6,000 SF retail and restaurant pads

) Other. Specify: \_\_\_\_\_ (

For each category (as applicable), provide number and type of units. For residential projects, include number of bedrooms per unit. For commercial projects, include the s.f. per unit:

\_\_\_\_\_

72 1 BR Apartments

108 2 BR Apartments

6.000 SF Commercial in 4 Buildings

For residential projects, number of units to be deed restricted as "Affordable" under regulations established by the New Jersey Council on Affordable Housing (COAH"): \_0\_\_\_\_\_

Estimated cost of construction of Proposed Project:

Have any of the lands within the Subject Property been classified by any State or Federal Agency as Environmentally Sensitive, Wetlands, Riparian Lands, Brownfield, Greyfields or other applicable (X) Yes ( ) No designation?

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

<u>\_\_\_\_\_\_</u> Date \_\_\_\_\_\_

300 Attachment 1:22



If No, is there any indication that the Subject Property might contain subsurface or groundwater contamination? ( ) Yes (X) No

If Yes, explain: \_\_\_\_\_\_

Other than what is required by the City of Pleasantville, are any other approvals required for the Proposed Project? (X) Yes () No

If yes, specify (as applicable)

| CIONIBRINNIBNIFANL, ANGIBNICNY<br>OR IPRINVANUE, DNIUUTY | YNDSS | NO |    | STIATIUS OF<br>AVPPROVANL |
|----------------------------------------------------------|-------|----|----|---------------------------|
| City of Pleasantville Storm / Wastewater Division        | Х     |    | // | Pending                   |
| Atlantic County Board of Health                          |       |    | // |                           |
| Atlantic County Health Department                        |       |    | // |                           |
| Atlantic County Planning Board                           |       |    | /  |                           |
| Cape Atlantic Soil Conservation District                 | Х     |    | /  | Pending                   |
| NJ Department of Environmental Protection                | X     |    | /  | Pending                   |
| NJ Department of Transportation                          |       |    | /  |                           |
| NJ Council on Affordable Housing                         |       |    | /  |                           |
| NJDEP TWA Other                                          | Х     |    | // | Pending                   |
| Other                                                    |       |    |    |                           |
| Other                                                    |       |    | // |                           |

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

<u> 11/ce/1,20</u> Date

300 Attachment 1:23

08 - 01 - 2012



### FORM 7: ZONING CONFORMANCE

(if multiple Principal buildings, provide information for all buildings)

Zoning District in which Subject Property is located:

# **Residential Zoning Districts**

- ( ) Single-Family Residential 50 (SFR-50)
- () Single-Family Residential 60 (SFR-60)
- ( ) Single-Family Residential 75 (SFR-75)
- () Residential Duplex (R-D)
- ( ) Multi-Family (MF)

#### Specialty Zoning Districts

- () Bayside Mixed-Use (BMU)
- () Cemetery (CEM)
- ( ) Conservation (CONSERV)
- () Waterfront Residential (WR)

#### **Commercial Zoning Districts**

- ( ) Central Business District (CBD)
- ( ) Neighborhood Commercial (NC)
- () General Commercial (GC)
- () Regional Commercial (RC)
- () Regional Shopping Center (RSC)
- () Light Industrial (LI)

#### **Overlay Zoning Districts**

- () Bayside Mixed Use Overlay Zone
- () City Center Support Overlay
- ( ) Franklin Boulevard Professional Office Overlay
- ( ) Main Street Neighborhood Commercial Overlay
- ( ) New Road Professional Office Overlay

#### **Redevelopment Plans**

- ( ) Block 189 Rehabilitation Area
  - ) California Avenue Rehabilitation Area
- ) CARA Cambria Avenue Redevelopment Area
- ) CCRA Center City Redevelopment Area
- (X) LBRA Lakes Bay Waterfront Redevelopment Area
- ) NARA Narcissus Avenue Rehabilitation Area
- ) WTRA Woodland Terrace Rehabilitation Area

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

300 Attachment 1:24

Signature of Applicant

\_\_\_\_\_\_\_ Date



Lot Regulations for Zoning District in which Subject Property is located:

|                 | <u>Existing</u> | <b>Required</b> | Proposed |
|-----------------|-----------------|-----------------|----------|
| Lot Width (ft)  | 604 FT          | 200 FT          | 604 FT   |
| Lot Depth (ft)  | 650 FT          | 200 FT          | 650 FT   |
| Lot Size (s.f.) | 9.38 Ac         | 2.0 Ac          | 9.38 Ac  |

Building Regulations for Zoning District in which Subject Property is located:

|                                | <u>Existing</u> | <u>Required</u><br>15' Hampden | Proposed<br>16 FT |
|--------------------------------|-----------------|--------------------------------|-------------------|
| Front Yard Setback (ft)        | N/A             | 30' Others                     | 49 FT             |
| Side Yard Setback [L / R] (ft) | N/A /           | 10 FT /                        | 17 FT /           |
| Rear Yard Setback (ft)         | N/A             | 20 FT                          | N/A               |
| Impervious Coverage (%)        | 8%              | 90%                            | _73.2%            |

Height and number of stories for Principal Building (if multiple Principal buildings, provide information for tallest building): 52 feet 4 stories

Does the Subject Project conform with all applicable requirements for the specific Zoning District in which the Subject Property is located as specified by the Pleasantville Land Management Code (Chapter 300)? (X) Yes () No

If No, explain nonconformities:

Have any variances, waivers of zoning interpretations been obtained as relates to the existing or proposed use of the Subject Property? () Yes (X) No

If Yes, explain:

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

300 Attachment 1:25

Signature of Applicant

\_ May (, to

8



# FORM 8: PROJECT PROFESSIONALS

(use additional sheets if necessary)

| Project Attorney:   | John Ridgeway, Ridgeway Legal       |               |              |
|---------------------|-------------------------------------|---------------|--------------|
| Address:            | 15 Shore Road, PO Box 277           |               |              |
|                     | Linwood, NJ 08221                   |               |              |
| Phone No.: 609      | -927-0126                           | Fax No.: _    | 609-927-1867 |
|                     | jridgway@ridgwaylegal.com           |               |              |
|                     |                                     |               |              |
| Project Engineer:   | Jay Sciullo, Sciullo Engineering Se | rvices, LLC   |              |
| Address:            | 17 S. Gordon's Alley, Suite 3       |               |              |
|                     | Atlantic City, NJ 08401             |               |              |
| Phone No.: 60       | 9-300-5171                          | Fax No.: _    |              |
| Email Address:      | jsciullo@sciulloengineering.com     |               |              |
|                     |                                     |               |              |
| Project Planner:    | Jay Sciullo, Sciullo Engineering Se | ervices, LLC  |              |
| Address:            | 17 S. Gordon's Alley, Suite 3       |               |              |
|                     | Atlantic City, NJ 08401             |               |              |
| Phone No.: 60       | 9-300-5171                          | Fax No.: _    |              |
| Email Address:      |                                     |               |              |
|                     |                                     |               |              |
| Proiect Architect:  | Thomas Brennan, Thomas Brenn        | an Architects |              |
| Address:            |                                     |               |              |
|                     | Frisco, Texas <u>75034</u>          |               |              |
| Phone No.: 97       |                                     |               | 972-378-9416 |
| Email Address:      |                                     |               |              |
|                     |                                     |               |              |
| Project Surveyor:   | Dave Peifer , The Martinelli Group  | o, LLC        |              |
| Address:            | 1217 S Shore Poad Suite 106         |               |              |
| <u></u>             | Ocean View, NJ 08226                |               |              |
| -<br>Phone No.: _60 |                                     | Fax No.:      | 609-390-9534 |
| Email Address       |                                     |               |              |

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by space.

pplicant 1.Cu Signature of A

<u>Illay / 70</u> Date

9

300 Attachment 1:26

Traffic Engineer- Nathan Mosely

Shropshire Associates 277 White Horse Pike, Suite 203 Atco, NJ 08004 Ph: 609-714-0400 email:

Environmental Scientist: Mike Lucey

Waters Edge Environmental 1259 A Asbury Avenue PO Box 118 Ocean City, NJ 08226 Ph: 609-249-3744 email: mlucey@watersedgellc.com

Landscape Architect- Joe Sikora

Sikora Wells-Appel 8 Kings Highway West, Suite A Haddonfield, NJ 08033 Ph: 856-433-6380 email: jsikora@sikora-wa.com



# FORM 9: CERTIFICATION OF PAYMENT OF TAXES

| Date:             |                           |
|-------------------|---------------------------|
| Applicant's Name: | Spyglass QOZB, LLC        |
| Subject Property  |                           |
| Address: Ans      | sley Blvd & Franklin Blvd |
| Block: _255       | Lot(s): _1                |
| Qualification Co  | ode(s):                   |

# TO BE COMPLETED BY THE PLEASANTVILLE TAX COLLECTOR

| Taxes are paid and current through and including: | 1Q | 2Q | 3Q | 4Q | 201 |
|---------------------------------------------------|----|----|----|----|-----|
|                                                   | -  |    |    |    |     |

| The following ta  | xes are unpaid and delinquent: \$ | with | interest |
|-------------------|-----------------------------------|------|----------|
| calculated until: | , 201                             |      |          |

Flor M. Roman Pleasantville Tax Collector

# NO APPLICATION FOR LAND USE APPROVAL SHALL BE DEEMED COMPLETE WHERE TAXES ARE DUE



### FORM 10: CERTIFICATIONS

**APPLICANT:** I certify that the foregoing statements and the materials submitted are true. I further certify that I am that the individual Applicant or that I am an Officer of the Corporation who is the Applicant, and that I am authorized to sign the application for the Corporation, or that I am general partner of the partnership Applicant. If the Applicant is a Corporation, an authorized Corporate Officer must sign this Certification. If the Applicant is a Partnership, a General Partner must sign this Certification.

Applicant's Signature

Sworn to and subscribed before me this Day of \_\_\_\_\_, 201\_\_\_\_.

Notary Public of New Jersey

**PROPERTY OWNER WHERE NOT APPLICANT:** I certify that I am the Owner of the property which is the subject of this application, that I have authorized the Applicant to make this Application and that I agree to be bound by the Application, the representations made by the Applicant and the decision of the Board in the same manner as if I were the Applicant. If the owner is a Corporation, an authorized Corporate Officer must sign this Certification. If the owner is a Partnership, the General Partner must sign this Certification. If the owner is an LLC, the Managing Member must sign this Certification.

Applicant's Signature

Sworn to and subscribed before me this 2010 Day of

Motary Public of New Jersey

AMY BARRON NOTARY PUBLIC OF NEW JERSEY My Commission Expires May 18, 2021



#### FORM 11: CONSENT TO AN EXTENSION

OF TIME FOR OFFICIAL ACTION (as applicable)

( ) Zoning Officer

APPLICATION IS BEING MADE TO: ( ) Zoning Board of Adjustment

() Planning Board

I, \_\_\_\_\_, being the undersigned Applicant or individual authorized to act for the Applicant, hereby consent to an extension of time within which the entity designated above shall be required to act on my Application.

I understand that such consent stops all time periods (deadlines) for the City to act on my application pursuant to the Municipal Land Use Law and the Pleasantville Land Management Code.

# For Applications to the Planning Board or Zoning Board of Adjustment:

I understand that the City will make every effort to reschedule a hearing date on my application within a reasonable time period, but that it can not guarantee that my application will be heard at the next regularly-scheduled Board meeting.

I further understand that this request for extension will require me to issue or reissue a public notice to all property owners within 200' of my property once a new hearing date has been established.

nature of Applicant

May (, 70

Signature of Applicant (or Authorized Representative)

subscribed before me this to and , 20<del>0-0</del> Day of

Notary Public of New Jersey

AMY BARRON NOTARY PUBLIC OF NEW JERSEY My Commission Expires May 18, 2021



# FORM 12: REQUEST FOR CERTIFIED LIST OF PROPERTY OWNERS

I, \_\_\_\_\_, being the undersigned Applicant or individual authorized to act for the Applicant, hereby request the names and addresses of the owners of record of every block and lot within 200' of the boundaries of the property known as:

| Block: | Lot(s): |
|--------|---------|
|--------|---------|

in the City of Pleasantville, Atlantic County, New Jersey.

I also request the name(s) and address(s) of:

- ( ) the Commissioner of the New Jersey Department of Transportation (if the Subject Property is located on a State Highway);
- () the Atlantic County Planning Board (if the Subject Property is located on a County Highway);
- () all public utility / CATV companies that may possess an easement or right-of-way within 200' of the Subject Property; and
- ( ) The municipal clerk for (if the Subject Property is located within 200' thereof);
  - ( ) City of Absecon ( ) City of Northfield
  - ( ) City of Atlantic City ( ) Egg Harbor Township
  - ( ) City of Ventnor

Requests for the Certified List shall be made by completing and delivering this form to the Pleasantville Tax Assessor. The List will be made available within 7 days from the date of this request.

Payment shall be made in the form of Check or Money Order, made payable to the City of Pleasantville, in the amount of \$10.00 for the first 40 names on the List plus an additional \$0.25 for each name thereafter.

Signature of Applicant (or Authorized Representative)

Date



# PLEASANTVILLE LAND MANAGEMENT CODE

#### CHECKLIST A. General Requirements & Instructions

See §300-26 and 27 for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

The following series of Checklists were crafted to provide the City and its professionals with detailed information pertinent to each of the specific types of approvals or relief available to applicants. Applicants shall complete this Checklist A. *for all applications except Applications for Zoning Permits,* and shall complete Checklists C. through L. as applicable. Applicants requesting multiple approvals shall complete the appropriate Checklist for each approval requested.

Applications for Zoning Permits need only complete Checklist B.

Site Plans which include design of drainage, pavement, curbing, walkways, embankments, horizontal and vertical geometrics, utilities and other pertinent structures shall be prepared, signed and sealed by a New Jersey licensed Professional Engineer. A New Jersey Registered Architect may prepare a Site Plan if limited to general locations.

Topographical and Boundary Survey information, including all subdivisions, shall be provided by or attributed to a New Jersey licensed Professional Land Surveyor.

- X 1. One (1) original and fourteen (14) copies of:
  - $\times$  A. the completed Application Forms, all certifications and other components;
  - X B. all required checklist(s) in completed form; and
  - C. all documents, reports, plats, plans, drawings and photographs relating to the Application.
- X 2. All plats, plans and drawings shall contain a Title Block, including:
  - X A. The name and title of the Application / Project, City of Pleasantville, Atlantic County;
  - X B. The name, title, address, telephone and fax number of the Applicant;
  - X C. The name, title, address, telephone and fax number of the person who prepared the plat, plan or drawing, including the New Jersey License number and original embossed seal with signature if the preparer is a New Jersey Licensed Land Surveyor, Professional Engineer, Professional Planner or Architect;
  - $\underline{X}$  D. The name, address, telephone and fax number of the owner(s) of record of the Subject Property;

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>MACCULACE</u> Signature of Applicant

1

300 Attachment 1:31



# PLEASANTVILLE LAND MANAGEMENT CODE

# CHECKLIST A. General Requirements & Instructions

See §300-26 and 27 for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

- X E. Written and graphic (bar) scale in inches to feet;
- X F. North Arrow
- X G. The original date that the plans were prepared, the date of each subsequent revision thereof and a list of specific revisions entered on each sheet.
- X 3. Unless otherwise specified in Checklists C. through L., no plat, plan or drawings shall be accepted unless:
  - A. drawn to a scale of 1"=10', 1"=20', 1"=30', 1"=40', 1"=50' or 1"=60' for engineering drawings or 1/8"=1', 3/8"=1', 1/2"=1', 3/4"=1' or 1"=1' for architectural drawings, as per standard scales commercially available at any office supply store. Items drawn to such scales but subsequently reduced or enlarged shall be summarily rejected.
  - B. submitted on 24"x36" or larger sheet sizes, folded into eighths, with title block revealed. If one sheet is not sufficient to depict the entire tract, the plat, plan or drawing may be divided into sections and shown on separate sheets of equal size, with reference on each sheet as to the location of all adjoining sheets.
  - X C. fully dimensioned to confirm conformity with all requirements.
  - D. dimensions are expressed to the nearest tenth of an acre when describing acreage or 2 decimal places when describing square feet of area or linear feet of distance. Bearings shall be given to the nearest 10 seconds and the error of closure shall not exceed 1 to 10,000.
  - X 4. A Key Map showing the entire parcel to be developed, the proposed development and the proposed street pattern, if any, within it, and the relationship of the tract to the surrounding area, with the proposed development shown in place, including all intersections and waterways within 300', at a scale not less than 1"=100', based on the City's official tax map. Where the scale of the map results in a street name not appearing, the Applicant shall legibly hand-print the missing street name.
  - 5 Existing tax sheet with existing block and lot number(s) of the Subject Property(ies) as they appear on the current City Tax Map as well as all properties within 200' of the subject. Existing Street names of all streets bounding the subject property shall be clearly visible. Where the scale of the map results in a street name not appearing, the Applicant shall legibly hand-print the missing street name.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

May/, 20

2

300 Attachment 1:32



# PLEASANTVILLE LAND MANAGEMENT CODE

#### CHECKLIST A. General Requirements & Instructions

See §300-26 and 27 for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

Existing Zoning Map with existing block and lot number(s) of the Subject Property(ies) as they appear on the current City Tax Map as well as all properties within 200' of the subject. Existing Street names of all streets bounding the subject property shall be clearly visible. Where the scale of the map results in a street name not appearing, the Applicant shall legibly hand-print the missing street name.

Matrix containing the requirements of the Zoning District(s) in which the Subject Property(ies) are located, including the use(s) proposed, the bulk requirements of such District(s), and whether or not the proposed project conform(s) to such regulations. Such information shall be indicated on the plot or plan as well as a separate table.

X....
 7. Recent Aerial photograph depicting the Subject Property and one (1) block in each direction from the Subject Property, dated and showing the location and size of structures and from other land uses as well as all access points to such uses.

2007 aerial photography is available at no charge from the NJGIN Information Warehouse (https://njgin.state.nj.us/NJ\_NJGINExplorer/IW.jsp?DLayer=NJ%202007%20Orthophotography). Should an applicant not be able to download such information, aerial photography from Google Earth, Microsoft Virtual Earth, Bing or other commercially available sources is acceptable.

Such photography shall be dated and keyed to a reproduction of the City's official tax map, at a scale of not less than 1"=60', with the Subject Property and all photographed properties indicated.

X
 9. A certified list of all property owners whose property is located within 200' of the extreme limits of the Subject Property, as they appear on the most recent tax list prepared by the Tax Assessor. Such list must be certified as current within three (3) months prior to the date of submission of the Subject Application. Such list shall include Owner's Name and Mailing Address as well as the Block number, Lot number and Property Address of the property within 200' of the Subject.

In addition to the Tax Assessor's  $(8\frac{1}{2}x11)$  printout, such list shall be depicted on the plans.

X 10. Certification that there are no outstanding uncollected fees or escrows resulting from past applications or prior submissions by the Applicant, or any entity now or previously related to the applicant, involving this property or any other properties connected with the Applicant within the City of Pleasantville. No applications will be processed if the applicant owes the City or its professionals monies from previous applications.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

May (120

3

300 Attachment 1:33



#### CHECKLIST A. General Requirements & Instructions

See §300-26 and 27 for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- N/A 11. Certification from the Zoning Officer and/or City Engineer that any conditions required as a result of any prior approval granted for the Subject Property have been fulfilled.
  - 12. Certification from the City Tax Collector that all taxes and assessments are paid and current as of the date the Application is submitted, or that adequate provision for payments has been made in a matter satisfactory to the City.
- <u>N/A</u> 13. Statement regarding any prior Planning Board or Zoning Board of Adjustment appeal, approval or denial related to the Subject Property.
- <u>N/A</u> 14. Copies of protective covenants or deed restrictions affecting any portion of the Subject Property or any adjacent property (if obtainable).
- X 15. The location, width, legal (metes and bounds) description, use(s) for which they are intended, any limitations thereof and the manner of control or maintenance for all existing or proposed utility easements, right-of-way dedications and/or sight triangle dedication(s) affecting the Subject Property.

Items 14. and 15. are intended to address, but are not limited to, existing or proposed easements to telephone, electric, gas, water and sewer utilities; deed restrictions and covenants, master deeds and proposed by-laws of any homeowner's or community associations; proposed deeds to dedicate any portion of the affected property for public use or for ownership by any public body.

- X 16. Detailed narrative describing the existing use and condition of and the development proposed for the Subject property, addressing the individual lands and buildings therein, including a statement of the applicant's intent with respect to the ownership, sale and leasing of the project or the various components thereof.
- X 17. Detailed narrative justification for any requested waivers from any Checklist requirement. Items which are not applicable shall be addressed as N/A.
- X 18. **Detailed narrative** justification for any requested waiver(s) from any development standard and/or regulation where a variance is not required.
- X 19. Evidence that the Applicant has sufficient control over the Subject Property to effectuate the proposed development. Including, as appropriate:
  - N/A A. Property Owner's authorization to file the application when the Owner is not the Applicant.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

In Accur for Applicant

Ulay 1,20 Date

4

300 Attachment 1:34



#### CHECKLIST A. General Requirements & Instructions

See §300-26 and 27 for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

- X B. Notarized signature of the Applicant or Agent for the Applicant.
- Х

20. All Application Fee(s) and Escrow Deposit(s), including Tax Map Update Fees for subdivisions or lot consolidations. No application will be processed which does not include the appropriate Fees and Escrows.

The Applicant shall be responsible to insure that Fees and Escrow Deposits are sufficient to address all approvals required, consistent with the Fee Schedule under §300-9. The City reserves the right to require additional Application Fees and Escrow Deposits should the review of the Application find that additional approvals are required.

Once such additional approvals have been identified, the City, and or its professionals shall immediately cease review of the subject application and issue a letter to the Board Secretary informing the Secretary of the situation. The Board Secretary shall immediately inform the Applicant of the necessity for additional funds. The review of the application shall not resume until the appropriate funds have been submitted.

21. The Zoning Officer, Planning & Redevelopment Advisory Committee, Planning Board or Zoning Board of Adjustment, through their respective professionals, reserves the right to require such additional information as may be deemed necessary and appropriate for a full consideration of the entirety of the Subject Application.

While no application shall be deemed Incomplete for the lack of such information, the entities so indicated reserve the right to delay the granting of approvals until such information has been submitted and appropriately reviewed.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Date / 70

300 Attachment 1:35

5



# PLEASANTVILLE LAND MANAGEMENT CODE CHECKLIST B.

# Zoning Permits

See §300-26, 27 & 34 A. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

This Checklist B. was crafted to provide the Zoning Officer with detailed information pertinent to development under §300-34. Applicants for such development shall complete this Checklist B., but are not required to complete Checklist A. or Checklists C. through L. However, Applicants requesting multiple approvals shall complete the appropriate Checklist for each approval requested.

Site Plans which include design of drainage, pavement, curbing, walkways, embankments, horizontal and vertical geometrics, utilities and other pertinent structures shall be prepared, signed and sealed by a New Jersey licensed Professional Engineer. A New Jersey Registered Architect may prepare a Site Plan if limited to general locations.

Topographical and Boundary Survey information, including all subdivisions, shall be provided by or attributed to a New Jersey licensed Professional Land Surveyor.

- 1. One (1) original and fourteen (14) copies of:
  - A. the completed Application Form, all certifications and other components;
  - B. all required checklist(s) in completed form; and
    - C. all documents, reports, plats, plans, drawings and photographs relating to the Application.
- 2. All plats, plans and drawings shall contain a Title Block, including:
  - A. The name and title of the Application / Project, City of Pleasantville, Atlantic County;
    - B. The name, title, address, telephone and fax number of the Applicant;
    - C. The name, title, address, telephone and fax number of the person who prepared the plat, plan or drawing, including the New Jersey License number and original embossed seal with signature if the preparer is a New Jersey Licensed Land Surveyor, Professional Engineer, Professional Planner or Architect;
  - \_ D. The name, address, telephone and fax number of the owner(s) of record of the Subject Property;
    - E. Written and graphic (bar) scale in inches to feet;
    - F. North Arrow

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

MACAU ACOU Signature of Applicant

May (, 20

1

300 Attachment 1:36



#### CHECKLIST B. Zoning Permits

See §300-26, 27 & 34 A. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

- G. The original date that the plans were prepared, the date of each subsequent revision thereof and a list of specific revisions entered on each sheet.
- 3. Unless otherwise specified, no plat, plan or drawings shall be accepted unless:
  - A. drawn to a scale of 1"=10', 1"=20', 1"=30', 1"=40', 1"=50' or 1"=60' for engineering drawings or ½"=1', ½"=1', ½"=1', ½"=1', 34"=1' or 1"=1' for architectural drawings, as per standard scales commercially available at any office supply store. Items drawn to such scales but subsequently reduced or enlarged shall be summarily rejected.
  - B. submitted on 24"x36" or larger sheet sizes, folded into eighths, with title block revealed. If one sheet is not sufficient to depict the entire tract, the plat, plan or drawing may be divided into sections and shown on separate sheets of equal size, with reference on each sheet as to the location of all adjoining sheets.
  - C. fully dimensioned to confirm conformity with all requirements.
  - D. dimensions are expressed to the nearest tenth of an acre when describing acreage or 2 decimal places when describing square feet of area or linear feet of distance. Bearings shall be given to the nearest 10 seconds and the error of closure shall not exceed 1 to 10,000.
- 4. Existing tax sheet with existing block and lot number(s) of the Subject Property as they appear on the current City Tax Map. Existing Street names of all streets bounding the subject property shall be clearly visible. Where the scale of the map results in a street name not appearing, the Applicant shall legibly hand-print the missing street name.
- 5. Existing Conditions and Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor, showing the property boundary lines and dimensions, structures, available utilities and easements, roadways, rail lines and public rights-of-way crossing and adjacent to the subject property.

If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property.

- 6. On a separate copy of the Survey required under item 5.
  - A. Scaled drawing depicting the location of all buildings, structures, walls, fences, signs, and other elements proposed for the site (with numerical dimensions, including height, to the nearest tenth of a foot).

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

nature of Applicant

Hicu ( , 20 Date

2

300 Attachment 1:37



### PLEASANTVILLE LAND MANAGEMENT CODE CHECKLIST B. Zoning Permits

See §300-26, 27 & 34 A. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

- B. The dimensions of all yards in relation to the existing and proposed building(s) and the distances between such buildings and any other buildings on the same lot.
  - C. The distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).
- 7. Recent Aerial photograph depicting a 200' radius from the extreme edges of the Subject Property, dated and printed / plotted at a scale not less than 1"=100', showing the location, use, size and height, in stories and feet, of structures and other land uses as well as all access points to such uses.

2007 aerial photography is available at no charge from the NJGIN Information Warehouse (https://njgin.state.nj.us/NJ\_NJGINExplorer/IW.jsp?DLayer=NJ%202007%20Orthophotography). Should an applicant not be able to download such information, aerial photography from Google Earth, Microsoft Virtual Earth, Bing or other commercially available sources is acceptable.

8. Neighborhood characteristic photographs depicting the Subject Property from the opposite side of the street as well as all properties fronting both sides of the street of the block on which the Subject Property is located.

Such photography shall be dated and keyed to a reproduction of the City's official tax map, at a scale of not less than 1"=60', with the Subject Property and all photographed properties indicated.

- 9. Certification that there are no outstanding uncollected fees or escrows resulting from past applications or prior submissions by the Applicant, or any entity now or previously related to the applicant, involving this property or any other properties connected with the Applicant within the City of Pleasantville. No applications will be processed if the applicant owes the City or its professionals monies from previous applications.
- 10. Certification from the Zoning Officer and/or City Engineer that any conditions required as a result of any prior approval granted for the Subject Property have been fulfilled.
- 11. Certification from the City Tax Collector that all taxes and assessments are paid and current as of the date the Application is submitted, or that adequate provision for payments has been made in a matter satisfactory to the City.
  - 12. Statement regarding any prior Planning Board or Zoning Board of Adjustment appeal, approval or denial related to the Subject Property.
    - 13. Copies of protective covenants or deed restrictions affecting any portion of the Subject Property or any adjacent property (if obtainable).

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Date / 10

3

300 Attachment 1:38



#### CHECKLIST B. Zoning Permits

See §300-26, 27 & 34 A. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

14. The location, width, legal (metes and bounds) description, use(s) for which they are intended, any limitations thereof and the manner of control or maintenance for all existing or proposed utility easements, right-of-way dedications and/or sight triangle dedication(s) affecting the Subject Property.

Items 13. and 14. are intended to address, but are not limited to, existing or proposed easements to telephone, electric, gas, water and sewer utilities; deed restrictions and covenants, master deeds and proposed by-laws of any homeowner's or community associations; proposed deeds to dedicate any portion of the affected property for public use or for ownership by any public body.

- 15. **Detailed narrative** describing the existing use and condition of and the development proposed for the Subject property, including the number of dwelling units the building is designed to accommodate.
- 16. Detailed narrative justification for any requested waivers from any Checklist requirement. Items which are not applicable shall be addressed as N/A.
- \_\_\_\_\_ 17. **Detailed narrative** justification for any requested waiver(s) from any development standard and/or regulation where a variance is not required.
  - 18. Evidence that the Applicant has sufficient control over the Subject Property to effectuate the proposed development. Including, as appropriate:
    - A. Property Owner's authorization to file the application when the Owner is not the Applicant.
    - B. Notarized signature of the Applicant or Agent for the Applicant.
    - 19. All Application Fee(s). No application will be processed which does not include the appropriate Fees. The Applicant shall be responsible to insure that Fees are sufficient to address all approvals required, consistent with the Fee Schedule under §300-9. The City reserves the right to require additional Application Fees and, as applicable, Escrow Deposits should the review of the Application find that additional approvals are required.

Once such additional approvals have been identified, the City, and or its professionals shall immediately cease review of the subject application and issue a letter informing the Applicant of the necessity for additional funds. The review of the application shall not resume until the appropriate funds have been submitted.

20. The Zoning Officer reserves the right to require such additional information as may be deemed necessary and appropriate for a full consideration of the entirety of the Subject Application. While no application shall be deemed Incomplete for the lack of such information, the entities so indicated reserve the right to delay the granting of approvals until such information has been submitted and appropriately reviewed.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>Maccun Accu</u> Signature of Applicant

Date May (120

300 Attachment 1:39

4



# PLEASANTVILLE LAND MANAGEMENT CODE CHECKLIST C. Preapplication Conference

See §300-26, 27 & 35 for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 1. All General Checklist Requirements in such number as indicated in Checklist A.
  - 2. A Project Concept Plan and Description of Project Elements, clearly indicating:
  - A. A brief and general description of the nature, location and extent of the proposed development;
  - B. The name of the proposed development;
    - C. The date of preparation of the plan and the name, address and telephone number of the person who prepared the plan;
  - D. Scale, reference meridian and North arrow;
  - E. The name, address and phone number of the person to be contacted concerning any questions on the proposed development;
  - F. Area of the subject property, in square feet and in acres, to the nearest tenth of an acre; and
  - G. A list of the professional consultants advising the prospective applicant with respect to the proposed development;
  - H. Identification of variances required and requested waiver(s) from any development standard and/or regulation where a variance is not required.
  - \_\_\_\_\_ J. A statement as to any state and/or Federal approvals required in connection with the proposed development;
  - K. The number and approximate area of new lots or parcels, if any, to be created, tabulated by each separate use as proposed.
  - 3. The names and addresses of all owners of property located within 200' of the Subject Property as shown in the latest property tax records.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same

gnature of Applicant

Ulay 1, 20 Date

1

300 Attachment 1:40



#### CHECKLIST D. Minor Site Plans and Minor Subdivision Plats

See §300-26, 27 & 36 E. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 1. All General Checklist Requirements in such number as indicated in Checklist A.
  - 2. Plats or plans of the proposed project at a scale and paper size specified under Checklist A., item 2. B.
  - Existing Conditions and Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor, showing the property boundary lines and dimensions, structures, available utilities and easements, roadways, rail lines and public rights-of-way crossing and adjacent to the subject property.

Survey shall include the distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).

If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property.

- 4. Lot area expressed both in acreage (to the nearest tenth of an acre) and square feet (to 2 decimal places), both with and without any area(s) located within any existing or proposed public rights-of-way.
  - 5. Computation of the area of the tract to be disturbed in square feet, the number of lots proposed and the area and dimensions of each proposed lot.
  - 6. Existing contours referenced to United States Geological Survey datum, with project site and proposed contours at 1' intervals plotted thereon, except in areas where the slope exceeds 5%, where intervals may be 5'. Any proposed regrading shall be shown.
- 7. Existing and proposed spot elevations at all corners of the buildings and along the curbline.
- 8. A soils map with project site plotted thereon.
  - 9. Existing tax sheet and existing block and lot number(s) of the lots to be subdivided or developed, as they appear on the current City Tax Map, with proposed block and lot numbers as provided by the City Tax Assessor.
  - 10. Subdivision or development boundary lines (heavy solid line), lot lines to be removed (faded) and new lots to be created.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Date Lucy / 20

300 Attachment 1:41

1



#### CHECKLIST D. Minor Site Plans and Minor Subdivision Plats

See §300-26, 27 & 36 E. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 11. The location of existing and proposed property lines (with bearings and distances), streets, structures, walls, fences, signs, culverts and bridges (with numerical dimensions, including height, to the nearest tenth of a foot).
- 12. Parking spaces, loading areas, driveways, watercourses, railroads, bridges, culverts, drain pipes, any natural features such as wetlands and vegetated areas both within the tract and within 100' of its boundary.
- 13. The location and width of all existing proposed utility easements, the use(s) for which they are intended and the manner in which they will be controlled.
  - 14. Delineation of flood plains, including floodway, flood fringe areas and lands subject to flooding, and the location of all natural features, including wetlands, water courses, vegetated areas and buffers both within the tract and within 100' of the boundaries thereof.
- 15. The location and material of all existing and proposed monuments, including iron and copper pins.
- 16. Right-of-way dedication(s) and improvement(s), as applicable.
- 17. Sight triangle easements with dimensions, bearings and distances, as applicable.
  - 18. Plans of proposed site improvements and/or utility layouts as required by ordinance. Plans must show proposed connections to existing water supply and sanitary sewerage systems.
  - 19. Detailed site drawings, drawn to scale and fully dimensioned, depicting the size and location of all existing and proposed structures, signs and lighting, with height noted, and indicating if existing structures and uses will be retained or removed. All existing and proposed setbacks must be delineated on the plans.
  - 20. Detailed architectural and elevation drawings, drawn to scale and fully dimensioned, depicting all four (4) building elevations (labeled north, south, east and west, with street names as applicable), with colors and materials indicated on the plans. All proposed setbacks for structures must be delineated on the plans.
    - 21. Certification from appropriate state and county agencies and private providers as applicable, granting approval for the extension of utility service(s).
      - 22. Soil Erosion and Sediment Control Plan as required by N.J.S.A. 4:24-39 et seq., as applicable.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>III Accent</u> Signature of Applicant

uay / 10 Date

2



#### CHECKLIST D. Minor Site Plans and Minor Subdivision Plats

See §300-26, 27 & 36 E. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 23. Statement regarding details of any impact the proposed development may have on the City's Stormwater Management System in conformance with Chapter 251 of the City Code.
- 24. Plans and computations for any storm drainage systems required.
- \_\_\_\_\_ 25. A Landscape Plan, depicting existing and proposed screening, buffering and landscape areas in conformance with §300-66.

The location of all proposed plantings shall be indicated on the Landscape Plan, which shall be keyed to a Plant Schedule listing the botanical and common names, the sizes of plant material at time of planting and the total quantity of each plant.

- 25. A Lightning Plan, addressing the proposed location, direction of illumination, power and type of proposed outdoor lighting, including details regarding light standards and fixtures, lumen pattern and foot-candles.
- 27. Tax Map Update Fees, to be submitted on a separate check calculated at \$65 per affected lot.
- 28. Trash/refuse and recycling storage plans, if applicable.
- \_\_\_\_ 29. Signage Plan, with details addressing location, dimensions, area, height, illumination and materials for all signage.
- 30. Approval signature lines for the Board Chair, Board Secretary and City Engineer.
  - 31. Indication that Subdivision is to be filed by Deed or Plat.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

May ( 10 Date

300 Attachment 1:43



#### CHECKLIST E. Preliminary Major Site Plans & Preliminary Major Subdivision Plats

See §300-26, 27 & 36 F. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- X 1. All General Checklist Requirements in such number as indicated in Checklist A.
- X 2. Plats or plans of the proposed project at a scale and paper size specified under Checklist A., item 2. B.
- X 3. Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor. If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property, shall also be required.

Survey shall include the distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).

- X 4. Computation of lot area, and breakout of the area of the lot to be disturbed, expressed both in acreage and square feet, to the nearest tenth of an acre, both with and without existing and proposed public rights-of-way, parking and common open space areas.
- \_\_\_\_\_\_\_ 5. Number of lots proposed, including the area and dimensions of each.
- Existing contours referenced to United States Geological Survey datum, with project site and proposed contours at 1' intervals plotted thereon, except in areas where the slope exceeds 5%, where intervals may be 5'. Any proposed regrading shall be shown.
- X 7. Existing and proposed spot elevations at all corners of the buildings and along the curbline.
- X 8. A soils map with project site plotted thereon.
- X
   9. Existing tax sheet and existing block and lot number(s) of the lots to be subdivided or developed, as they appear on the current City Tax Map, with proposed block and lot numbers as provided by the City Tax Assessor.
- -X 10. Subdivision or development boundary lines (heavy solid line), lot lines to be removed (faded) and new lots to be created.
- <u>X</u> 11. The location of existing and proposed property lines (with bearings and distances), streets, structures, walls, fences, signs, culverts and bridges (with numerical dimensions, including height, to the nearest tenth of a foot).

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

May / 10

1

300 Attachment 1:44



#### CHECKLIST E. Preliminary Major Site Plans & Preliminary Major Subdivision Plats

See §300-26, 27 & 36 F. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- W 12. Parking spaces, loading areas, driveways, watercourses, railroads, bridges, culverts, drain pipes, any natural features such as wetlands and vegetated areas both within the tract and within 100' of its boundary. (Waiver 50')
- X 13. The location and width of all existing proposed utility easements, the use(s) for which they are intended, and the manner in which they will be controlled.
- X 14. Delineation of flood plains, including floodway, flood fringe areas and lands subject to flooding, and the location of all natural features, including wetlands, water courses, vegetated areas and buffers both within the tract and within 100' of the boundaries thereof.
- X 15. The location and material of all existing and proposed monuments, including iron and copper pins.
- x 16. Right-of-way dedication(s) and improvement(s), as applicable.
- \_\_\_\_\_ 17. Proposed reservations for parks, playgrounds and common open space.
- -X 18. Sight triangle easements with dimensions, bearings (to the nearest 10 seconds) and distances, as applicable.
- 19. Plans of proposed site improvements and/or utility layouts required by ordinance. Plans shall show proposed locations for all water and sewer lines, with connection details to existing water supply and sanitary sewerage systems for all valves, manholes and hydrants.
- WD 20. Certification from appropriate state and county agencies and private providers as applicable, granting approval for the extension of utility service(s).
- X 21. Soil Erosion and Sediment Control Plan as required by <u>N.J.S.A.</u> 4:24-39 et seq., as applicable.
- X 22. Detailed site drawings, drawn to scale and fully dimensioned, depicting the size and location of all existing and proposed structures, sidewalks and pedestrian walkways, signs and lighting, with height noted as applicable, and indicating if existing structures and uses will be retained or removed. All existing and proposed setbacks for structures must be delineated on the plans.
- X 23. Detailed architectural (floor-plan) and elevation drawings, drawn to scale and fully dimensioned, depicting all four (4) building elevations (labeled "viewed from the" north, south, east and west, with street names as applicable), with finished-floor elevation, colors and materials indicated on the plans. All proposed setbacks for structures shall be delineated on the plans.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

<u>may (, 2</u>c)

300 Attachment 1:45

08 - 01 - 2012



#### CHECKLIST E. Preliminary Major Site Plans & Preliminary Major Subdivision Plats

See §300-26, 27 & 36 F. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- X 24. Plans and computations for any storm drainage systems required, including boring logs showing the character of the soil and elevation of the groundwater table; the location of all existing and proposed storm drainage pipes and watercourses; pipe sizes; grades; and flow directions.
- X 25. Flood Zone.
- X 26. A Landscape Plan, depicting existing and proposed open space, screening, buffering and landscape areas in conformance with §300-66.

The location of all proposed plantings shall be indicated on the Landscape Plan, which shall be keyed to a Plant Schedule listing the botanical and common names, the sizes of plant material at time of planting and the total quantity of each plant.

- X 27. A Lightning Plan, addressing the proposed location, direction of illumination, power and type of proposed outdoor lighting, including details regarding light standards and fixtures, lumen pattern and foot-candles.
- X 28. Trash/refuse and recycling storage plans, if applicable.
  - \_\_\_\_\_ 29. Signage Plan, with details addressing location, dimensions, area, height, illumination and materials for all signage.
- NA 30. When a stream is proposed for alteration, improvement or relocation, or when a drainage structure or fill is proposed over, under, in or along a running stream, a report on the status of review by NJDEP (Division of Land Use Regulation);
- NA 31. Cross sections of watercourses and/or drainage swales at an appropriate scale, showing the extent of floodplain, top of bank, normal water levels and bottom elevations at locations required by the City Engineer.
- NA 32. The location and extent of drainage and conservation easements and stream encroachment lines.
- X 33. When a tidal watercourse or wetlands are proposed for alteration, development, improvement or relocation, provide the status of review by NJDEP (Division of Land Use Regulation).
- X 34. The status of application or request for exemption from NJDEP (Division of Land Use Regulation) for compliance with the Coastal Area Facility Review Act (<u>N.J.S.A.</u> 13:19-1 et seq.)

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Date / 20

3

300 Attachment 1:46



#### CHECKLIST E. Preliminary Major Site Plans & Preliminary Major Subdivision Plats

See §300-26, 27 & 36 F. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- X 35. The location and type of adequate drainage provisions to reasonably reduce and minimize exposure to flood damage.
- X 36. The location, design and size of any on- or off-street parking or loading area(s), showing location of stalls, bays, aisles and barriers as well all means of vehicular ingress and egress from the site onto public streets.
- W 37. The location of existing utility structures on the tract and within 200' of the extreme limits of the tract.
- W 38. Profile plans, typical cross sections, construction details and horizontal and vertical alignment of the centerline of all proposed streets and of existing streets abutting the tract, clearly indicating the type and width of pavement and the location of curbs, sidewalks, shade trees and planting strips.
- X 39. Statement of compliance with the Stormwater Management Rules (N.J.A.C. 7:8) and Chapter 251 of the City Code.
- W 40. Concerning commercial development: the proposed number of shifts, the maximum number of employees on each shift and the hours of operation. To be determined based on uses
- NA 41. Concerning the development, conversion, expansion or use of condominiums:
  - NA A. Where a condominium is a single structure, a detailed floor plan of the entire structure.
  - NA B. Where the condominium is a complex of multiple structures, a detailed floor plan of the entire complex.
- <u>NA</u> 42. If the development is proposed for construction in stages or units, a schedule for the development of such stages or units, stating the approximate beginning and completion date for each such stage or unit; the proportion of the total public and private open space and the proportion of each type of proposed land use to be provided or constructed during each such stage; and the overall chronology of development to be followed from stage to stage.
- X 43. Approval signature lines for the Board Chair, Board Secretary & City Engineer.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>AM Accur Accur</u> Signature of Applicant

4

300 Attachment 1:47



#### CHECKLIST F. Final Major Site Plans & Final Major Subdivision Plats

See §300-26, 27 & 36 G. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- X 1. All General Checklist Requirements in such number as indicated in Checklist A.
   WD 2. The date on which Preliminary approval was granted and, if required, by Atlantic County, and a copy of each Decision & Resolution granting such approval(s).
- <u>WD</u> 3. A final version of the approved Preliminary plan or plat containing any revisions required as a condition of Preliminary approval.
- \_\_\_\_\_\_ 4. Engineering plans, specifications and cost estimates.
- -X 5. A tabulation of the following information for the stage or unit of the development being proposed for final approval:
  - X A. The total number of dwelling units and rooming units proposed, by type of structure and number of bedrooms.
  - X B. The total square footage of building floor area proposed for non-residential uses, by general type of use.
  - X C. The proposed number of off-street parking and loading spaces for each proposed type of land use.
  - X D. The total land area, expressed in square feet and as a percent of the total development area, proposed to be devoted to residential and non-residential uses, by type of structure; public and private open space; streets; off-street parking and loading areas; pedestrian circulation elements; and miscellaneous impervious areas.
- NA 6. Section or Construction Staging Plan, if proposed.
- WD 7. Copies of all required easements, declarations and covenants to be recorded upon final approval.
- 8. Copies of all declarations, covenants and bylaws necessary to establish, activate and govern any entity that is to be responsible for the management and maintenance of any private common open space or facility.
- WD
   9. Copies of all preconstruction permits and approvals required from any federal or state agency or, for any required permit not yet secured, a copy of the application as filed and a statement of its current status or a statement explaining why an application has not been filed and indicating when it will be filed.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>MACCA CA</u> Signature of Applicant

Date Lang / 20

1

300 Attachment 1:48



#### CHECKLIST F. Final Major Site Plans & Final Major Subdivision Plats

See §300-26, 27 & 36 G. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

| WD        | 10. | A statement summarizing all changes which have been made in or have occurred with respect<br>to any document, plan, data or information made part of the Preliminary Approval, together<br>with revised copies of same.                                                                                                                                                 |
|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WD        | 11. | "Form-of" easements and deeds to be executed upon final plan approval necessary to convey<br>any easements, rights-of-way or other lands or interests in lands to be conveyed or dedicated to<br>any governmental agency or public utility.                                                                                                                             |
| <u>WD</u> | 12. | "Form-of" the performance guaranty and maintenance guaranty to be submitted pursuant to §300-49, upon final plan approval and of any other performance or maintenance guaranties required to ensure installation and completion of the entire development, or any specific portion thereof, or the future provision and improvement of common open space or facilities. |
| WD        | 13. | Any stipulation or condition imposed at time of Preliminary Approval                                                                                                                                                                                                                                                                                                    |
| WD_       | 14. | Any ordinance requirement for Final Plan approval.                                                                                                                                                                                                                                                                                                                      |
| WD_       | 15. | A statement from the City Engineer that all installed improvements have been inspected and satisfactorily installed.                                                                                                                                                                                                                                                    |
| <u>WD</u> | 16. | Letters directed to the Board Chair and signed by a responsible official of all utility companies, etc., providing service to the tract.                                                                                                                                                                                                                                |

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>MAdu</u> Signature of Applicant

May 100 Date /

300 Attachment 1:49



#### CHECKLIST G. Appeal or Interpretation / Special Question Pursuant to <u>N.J.S.A.</u> 40:55d-70a

See §300-26, 27, 38 & 39 for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 1. All General Checklist Requirements in such number as indicated in Checklist A
- 2. Detailed narrative justification for the Appeal or Interpretation sought or the Special Question at issue.
  - 3. Such other and further information or documentation as may be deemed to be necessary or appropriate to a full and proper consideration and disposition of the particular application.

For Interpretations other than for the permissibility of use issues::

4. The specific provision or provisions to be interpreted, the facts of the specific situation giving rise to the request for interpretation and the precise interpretation asserted by the applicant to be correct.

For Interpretation of the permissibility of use issues:

- 5. The uses permitted in the zoning district which are most similar to the proposed use.
  - 6. Documents, statements and other evidence demonstrating that the proposed use will comply with all use limitations established for the district in which it is proposed to be located.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant enay 1 20 1 Date

300 Attachment 1:50



# PLEASANTVILLE LAND MANAGEMENT CODE CHECKLIST H. 'c' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70c

See §300-26, 27 & 37 C. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

# PLEASE READ THE FOLLOWING CAREFULLY BEFORE COMPLETING THE VARIANCE JUSTIFICATION NARRATIVE

Under <u>N.J.S.A.</u> 40:55D-70(c), 'c' variance relief is required to permit the deviation from the strict application of land use regulations (generally) governing the physical development of a piece of property.

In order for a Planning Board or Zoning Board of Adjustment, as the case may be, to grant a 'c' variance request, an Applicant must demonstrate, to the Board's satisfaction, that special reasons (broadly defined as relieving an undue hardship on the Applicant [commonly referred to as a 'c-1' variance] <u>OR</u> advancing the purposes of the Municipal Land Use Law [commonly referred to as a 'c-2' variance]) exist. This is known as the <u>Positive Criteria</u>. Additionally, no variance may be granted which will be detrimental to the public good or the City's Zone Plan or Zoning Ordinance.

The grant of a 'c' variance requires an affirmative vote by a simple majority of the Board members present.

In order to satisfy the **Positive Criteria** for 'c-1' variances, the applicant must prove that:

(a) by reason of exceptional narrowness, shallowness or shape of a specific piece of property, or (b) by reason of exceptional topographic conditions or physical features uniquely affecting a specific piece of property, or (c) by reason of an extraordinary and exceptional situation uniquely affecting a specific piece of property or the structures lawfully existing thereon, the strict application of any regulation...would result in peculiar and exceptional practical difficulties to, or exceptional and undue hardship upon, the developer of such property..."

In order to satisfy the <u>Positive Criteria</u> for 'c-2' variances, the applicant must prove that the proposed development will achieve at least one (1) of the following Purposes of the Municipal Land Use Law:

a. To encourage municipal action to guide the appropriate use or development of all lands in this State, in a manner which will promote the public health, safety, morals, and general welfare;

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Date (, É)

1

300 Attachment 1:51



#### CHECKLIST H. 'c' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70c

See §300-26, 27 & 37 C. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- b. To secure safety from fire, flood, panic and other natural and man-made disasters;
- c. To provide adequate light, air and open space;
- d. To ensure that the development of individual municipalities does not conflict with the development and general welfare of neighboring municipalities, the county and the State as a whole;
- e. To promote the establishment of appropriate population densities and concentrations that will contribute to the well-being of persons, neighborhoods, communities and regions and preservation of the environment;
- f. To encourage the appropriate and efficient expenditure of public funds by the coordination of public development with land use policies;
- g. To provide sufficient space in appropriate locations for a variety of agricultural, residential, recreational, commercial and industrial uses and open space, both public and private, according to their respective environmental requirements in order to meet the needs of all New Jersey's citizens;
- h. To encourage the location and design of transportation routes which will promote the free flow of traffic while discouraging location of such facilities and routes which result in congestion or blight;
- i. To promote a desirable visual environment through creative development techniques and good civic design and arrangement;
- j. To promote the conservation of historic sites and districts, open space, energy resources and valuable natural resources in the State and to prevent urban sprawl and degradation of the environment through improper use of land;
- k. To encourage planned unit developments which incorporate the best features of design and relate the type, design and layout of residential, commercial, industrial and recreational development to the particular site;

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

\_<u>\_\_\_\_</u>Date

2

300 Attachment 1:52



#### CHECKLIST H. 'c' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70c

See §300-26, 27 & 37 C. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 1. To encourage senior citizen community housing construction;
- m. To encourage coordination of the various public and private procedures and activities shaping land development with a view of lessening the cost of such development and to the more efficient use of land;
- n. To promote utilization of renewable energy resources;
- o. To promote the maximum practicable recovery and recycling of recyclable materials from municipal solid waste through the use of planning practices designed to incorporate the State Recycling Plan goals and to complement municipal recycling programs.

Applicants requesting 'c' variance relief must complete the following Checklist G., along with the accompanying Schedule of Requested 'c' Variance(s) and 'c' Variance Justification Narrative setting forth and describing the specific requirements of the Pleasantville Land Management Code from which relief is being sought. Applicants must also address the reasons why such relief is justified.

Applicants MUST submit variance justifications for all requested variances as part of this application process. Applications not containing the aforementioned detailed written narrative, addressing both the Positive Criteria required for 'c' variance relief and any impact the granting of the requested variance will have on the public good and the City's Zone Plan and Zoning Ordinance, shall be deemed INCOMPLETE.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

<u>May 1, 20</u> Date

300 Attachment 1:53



#### CHECKLIST H. 'c' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70c

See §300-26, 27 & 37 C. for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the Applicant.

- 1. All General Checklist Requirements in such number as indicated in Checklist A.
- Plats, plans drawings of the proposed project at a scale specified under Checklist A., item 3.
   A. Plats, plans or drawings prepared by a New Jersey Licensed Land Surveyor, Professional Engineer, Professional Planner or Architect shall be submitted on a paper size specified under Checklist A., item 3. B. Plats or plans prepared by the Applicant may be submitted on a sheet no smaller than 11"x17".
- 3. Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor. If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property, shall also be required. The Survey shall include the distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).
  - 4. Lot area expressed both in acreage and square feet, to the nearest tenth of an acre, both with and without any area(s) located within any existing or proposed public rights-of-way.
- 5. Development boundary lines (heavy solid line).
- 6. Detailed site drawings, drawn to scale and fully dimensioned, depicting the size and location of all existing and proposed structures, signs and lighting, with height noted, and indicating if existing structures and uses will be retained or removed. All existing and proposed setbacks for structures must be delineated on the plans.
- 7. Detailed architectural and elevation drawings, drawn to scale and fully dimensioned, depicting all four (4) building elevations (labeled north, south, east and west, with street names as applicable), with colors and materials indicated on the plans. All proposed setbacks for structures must be delineated on the plans.
- 8. Completed Schedule of Requested 'c' Variances attached to this Checklist.
- 9. Detailed justification for the relief requested, including statement addressing the Positive Criteria required for 'c' Variance relief, and specifically addressing any detrimental impact the grant of such variance might have to the public good or the City's Zone Plan or Zoning Ordinance.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Date Date

4

300 Attachment 1:54



#### CHECKLIST H. 'c' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70c

See §300-26, 27 & 37 C. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

#### APPLICANTS MAY UTILIZE THIS FORM OR MAY CREATE THEIR OWN SCHEDULE AS LONG AS THE REQUIRED INFORMATION IS INCLUDED.

| SCHUEDOULE OFFICEQUESTUED & WARRANNCIES |                                         |                                                 |                                |
|-----------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------|
| Waaance<br>Number                       | Ordinance<br>Reference<br>::((§300 - )) | IIIID & WARLANCERS<br>Regulation // Requirement | Existing // Proposed Condition |
| 1.                                      |                                         |                                                 |                                |
| 2.                                      |                                         |                                                 |                                |
| 3.                                      |                                         |                                                 |                                |
| 4.                                      |                                         |                                                 |                                |
| 5.                                      |                                         |                                                 |                                |
| 6.                                      |                                         |                                                 |                                |
| 7.                                      |                                         |                                                 |                                |
| 8.                                      |                                         |                                                 |                                |
| 9.                                      |                                         |                                                 |                                |
| 10.                                     |                                         |                                                 |                                |

(use additional pages if necessary)

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

ucy 1, 20 Date

300 Attachment 1:55

08 - 01 - 2012



#### CHECKLIST H. 'c' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70c

See §300-26, 27 & 37 C. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

#### APPLICANTS MAY UTILIZE THIS FORM OR MAY CREATE THEIR OWN SCHEDULE AS LONG AS THE REQUIRED INFORMATION IS INCLUDED.

| CONTRACT JUNE                                                        | IIFICATILIONINARRANDAVE                     |
|----------------------------------------------------------------------|---------------------------------------------|
| Wawance Mumber<br>(ffiom Scheihile of<br>Requested ?c?<br>Wawances), | Demilied Institucetion for Webience Request |
| 1.                                                                   |                                             |
| 2.                                                                   |                                             |
| 3.                                                                   |                                             |
| 4.                                                                   |                                             |
| 5.                                                                   |                                             |
| 6.                                                                   |                                             |
| 7.                                                                   |                                             |
| 8.                                                                   |                                             |
| 9.                                                                   |                                             |
| 10.                                                                  |                                             |

<sup>(</sup>use additional pages if necessary)

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

\_\_\_\_\_\_ Date

300 Attachment 1:56



## PLEASANTVILLE LAND MANAGEMENT CODE CHECKLIST I. 'd' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70d

See §300-26, 27 & 37 D. for further details regarding submission requirements and procedures. *Each page* of this Checklist must be signed and dated by the Applicant.

# PLEASE READ THE FOLLOWING CAREFULLY BEFORE COMPLETING THE VARIANCE JUSTIFICATION NARRATIVE

Under N.J.S.A. 40:55D-70 (d), 'd' variance relief is required to permit (1) the use of lands or buildings in areas of the City (Zoning Districts) where such use is not permitted, (2) to expand an existing non-permitted use, (3) to deviate from a conditional use standard as defined in the City's Land Management Code, (4) to develop beyond the floor area ratio permitted in a Zoning District, (5) to develop beyond the density permitted in a Zoning District, and (6) to develop at a building height 10' or 10% beyond that which is permitted in a Zoning District.

Generally, in order for the Zoning Board of Adjustment<sup>65</sup> to grant a 'd' variance request, an Applicant must demonstrate, to the Board's satisfaction, that special reasons (broadly defined as relieving an undue hardship on the Applicant <u>OR</u> advancing the purposes of the Municipal Land Use Law) exist. This is known as the <u>Positive Criteria</u>. The Applicant must also demonstrate that granting such relief will not substantially impair the purpose and intent of the City's Zone Plan or Zoning Ordinance, and that the relief requested will not be a substantial detriment to the public good. This is known as the <u>Negative Criteria</u>.

Both the <u>Positive Criteria</u> and the <u>Negative Criteria</u> must be satisfied in order for the Board to grant a 'd' variance request.

The grant of a 'd' variance requires an affirmative vote by five (5) Board members, regardless of how many members may be attending the meeting.

In order to satisfy the **Positive Criteria** for 'd' variances, the applicant must prove that:

(a) by reason of exceptional narrowness, shallowness or shape of a specific piece of property, or (b) by reason of exceptional topographic conditions or physical features uniquely affecting a specific piece of property, or (c) by reason of an extraordinary and

mature of Applicant

Date Land

1

300 Attachment 1:57

<sup>&</sup>lt;sup>65</sup> Only a Zoning Board may grant 'd' variance relief

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.



#### CHECKLIST I. 'd' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70d

See §300-26, 27 & 37 D. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

exceptional situation uniquely affecting a specific piece of property or the structures lawfully existing thereon, the strict application of any regulation...would result in peculiar and exceptional practical difficulties to, or exceptional and undue hardship upon, the developer of such property..."

**OR**, the applicant must prove that the proposed development will achieve at least one (1) of the following Purposes of the Municipal Land Use Law:

- a. To encourage municipal action to guide the appropriate use or development of all lands in this State, in a manner which will promote the public health, safety, morals, and general welfare;
- b. To secure safety from fire, flood, panic and other natural and man-made disasters;
- c. To provide adequate light, air and open space;
- d. To ensure that the development of individual municipalities does not conflict with the development and general welfare of neighboring municipalities, the county and the State as a whole;
- e. To promote the establishment of appropriate population densities and concentrations that will contribute to the well-being of persons, neighborhoods, communities and regions and preservation of the environment;
- f. To encourage the appropriate and efficient expenditure of public funds by the coordination of public development with land use policies;
- g. To provide sufficient space in appropriate locations for a variety of agricultural, residential, recreational, commercial and industrial uses and open space, both public and private, according to their respective environmental requirements in order to meet the needs of all New Jersey's citizens;
- h. To encourage the location and design of transportation routes which will promote the free flow of traffic while discouraging location of such facilities and routes which result in congestion or blight;

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

May / 10

300 Attachment 1:58



#### CHECKLIST I. 'd' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70d

See §300-26, 27 & 37 D. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- i. To promote a desirable visual environment through creative development techniques and good civic design and arrangement;
- j. To promote the conservation of historic sites and districts, open space, energy resources and valuable natural resources in the State and to prevent urban sprawl and degradation of the environment through improper use of land;
- k. To encourage planned unit developments which incorporate the best features of design and relate the type, design and layout of residential, commercial, industrial and recreational development to the particular site;
- 1. To encourage senior citizen community housing construction;
- m. To encourage coordination of the various public and private procedures and activities shaping land development with a view of lessening the cost of such development and to the more efficient use of land;
- n. To promote utilization of renewable energy resources;
- o. To promote the maximum practicable recovery and recycling of recyclable materials from municipal solid waste through the use of planning practices designed to incorporate the State Recycling Plan goals and to complement municipal recycling programs.

Applicants requesting 'd' variance relief must complete the following Checklist H., along with the accompanying Schedule of Requested 'd' Variance(s) and 'd' Variance Justification Narrative setting forth and describing the specific requirements of the Pleasantville Land Management Code from which relief is being sought. Applicants must also address the reasons why such relief is justified.

Applicants MUST submit variance justifications for all requested variances as part of this application process. Applications not containing the aforementioned detailed written narrative, addressing both the Positive Criteria and Negative Criteria required for 'd' variance relief, shall be deemed INCOMPLETE.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

been too

\_<u>uay</u>/10

3

300 Attachment 1:59



#### CHECKLIST I. 'd' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70d

See §300-26, 27 & 37 D. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

- 1. All General Checklist Requirements in such number as indicated in Checklist A.
- Plats, plans drawings of the proposed project at a scale specified under Checklist A., item 3.
   A. Plats, plans or drawings prepared by a New Jersey Licensed Land Surveyor, Professional Engineer, Professional Planner or Architect shall be submitted on a paper size specified under Checklist A., item 3. B. Plats or plans prepared by the Applicant may be submitted on a sheet no smaller than 11"x17".
- 3. Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor. If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property, shall also be required. The Survey shall include the distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).
- 4. Lot area expressed both in acreage and square feet, to the nearest tenth of an acre, both with and without any area(s) located within any existing or proposed public rights-of-way.
- 5. Development boundary lines (heavy solid line).
  - 6. Variance requests under <u>N.J.S.A.</u> 40:55d-70d(3), (4) & (6) only:
    - A. detailed site drawings, drawn to scale and fully dimensioned, depicting the size and location of all existing and proposed structures, signs and lighting, with height noted, and indicating if existing structures and uses will be retained or removed.
    - B. detailed architectural and elevation drawings, drawn to scale and fully dimensioned, depicting all four (4) building elevations (labeled north, south, east and west, with street names as applicable), with colors and materials indicated on the plans.
  - 7. Completed Schedule of Requested 'd' Variances attached to this Checklist.
    - 8. Detailed justification for the relief requested, including statement addressing the Positive Criteria and Negative Criteria required for 'd' Variance relief.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

nature of Applicant

May (10 Date

4

300 Attachment 1:60



#### CHECKLIST I. 'd' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70d

See §300-26, 27 & 37 D. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

# APPLICANTS MAY UTILIZE THIS FORM OR MAY CREATE THEIR OWN SCHEDULE AS LONG AS THE REQUIRED INFORMATION IS INCLUDED.

| SCHIDDULE OR REQUESTIND 'GP WARMNCDSS |                                      |  |                              |
|---------------------------------------|--------------------------------------|--|------------------------------|
| Wasiance<br>Number                    | Ondinance<br>Reference<br>((\$300)). |  | Existing//Bioposed/Condition |
| 1.                                    |                                      |  |                              |
| 2.                                    |                                      |  |                              |
| 3.                                    |                                      |  |                              |
| 4.                                    |                                      |  |                              |
| 5.                                    |                                      |  |                              |
| 6.                                    |                                      |  |                              |
| 7.                                    |                                      |  |                              |
| 8.                                    |                                      |  |                              |
| 9.                                    |                                      |  |                              |
| 10.                                   |                                      |  |                              |

(use additional pages if necessary)

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Signature of Applicant

Ulay 1,10 Date

5

300 Attachment 1:61



#### CHECKLIST I. 'd' Variances Pursuant to <u>N.J.S.A.</u> 40:55d-70d

See §300-26, 27 & 37 D. for further details regarding submission requirements and procedures.

Each page of this Checklist must be signed and dated by the Applicant.

### APPLICANTS MAY UTILIZE THIS FORM OR MAY CREATE THEIR OWN SCHEDULE AS LONG AS THE REQUIRED INFORMATION IS INCLUDED.

| "EP WARRIANNEE JAOKSI                                                  | UIPICXADIONINKVRRAADINTE                                             |
|------------------------------------------------------------------------|----------------------------------------------------------------------|
| Waviance Number<br>(fitom Schedule off<br>Requested 'c'<br>Waviances)) | UNICANDIONINKVRRATURIE<br>Detailed Justification for Watanee Request |
| 1.                                                                     |                                                                      |
| 2.                                                                     |                                                                      |
| 3.                                                                     |                                                                      |
| 4.                                                                     |                                                                      |
| 5.                                                                     |                                                                      |
| 6.                                                                     |                                                                      |
| 7.                                                                     |                                                                      |
| 8.                                                                     |                                                                      |
| 9.                                                                     |                                                                      |
| 10.                                                                    |                                                                      |

<sup>(</sup>use additional pages if necessary)

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

Maie / 20

300 Attachment 1:62



#### CHECKLIST J. Certificate of Nonconformity Pursuant to <u>N.J.S.A.</u> 40:55d-68.

See §300-20, 26 & 27 for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the person completing the Checklist.

# APPLICATIONS FOR CERTIFICATE OF NONCONFORMITY

#### Pursuant to N.J.S.A. 40:55d-68:

any nonconforming use or structure existing at the time of the passage of the Land Management Code may be continued upon the lot or in the structure so occupied and any such structure may be restored or repaired in the event of partial destruction thereof.

A prospective purchaser, prospective mortgagee or any other person interested in any land upon which a nonconforming use or structure exists may apply in writing for the issuance of a Certificate of Nonconformity, certifying that the use or structure existed before the adoption of the section of the Land Management Code which rendered the use or structure nonconforming.

The Applicant for a Certificate of Nonconformity shall have the burden of proof.

Application for a Certificate of Nonconformity may be made to the Zoning Officer within one (1) year of the adoption of the section of the Land Management Code which rendered the use or structure nonconforming, or at any time to the Zoning Board of Adjustment.

The Pleasantville Land Management Code was adopted on the date indicated under §300-1 therein. Until such time as the Land Management Code is amended, such date shall be the Test Date for any nonconformity. Upon any amendment to the Land Management Code, the date of adoption of an ordinance amending a specific section of the Land Management Code shall become the Test Date for such section.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

of Applicant

<u>Illay /, 20</u> Date

300 Attachment 1:63

1

| OF PLEASAN JULE         | Cer                     | LLE LAND MANAGEMI<br>CHECKLIST J.<br>tificate of Nonconformity<br>uant to <u>N.J.S.A.</u> 40:55d-68 |                                |  |
|-------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|--|
| See §300-20, 26 & 2'    | 7 for further details r | egarding submission require                                                                         | ements and procedures.         |  |
| Each page of this Ch    | ecklist must be signe   | ed and dated by the person of                                                                       | completing the Checklist.      |  |
| Certificate of Noncor   | nformity is being sou   | ight for nonconforming:                                                                             |                                |  |
| (                       | ) Use                   | ( ) Building                                                                                        | ( ) Both                       |  |
| Explain in detail the   | present nature of the   | nonconformity (use additio                                                                          | nal sheets if necessary):      |  |
|                         |                         |                                                                                                     |                                |  |
|                         |                         |                                                                                                     | <u></u>                        |  |
|                         |                         |                                                                                                     |                                |  |
|                         |                         |                                                                                                     |                                |  |
|                         |                         |                                                                                                     |                                |  |
|                         |                         |                                                                                                     |                                |  |
|                         |                         |                                                                                                     |                                |  |
|                         |                         |                                                                                                     |                                |  |
| List all submitted evid | ence supporting the cl  | aim of nonconformity (use ad                                                                        | ditional sheets if necessary): |  |
| 1                       |                         |                                                                                                     |                                |  |
| 2                       |                         |                                                                                                     |                                |  |
| 3                       |                         |                                                                                                     |                                |  |
| 4                       |                         |                                                                                                     |                                |  |

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same.

5.\_\_\_\_\_

6. \_\_\_\_\_\_ 7. \_\_\_\_\_

10.\_\_\_\_\_

Signature of Applicant

May 1, 20 Date

300 Attachment 1:64

2



#### CHECKLIST J. Certificate of Nonconformity Pursuant to <u>N.J.S.A.</u> 40:55d-68.

See §300-20, 26 & 27 for further details regarding submission requirements and procedures.

*Each page* of this Checklist must be signed and dated by the person completing the Checklist.

- 1. All General Checklist Requirements in such number as indicated in Checklist A.
- 2. Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor. If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property, shall also be required. The Survey shall include the distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).
- 3. Lot area expressed both in acreage and square feet, to the nearest tenth of an acre.
- 4. **Test Date** for the portion of the Land Management Code which rendered the use or structure nonconforming.
- 5. **Detailed narrative** supporting the lawful use of the Subject Property or the lawful existence of the nonconforming nature of the structure prior to the Test Date.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same,

ure of Applicant

<u>May 1,10</u> Date

300 Attachment 1:65

3



#### CHECKLIST K. Certificate of Redevelopment Plan Conformance Pursuant to applicable Redevelopment Plan

See §300-26, 27 & the applicable Redevelopment Plan for further details of submission requirements and procedures.

Each page of this Checklist must be signed and dated by the person completing the Checklist.

- X 1. All General Checklist Requirements in such number as indicated in Checklist A.
- X 2. Redevelopment Plan under which certification of conformance is requested.
- X
   3. Plats, plans drawings of the proposed project at a scale specified under Checklist A., item 3. A. Plats, plans or drawings prepared by a New Jersey Licensed Land Surveyor, Professional Engineer, Professional Planner or Architect shall be submitted on a paper size specified under Checklist A., item 3. B. Plats or plans prepared by the Applicant may be submitted on a sheet no smaller than 11"x17".
- X 4. Topographical Outbound Survey of the Subject Property, at a scale of not less than 1"=50', prepared by a New Jersey Licensed Land Surveyor. If Survey is dated more than 2 years prior to the date of submission of the Subject Application, an Affidavit of No Change, prepared by a New Jersey Licensed Land Surveyor, certifying that the submitted survey depicts the true existing conditions on the subject property, shall also be required. The Survey shall include the distances between the proposed building(s) and any other buildings on adjacent lots (on both sides and the rear of the Subject Property).
- X 5. Lot area expressed both in acreage and square feet, to the nearest tenth of an acre, both with and without any area(s) located within any existing or proposed public rights-of-way.
- X 6. Development boundary lines (heavy solid line).
- X 7. Detailed narrative of the proposed project and relationship to all applicable requirements of the subject Redevelopment Plan.
- X 8. Where physical changes are proposed to the Subject Property:
  - X A. detailed site drawings, drawn to scale and fully dimensioned, depicting the size and location of all existing and proposed structures, signs and lighting, with height noted, and indicating if existing structures and uses will be retained or removed. All existing and proposed setbacks for structures must be delineated on the plans.
  - X B. detailed architectural and elevation drawings, drawn to scale and fully dimensioned, depicting all four (4) building elevations (labeled north, south, east and west, with street names as applicable), with colors and materials indicated on the plans. All proposed setbacks for structures must be delineated on the plans.

I, as applicant for the subject Application, acknowledge that I have read and am familiar with the procedures set forth herein for submitting and acting upon applications for Land Use Approval in the City of Pleasantville and agree to be bound by same

nature of Applicant

300 Attachment 1:66

1



SCA 003.01

# SUBMISSION WAIVER JUSTIFICATION NARRATIVE

#### RE: Spyglass at Lakes Bay Spyglass QOZB, LLC Franklin Blvd & Ansley Blvd City of Pleasantville, Atlantic County, New Jersey

This narrative is provided to summarize the waivers being requested from submission requirements contained in Chapter 300 of the City of Pleasantville Land Use and Development Ordinance for the referenced project. The ordinance sections from which relief is requested, and justification for the requested waivers, is outlined below:

Chapter 300, Attachment 1, Checklist E – Preliminary Major Site Plans and Preliminary Major Subdivision Plans:

12. Parking spaces, loading areas, driveways, watercourses, railroads, bridges, culverts, drainpipes, and natural features such as wetlands and vegetated areas both within the tract and within 100' of it's boundary.

The Applicant respectfully requests a waiver from this requirement to depict improvements within 75 feet of the property boundaries in lieu of the required 100 feet. The site is contained within a full City block so no impacts to neighbors on the opposite side of the roads are anticipated due to the roadways separating the parcels.

20. Certification from appropriate state and county agencies and private providers as applicable, granting approval for the extension of utility service(s).

The Applicant respectfully requests a waiver to defer evidence of approval of service from utility companies to be a condition of approval.

37. The location of existing utility structures on the tract and within 200' of the extreme limits of the tract.

The Applicant respectfully requests a waiver from this requirement to depict utility infrastructure within 75 feet of the property boundary in lieu of the required 200 feet. All utilities that will be utilized for service to the project are directly adjacent to the site, and the downstream end of the storm sewer infrastructure to which the project will connect are within the survey limits. 38. Profile plans, typical cross sections, construction details and horizontal and vertical alignment of the centerline of all proposed streets and of existing streets abutting the tract, clearly indicating the type and width of pavement and the location of curbs, sidewalks, shade trees and planting strips.

# The Applicant respectfully requests a waiver from providing profiles and cross-sections of existing streets abutting the tract since no changes to the roadways are proposed.

40. Concerning commercial development: the proposed number of shifts, the maximum number of employees on each shift and the hours of operation.

The Applicant respectfully requests a waiver from providing this information since the actual users of the proposed commercial facilities against the waterfront, which are ancillary and supportive of the proposed residential portion of the project, have not yet been identified.

<u>Chapter 300, Attachment 1, Checklist F – Final Major Site Plans and Final Major Subdivision Plats:</u>

2. The date on which Preliminary approval was granted and, if required, by Atlantic County, and a copy of each Decision and Resolution granting such approval(s).

The Applicant respectfully requests a waiver from this requirement since both preliminary and final approval are requested concurrently.

3. A final version of the approved Preliminary plan or plat containing any revisions required as a condition of Preliminary approval.

The Applicant respectfully requests a waiver from this requirement since both preliminary and final approval are requested concurrently

4. Engineering plans, specifications and cost estimates.

The Applicant respectfully requests a waiver to defer providing a cost estimate for the proposed site improvements to be a condition of approval.

7. Copies of all required easements, declarations and covenants to be recorded upon final approval.

The Applicant respectfully requests a waiver to defer providing easement information for the proposed improvements to be a condition of approval.

8. Copies of all declarations, covenants and bylaws necessary to establish, activate and govern any entity that is to be responsible for the management and maintenance of any private common open space or facility.

The Applicant respectfully requests a waiver to defer providing management and maintenance entity information for the proposed improvements to be a condition of approval. 9. Copies of all preconstruction permits and approvals required from any federal or state agency or, for any required permit not yet secured, a copy of the application as filed and a statement of its current status or a statement explaining why an application has not been filed and indicating when it will be filed.

The Applicant respectfully requests a waiver from providing evidence of outside agency approvals to be a condition of approval. Applications for required approvals from the New Jersey Department of Environmental Protection (NJDEP) including a Coastal Area Facilities Review Act (CAFRA) Permit and Treatment Works Approval (TWA) for sewer will be submitted shortly after approval is granted by the City.

10.A statement summarizing all changes which have been made in or have occurred with respect to any document, plan, data or information made part of the Preliminary Approval, together with revised copies of same.

# The Applicant respectfully requests a waiver of this requirement since preliminary and final approval are being requested concurrently.

11. "Form-of" easements and deeds to be executed upon final plan approval necessary to convey any easements, rights-of-way or other lands or interests in lands to be conveyed or dedicated to any governmental agency or public entity.

# The Applicant respectfully requests to defer this requirement to be a condition of approval.

12. "FORM-of" the performance guaranty and maintenance guaranty to be submitted pursuant to §300-49, upon final plan approval and of any other performance or maintenance guaranties required to ensure installation and completion of the entire development, or any specific portion thereof, or the future provision and improvement of common open space facilities.

# The Applicant respectfully requests to defer this requirement to be a condition of approval.

13. Any stipulation or condition imposed at time of Preliminary Approval.

The Applicant respectfully requests a waiver of this requirement since preliminary and final approval are being requested concurrently.

14. Any ordinance requirement for Final Plan approval.

The Applicant respectfully requests a waiver of this requirement since preliminary and final approval are being requested concurrently.

15.A statement from the City Engineer that all installed improvements have been inspected and satisfactorily installed.

The Applicant respectfully requests to defer this requirement to be a condition of approval.

16.Letters directed to the Board Chair and signed by a responsible official of all utility companies, etc., providing service to the tract.

The Applicant respectfully requests to defer this requirement to be a condition of approval

# **STORMWATER MANAGEMENT REPORT**

for

# **Spyglass at Lakes Bay**

### Ansley Boulevard and Franklin Boulevard Block 255, Lot 1 City of Pleasantville, Atlantic County, New Jersey

April 2020

Prepared for:

# SPYGLASS QOZB LLC

c/o

6 West Roosevelt Boulevard Marmora, New Jersey 08223

Prepared by:

SE SCIULLO ENGINEERING SERVICES, LLC

17 South Gordon's Alley, Suite 3 Atlantic City, New Jersey 08401 609-300-5171 www.sciulloengineering.com

Jason T. Sciullo, PE, PP, CFM NJ PE License No. 24GE04586000 NJ Certificate of Authorization No. 24GA28290700

SCA 003.01

ALL DOCUMENTS PREPARED BY SCIULLO ENGINEERING SERVICES, LLC ARE INSTRUMENTS OF SERVICE WITH RESPECT TO THE PROJECT. THEY ARE NOT INTENDED OR REPRESENTED TO BE SUITABLE FOR REUSE BY THE OWNER OR OTHERS ON EXTENSIONS OF THE PROJECT OR ON ANY OTHER PROJECT. ANY REUSE WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY SCIULLO ENGINEERING SERVICES, LLC FOR THE SPECIFIC PURPOSE INTENDED WILL BE AT OWNER'S SOLE RISK AND WITHOUT LIABILITY OR LEGAL EXPOSURE TO SCIULLO ENGINEERING SERVICES, LLC; AND OWNER SHALL INDEMNIFY AND HOLD HARMLESS SCIULLO ENGINEERING SERVICES, LLC FROM ALL CLAIMS, DAMAGES, LOSSES AND EXPENSES ARISING OUT OF OR RESULTING THEREFROM.

### TABLE OF CONTENTS

#### STORMWATER MANAGEMENT CALCULATIONS

| 1.  | PROJECT DESCRIPTION                | . 1 |
|-----|------------------------------------|-----|
| 2.  | DESIGN CRITERIA                    | . 1 |
| 3.  | TECHNIQUES OF ANALYSIS             | . 2 |
| 4.  | LAND COVER CONDITIONS              | . 3 |
| 5.  | STORMWATER MANAGEMENT FACILITIES   | . 4 |
| 6.  | GROUNDWATER RECHARGE               | . 5 |
| 7.  | RUNOFF QUANTITY                    | . 5 |
| 8.  | RUNOFF QUALITY                     | . 6 |
| 9.  | LOW IMPACT TECHNIQUES              | . 8 |
|     | SOIL EROSION AND SEDIMENT CONTROL. |     |
|     | STORMWATER CONVEYANCE              |     |
| 12. | CONCLUSION                         | . 8 |

#### FIGURES

| FIGURE 1 | ΤΑΧ ΜΑΡ       |
|----------|---------------|
| FIGURE 2 | ZONING MAP    |
| FIGURE 3 | USGS MAP      |
| FIGURE 4 | SOILS MAP     |
| FIGURE 5 | FEMA FIRM MAP |

#### **APPENDICES**

| Appendix A | LOW IMPACT DEVELOPMENT CHECKLIST                    |
|------------|-----------------------------------------------------|
| Appendix B | STORMWATER MANAGEMENT FACILITY MAINTENANCE MANUAL   |
| Appendix C | PRE-DEVELOPED RUNOFF CALCULATIONS                   |
| Appendix D | Post-Developed Runoff Calculations                  |
| Appendix E | INFILTRATION CALCULATIONS                           |
| Appendix F | EMERGENCY CONDITIONS CALCULATIONS                   |
| Appendix G | STORM SEWER CALCULATIONS                            |
| Appendix H | SOIL TEST PIT LOGS AND PERMEABILITY TESTING RESULTS |
| Appendix I | Drainage Area Plans                                 |
|            |                                                     |



#### 1.0 **PROJECT DESCRIPTION**

Spyglass QOZB LLC (Applicant) is seeking land use approvals for construction of a mixeduse development with 180 apartments in 6 buildings and approximately 6,000 square feet of commercial and restaurant space along with related surface parking lot(s), landscaping, lighting, utilities and stormwater management features on Block 201, Lot 1 at the corner of Franklin Boulevard and Ansley Boulevard in the City of Pleasantville, Atlantic County, New Jersey (Figure 1).

The site is located within the Waterfront Development (WFC) zoning district of the City (Figure 2) and is subject to the land use controls outlined in the Lakes Bay Redevelopment Plan adopted by the City of Pleasantville. It will also be developed according to land use regulations such as the Coastal Zone Management Rules, Flood Hazard Area Control Act Rules and Stormwater Management Rules administered by the New Jersey Department of Environmental Protection (NJDEP) as applicable.

The surrounding land uses are as follows:

- 1. To the northwest (across Franklin Boulevard) Single family residential;
- 2. To the northeast (across Ansley Boulevard) Single family residential;
- 3. To the southeast (across Hampden Court) Commercial and Recreation uses; and
- 4. To the southwest (across Bayview Avenue) Single family residential.

Topographic elevations at the site range from 7 at the central portion of the site to 5 along the southwest property line along Bayview Avenue. Runoff flowing from the site and the immediately surrounding area travels in two general directions. The first being to the southwest along Franklin Boulevard toward Bayview Avenue. It then flows southeast along Bayview Avenue to a set of existing inlets in Bayview Avenue. Discharge from these inlets flows into a ditch located between Bayview and Edgewater Avenues and then along the ditch southeast to Lakes Bay. The second being to the southeast to Hampden Court into the stormwater collection in that street. It then flows northeast in that system to the bulkhead at Tunis Basin connected to Lakes Bay.

The site is located within Flood Zone AE (area of the 1%, 100-year tidal flood event) with a base flood elevation of 10 in the North American Vertical Datum of 1988 (NAVD88) as indicated on the preliminary FEMA Flood Insurance Rate Map for Atlantic County, New Jersey Panel 34001C0319G with a preliminary date of May 30, 2014.

According to the USDA Natural Resources Conservation Service (NRCS) New Jersey Soil Survey web data, the soil types on the project site are:

Hammonton (HbmB) loamy sand, 0 - 5% slopes, (Hydrologic Soil group B); Psammaquents (PstAt) sulfidic substratum, 0 - 2% slopes, frequently flooded (Hydrologic Soil group A/D). HSG D will be assumed in the Report.

#### 2.0 DESIGN CRITERIA

The stormwater management analysis and design is in accordance with the Stormwater Management Rules at N.J.A.C. 7:8, subchapters 5 and 6, the New Jersey Stormwater Best Management Practices Manual, the New Jersey Soil Erosion and Sediment Control Standards, the New Jersey Residential Site Improvement Standards and City of Pleasantville municipal code chapter 251.



In accordance with the New Jersey Department of Environmental Protection (NJDEP) Stormwater Management Rules at N.J.A.C. 7:8, the development of the project is classified as a "Major Development." A Major Development is defined therein as a development which ultimately disturbs one or more acres of land and/or increases impervious coverage by one-quarter of an acre or more. This project includes disturbance to greater than one acre of land and increases impervious coverage by more than one-quarter acre. The three technical requirements of the Stormwater Management Rules at N.J.A.C 7:8 that generally need to be addressed are groundwater recharge, runoff quality and runoff quantity. There is also a subjective standard requiring low impact design measures to be incorporated into the project design.

The Runoff Quality Standard at N.J.A.C. 7:8-5.5 requires the stormwater management measures be designed to reduce the post-developed load of total suspended solids (TSS) in stormwater runoff generated from the water quality design storm by 80 percent of the anticipated load from the developed site, expressed as an annual average. The water quality design storm is 1.25 inches of rainfall in two hours. Water quality calculations shall take into account the distribution of rain from the water quality design storm. The calculation of the volume of runoff may take into account the implementation of non-structural and structural stormwater management measures. Additionally, the policies contained with the questions and answers section of the rulemaking process require that any reconstructed vehicle-trafficked impervious surface be treated to 50% TSS removal.

As described at N.J.A.C. 7:8-5.5(i), pursuant to the Flood Hazard Area Control Act Rules at N.J.A.C. 7:13-11.2(j)4, runoff from the water quality design storm that is discharged within a 300-foot riparian zone shall be treated in accordance with N.J.A.C.7:8-5.5 to reduce the post-construction load of total suspended solids by 95 percent of the anticipated load from the developed site, expressed as an annual average. The discharge point into Tunis Basin that is part of Lakes Bay, which is a Category 1 Water and carries a 300-foot riparian zone, is not within the riparian zone, but rather within the open water as the outfall is an existing pipe outlet extending from the existing bulkhead. This enhanced water quality standard only applies if the discharge is within the riparian zone, which is the area landward of the top of bank, normal water surface or mean high water. This discharge point is waterward of those limits and outside of the riparian zone, therefore this standard does not apply.

#### 3.0 TECHNIQUES OF ANALYSIS

In accordance with the stormwater runoff calculation methodology at N.J.A.C. 7:8-5.6, the quantity (volume and rate) of stormwater runoff is calculated based on the USDA NRCS methodology using the NRCS Runoff Equation and Dimensionless Unit Hydrograph, as described in Technical Release 55 - Urban Hydrology for Small Watersheds (TR-55), dated June 1986. A unit peak discharge factor of 285 is applied to the dimensionless unit hydrograph for runoff estimation on lands that are located within the coastal zones of New Jersey rather than the standard factor of 484. This is known as the Delmarva unit hydrograph and applies to this site as described in NJDEP Bulletin No. NJ-210-3-1; being in the coastal plain region with slopes less than 5%, low relief and storage areas in depressions. The Delmarva unit hydrograph will predict a lower peak discharge than that of the standard hydrograph, but the volume of stormwater runoff will not be affected by the factor change.

NRCS 24 hour design storm rainfall depths for New Jersey, as revised August 2012, are used in the calculations. The various Times of Concentration (Tc) were determined for pre and post-developed conditions using the hydraulically longest flow path. Where these times



were less than 10 minutes a minimum of 10 minutes is used. The Tc flow path can be found on the Drainage Area Plans located in Appendix I. The pre and post-developed Tc calculations can be found in Appendices C and D.

Curve numbers (CN) were generated for the drainage areas for pre and post-developed conditions based on the soil group and existing or proposed land use. The CN calculations can be found in Appendices C and D for the respective routings. Note that impervious areas were calculated as separate subareas to generate hydrographs without weighted CNs as outlined in the BMP manual chapter 5.

Using the drainage areas, the TCs and CNs as input data, version 10.00-21 of *HydroCAD*, a hydrologic/hydraulic software program by HydroCad Software Solutions, LLC, was employed to generate runoff volumes and rates.

#### 4.0 LAND COVER CONDITIONS

For the purpose of comparison of pre and post development conditions, the site and its tributary offsite areas are naturally broken into two general drainage areas based on the individual locations to which they discharge stormwater from the site. The tables below summarize the pre-existing and post developed cover conditions of the two drainage areas, called EXDA-1, which discharges to an outfall into Tunis Basin identified as Point 1; and EXDA-2, which discharges to an outfall at the ditch between Bayview and Edgewater Avenues identified as Point 2. For the purposes of the quantity analysis, EXDA-1 and EXDA-2 are subdivided into onsite and offsite areas. The significance of evaluating the offsite areas separately is the provisions of the Stormwater Management Rules will only apply to the portions of the drainage areas where improvements are proposed, not the offsite areas that drain to and through the site and will not be modified.

In the predeveloped condition there is a mix of land cover consisting of pavement, buildings, open space and woods as shown on the Drainage Area Plans in Appendix I and summarized below:

| Drainage Area<br>Name | Drainage<br>Area<br>(Ac.) | Paved<br>Surfaces<br>(Ac.) | Bare Soil<br>(Ac.) | Open Space<br>(Ac.) | Woods<br>(Ac.) |
|-----------------------|---------------------------|----------------------------|--------------------|---------------------|----------------|
| EXDA-1A offsite       | 1.148                     | 0.833                      | 0.000              | 0.310               | 0.005          |
| EXDA-1 onsite         | 7.391                     | 0.322                      | 0.000              | 7.031               | 0.037          |
| EXDA-2A offsite       | 0.714                     | 0.301                      | 0.006              | 0.395               | 0.011          |
| EXDA-2 onsite         | 2.417                     | 0.000                      | 0.492              | 1.794               | 0.132          |
| Total Existing        | 11.670                    | 1.456                      | 0.499              | 9.530               | 0.185          |

Table 4.1: Pre-Developed Cover Conditions

\* Minor errors (±0.001) in totals are due to rounding errors.



| Drainage Area Name | Drainage<br>Area<br>(Ac.) | Roof & Paved<br>Surfaces (Ac.) | Open Space<br>(Ac.) | Woods<br>(Ac.) |
|--------------------|---------------------------|--------------------------------|---------------------|----------------|
| PRDA-1A offsite    | 3.689                     | 2.887                          | 0.802               | 0.000          |
| PRDA-1B onsite     | 1.037                     | 0.693                          | 0.344               | 0.000          |
| PRDA-2A offsite    | 0.902                     | 0.503                          | 0.399               | 0.000          |
| PRDA-2B onsite     | 2.072                     | 1.572                          | 0.500               | 0.000          |
| PRDA-2C onsite     | 2.258                     | 1.116                          | 1.142               | 0.000          |
| ΣBLDG -1 through 6 | 1.712                     | 1.712                          | 0.000               | 0.000          |
| Total Proposed     | 11.670                    | 8.482                          | 3.188               | 0.000          |

#### Table 4.2: Post-Developed Cover Conditions

\* Minor errors (±0.001) in totals are due to rounding errors.

In summary, the total drainage area is 11.670 acres, the area of disturbance is 10.370 acres, and the total increase in impervious surface is 7.026 acres.

#### 5.0 STORMWATER MANAGEMENT FACILITIES

The stormwater management (SWM) system will consist of a series of three stormwater management basins located throughout the site. Since this project is exempt from the Runoff Quantity Control Standard at N.J.A.C. 7:8-5.4(a)3 and the Groundwater Recharge Standard at N.J.A.C. 7:8-5.4(a)2, the facilities proposed for the project are designed to satisfy the Runoff Quality Control Standard at N.J.A.C. 7:8-5.5 and safely pass larger storm events without increased flooding downstream. Given the grading that will occur at the site due to its location in a flood hazard area, the proposed stormwater management features are filled infiltration basins within the Applicant's property.

The on-site stormwater management system will be maintained by the Applicant/Owner. It will be constructed in accordance with current NJDEP standards including adequate separation to the estimated seasonal high water table, limited depth of runoff to be infiltrated, and permeable soil to ensure stored runoff infiltrates within 72 hours. They will also include a K5 sand bottom area as recommended in the Best Management Practices (BMP) Manual for the purpose of maintaining permeability rates of the subsoil over time allowing ease of replacement during periodic maintenance.

According to Chapter 9.4 of the BMP Manual, the lowest elevation in an infiltration basin must be at least two (2) feet above the seasonal high groundwater table. Soil test pits were advanced at multiple locations within the site, the results for which are included in Appendix H and on the Grading Plan sheet C0301 in the overall project plan set. Depths to the seasonally high groundwater table at each of the soil boring locations were measured. The proposed minimum separation to the seasonal high water table will be two feet from the bottom of the K5 sand layer.

Basin 1B will be located in the northeastern portion of the site. Discharge from Basin 1B will be directed to the proposed stormwater collection system for discharge to Tunis Basin at Existing Outfall 1. Outlet Structure 1 will control the discharge from this basin. It will be a Type E Inlet with a low flow orifice.



Basin 2B will be centrally located within the site. Discharge from Basin 2B will be directed to Basin 2C through a 24" reinforced concrete pipe.

Basin 2C will be located at the southwesterly edge of the site along Bayview Avenue. Discharge from Basin 3 will be controlled by Outlet Structure 2. It will be a Type E Inlet with a low flow orifice. Discharge from this structure will be directed to the stormwater collection system in Bayview Avenue for discharge to an existing ditch at Existing Outfall 2. Discharge from this ditch flows to Lakes Bay.

#### 6.0 GROUNDWATER RECHARGE

Pursuant to N.J.A.C. 7:8-5.4(a)2.ii, the groundwater recharge standard does not apply to projects within the 'urban redevelopment area' which are those areas of the Metropolitan Planning Area (Planning Area 1) that were previously developed. This site is within PA-1 and previously developed and is therefore exempt from the groundwater recharge standard.

#### 7.0 RUNOFF QUANTITY

Pursuant to N.J.A.C. 7:8-5.4(a)3.iv, in tidal flood hazard areas, stormwater runoff quantity analysis in accordance with N.J.A.C. 7:8-5.4(a)3i, ii and iii shall only be applied if the increased volume of stormwater runoff could increase flood damages below the point of discharge. The point of discharge from this development is to two locations – the tidal waterbody known as Tunis Basin connected to Lakes Bay and an open ditch that flows to Lakes Bay. In both instances, the existing municipal sewer system immediately upstream of those points, to which the proposed site system will connect, are in poor condition and/or undersized by current design standards. As part of this project, sections of those existing municipal storm sewer systems below the point of discharge for this project will be replaced and/or upgraded so that any increase in runoff will not increase flood damages below the point of discharge. This project is therefore exempt from the runoff quantity standard.

Although exempt from the quantity control standard, the basins are designed so that during storms up to the 100-year (1% chance of occurring in any given year), the basins will safely pass runoff directed to them such that no runoff discharges uncontrolled or causes erosion on site or downstream. The tables below show the basin water surface elevations during each storm event at each basin:

| Design             | Water Surface Elevations |                   |                   |  |  |  |
|--------------------|--------------------------|-------------------|-------------------|--|--|--|
| Storm (year)       | Proposed Basin 1B        | Proposed Basin 2B | Proposed Basin 2C |  |  |  |
| WQ                 | 7.45                     | 7.22              | 7.22              |  |  |  |
| 2                  | 7.60                     | 7.80              | 7.80              |  |  |  |
| 10                 | 7.65                     | 8.24              | 8.24              |  |  |  |
| 100                | 7.73                     | 8.81              | 8.81              |  |  |  |
| 100<br>(emergency) | 8.00                     | 9.36              | 9.36              |  |  |  |

 Table 7.1: Stormwater Management Basin water surface elevations



As can be seen in the summaries above and the stormwater management calculations in Appendices C and D, the runoff leaving the site is controlled and will not increase potential for flood damage(s) downstream.

#### 8.0 RUNOFF QUALITY

In accordance with NJAC 7:8-5.2 and 5.5(a), a land development that creates 0.25 acres or more of new or additional impervious surface must include stormwater management measures to address the water quality standard of the rules. The Runoff Quality Standard at N.J.A.C. 7:8-5.5 requires the stormwater management measures be designed to reduce the post-developed load of total suspended solids (TSS) in stormwater runoff generated from the water quality design storm by 80 percent of the anticipated load from the developed site, expressed as an annual average. Additionally, the policies contained with the questions and answers section of the rulemaking process require that any reconstructed vehicle-trafficked impervious surface be treated to 50% TSS removal.

Basins 1B and 3B are infiltration structures. In accordance with Chapter 4 of the BMP Manual, infiltration structures are given a TSS removal rate of 80%. The calculations for the Water Quality Storm in Appendix D show that the entire volume of runoff to those basins during the water quality storm event is retained for infiltration. Since the volume of runoff retained in the basins is greater than or equal to the runoff generated by the WQ storm, the water quality requirement provided by those basins is 80%. In addition to the infiltration basins, the project also includes Contech CDS treatment devices at the downstream end of the stormwater conveyance systems where they connect to the street system in Bayview Avenue and Tunis Basin. CDS devices are approved for a 50% TSS removal rate by the New Jersey Corporation for Advanced Technology (NJCAT) and NJDEP.

Comparing the sum of the coverage conditions from Tables 4.1 and 4.2, the development results in 7.026 acres increase in impervious coverage. 1.712 acres of that increase is rooftops, which does not require water quality treatment, leaving 5.314 acres that needs to be treated to 80% TSS removal. Additionally, there is a total of 0.322 acres of existing impervious surface on the project site that will be reconstructed (mostly the portion of Ansley Boulevard to be vacated), which is required to be treated to 50% TSS removal.

Pursuant to N.J.A.C. 7:8-5.5(d) if there is more than one onsite drainage area, the 80 percent TSS removal rate shall apply to each drainage area, unless the runoff from the subareas converge on site in which case the removal rate can be demonstrated through a calculation using a weighted average. There is a large offsite area of impervious surface that drains to the same outfall points as the project, and it (and the 0.322 acres of on-site impervious) currently goes untreated. This project proposes to not only treat the new and reconstructed impervious surfaces, but also areas of existing vehicle-trafficked impervious surface that currently receive no treatment in the form of the surrounding roadways that drain to the same outfalls. This approach provides an increase in overall treatment and net overall environmental benefit. The areas to be treated create the following average TSS removal rates:



Proposed to Point 1

- 0.693 acres to Basin 1B to receive 80% TSS removal then to treatment device for 50% TSS removal for a total of 90% TSS removal using equation at NJAC 7:8-5.5(b) [R = 80% + 50% - (80%x50%)/100 = 90%]
- 2.810 acres of proposed on-site and existing offsite impervious area to treatment device for 50% TSS removal

Proposed Average TSS removal = (0.693ac x 90% + 2.810ac x 50%) / 3.503ac = 57.9%

The treatment required for this same area is the increase in impervious surface at 80% and the reconstructed area at 50%. The total increase in impervious surface to Point 1 is 3.503 acres of proposed impervious – 1.456 acres of existing impervious = 2.047 acres of increased impervious surface. This has to be treated to 80% TSS removal. Of the existing impervious, 0.322 acres will be reconstructed and has to be treated to 50% TSS removal. The balance of the existing impervious area to Point 1 is existing roadways to remain unchanged and requires no TSS removal treatment. As such, the required average treatment to the drainage area to Point 1 is as follows:

Required Average TSS removal = (2.047ac x 80% + 0.322ac x 50% + 1.134ac x 0%) / 3.503ac = 51.3%

Since the average TSS treatment proposed exceeds the average TSS treatment required, the project exceeds the water quality treatment standards of NJAC 7:8-5.5.

Proposed to Point 2

- 2.764 acres to Basin 2C to receive 80% TSS removal then to treatment device for 50% TSS removal for a total of 90% TSS removal using equation at NJAC 7:8-5.5(b) [R = 80% + 50% - (80%x50%)/100 = 90%]
- 0.502 acres of proposed on-site and existing offsite impervious area to treatment device for 50% TSS removal

Proposed Average TSS removal = (2.764ac x 90% + 0.502ac x 50%) / 3.266ac = 83.85%

The treatment required for this same area is the increase in impervious surface at 80% and the reconstructed area at 50%. The total increase in impervious surface to Point 2 is 3.266 acres of proposed impervious – 0.301 acres of existing impervious = 2.965 acres of increased impervious surface. This has to be treated to 80% TSS removal. The balance of the existing impervious area to Point 2 is existing roadways to remain unchanged and requires no TSS removal treatment. As such, the required average treatment to the drainage area to Point 2 is as follows:

Required Average TSS removal = (2.965ac x 80% + 0.301ac x 0%) / 3.266ac = 72.6%

Since the average TSS treatment proposed exceeds the average TSS treatment required, the project exceeds the water quality treatment standards of NJAC 7:8-5.5.



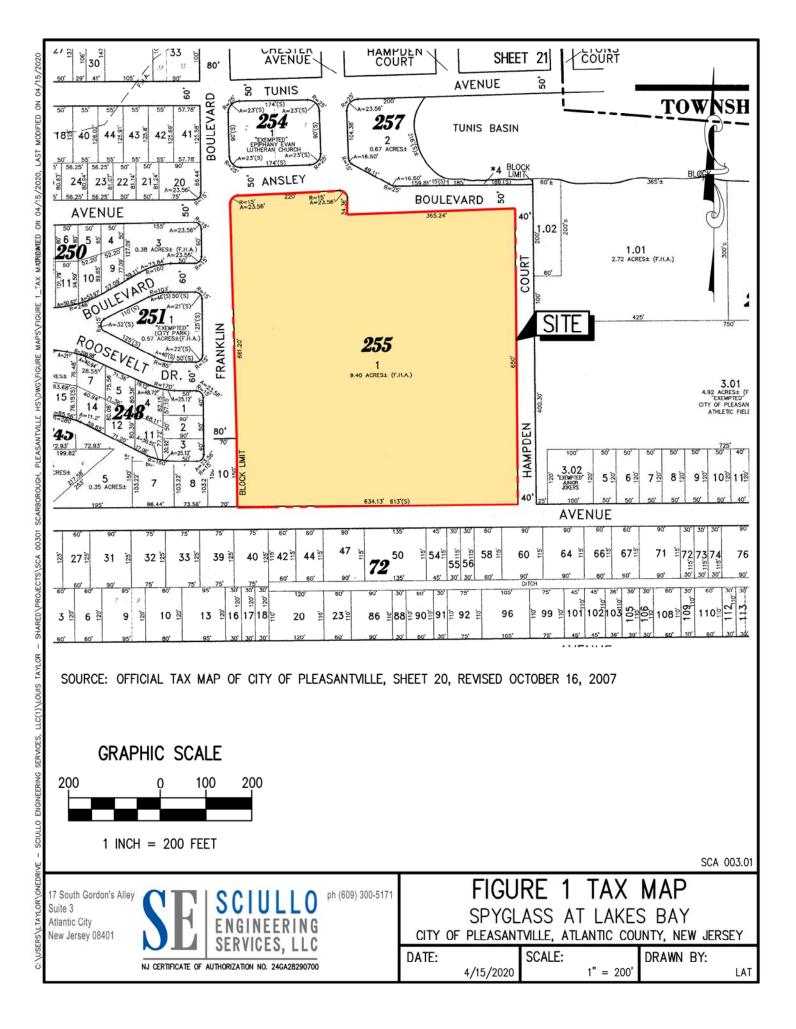
#### 9.0 LOW IMPACT TECHNIQUES

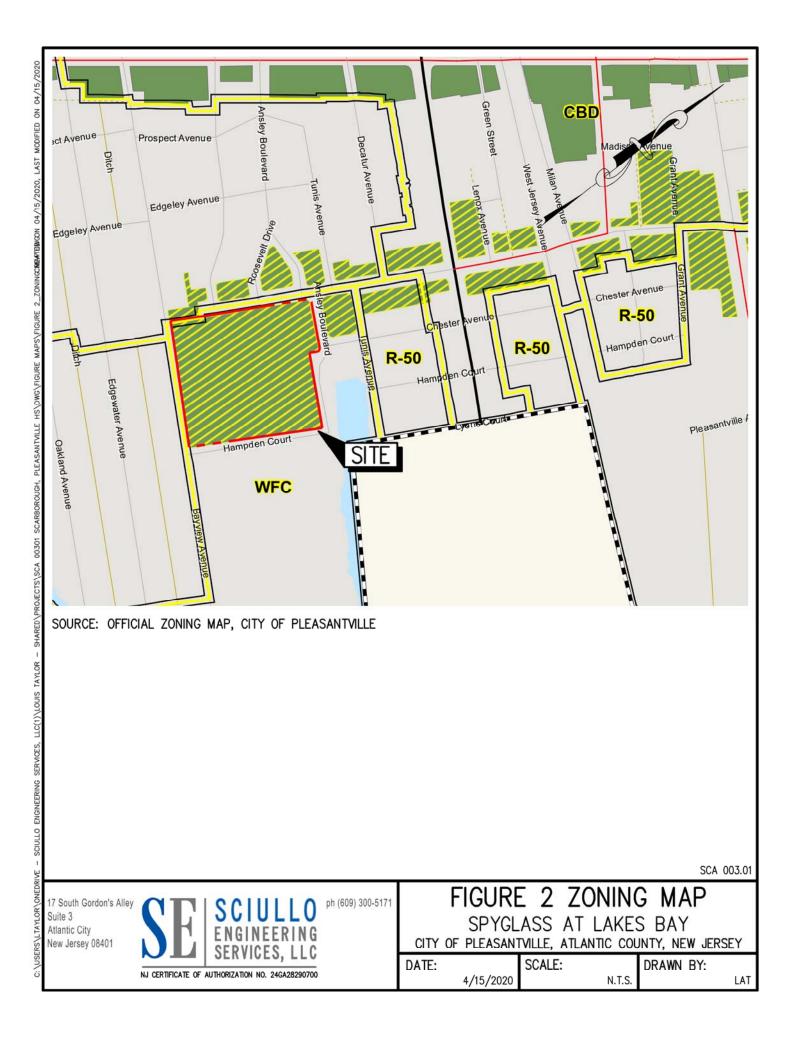
The stormwater management system design includes Low Impact Design measures in the form of water quality treatment structures to remove suspended solids from not only the proposed vehicle trafficked impervious surfaces, but also the existing roads surrounding the site that drain to and through the project site. This approach provides water quality enhancement that not only exceeds the regulatory requirements, but also improves the water quality of runoff coming from a much larger area than required by the regulations. A Low Impact Development Checklist is included in Appendix A.

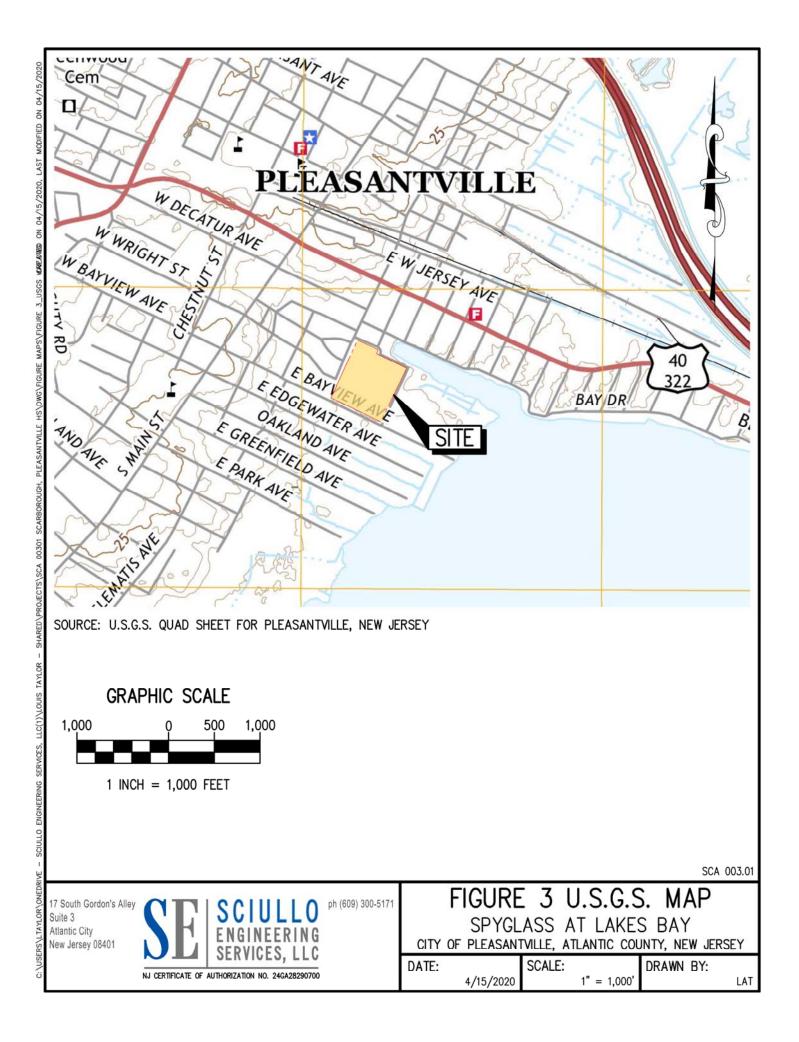
#### 10.0 SOIL EROSION AND SEDIMENT CONTROL

In addition to temporary soil erosion and sediment control measures during construction, permanent scour holes and rip-rap aprons are located at the points runoff will exit the developed areas towards the stormwater management basins.

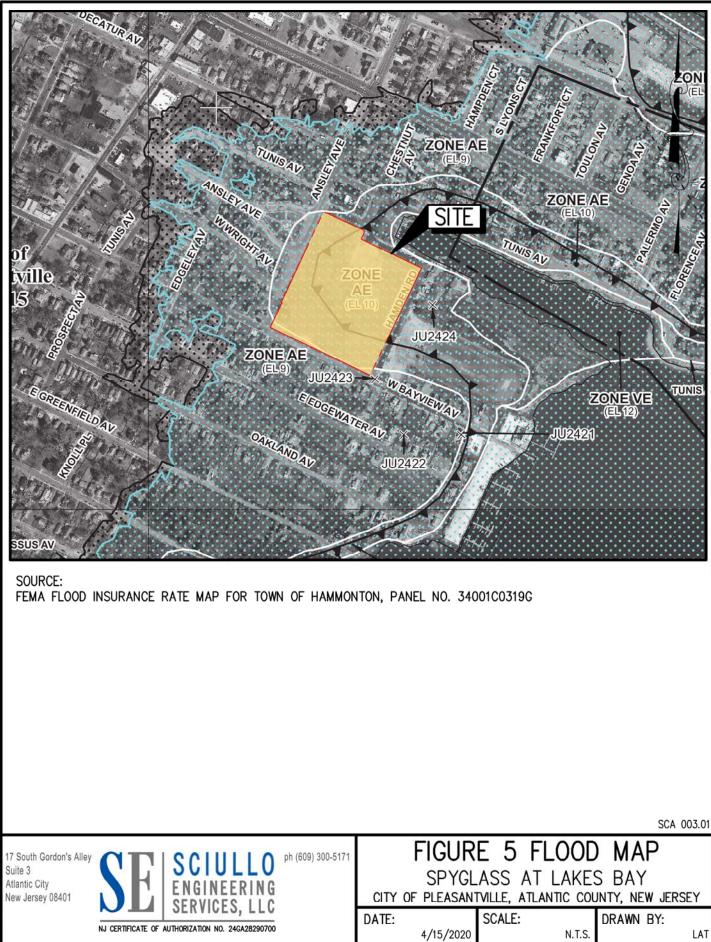
#### 11.0 STORMWATER CONVEYANCE


The Rational method was used for proposed storm inlet and pipe design. The stormwater conveyance system was designed in accordance with accepted practice. The proposed storm sewer collection pipes are designed to convey the 25-year storm. A minimum pipe diameter of 15 inches for storm drains is utilized. The crowns of the pipes have been matched when the pipe size increases. The pipe slopes are designed to provide a minimum of 2.0 feet/second velocity when flowing half full. See Appendix G for the Storm Sewer Calculations.


#### 12.0 CONCLUSION


As described above, the entire Stormwater Management System and its components are designed in accordance with applicable state and local municipal regulations and requirements and low impact stormwater management measures are utilized where practical. The infiltration basins are designed to accommodate the required design storms and provide water quality treatment as outlined in the State Stormwater Rules at N.J.A.C. 7:8 and Municipal ordinance chapters 251 and 300 while providing an environmentally responsible and economically feasible system.




## **FIGURES**











### APPENDIX A

Low Impact Development Checklist

### New Jersey Stormwater Best Management Practices Manual

February 2004

#### Low Impact Development Checklist

| Municipality:  | City of Pleas  | antville       |                   |                                                                 |          |                     |
|----------------|----------------|----------------|-------------------|-----------------------------------------------------------------|----------|---------------------|
| County:        | Atlantic Cour  | nty            |                   |                                                                 | Date:    | April 2020          |
| Review board   | l or agency:   | New Jersey D   | ty Deve<br>epartm | ng Board<br>elopment Revi<br>nent of Enviro<br>ervation Distric | nmental  |                     |
| Proposed lan   | d developmen   | t name:        | Spygla            | ass at Lakes E                                                  | Bay      |                     |
| Lot(s): 1      |                | Block(         | s):               | 255                                                             |          |                     |
| Project or app | plication numb | ber:           |                   |                                                                 |          |                     |
| Applicant's na | ame:           | Spyglass QO    | ZB LLC            | c/o Scarboro                                                    | ugh Pro  | operties            |
| Applicant's a  | ddress:        | 6 West Roose   | evelt Bo          | oulevard, Marr                                                  | nora, N  | J 08223             |
| Telephone:     |                | 609-904-5444   |                   |                                                                 | Fax:     |                     |
| Email addres   | s:             | sean@scarbo    | roughp            | properties.com                                                  | l        |                     |
| Designer's na  | ame:           | Jason T. Sciu  | llo, PE           | , PP; Sciullo I                                                 | Enginee  | ering Services, LLC |
| Designer's ac  | ldress:        | 17 South Gor   | don's A           | Alley, Suite 3,                                                 | Atlantic | : City, NJ 08401    |
| Telephone:     |                | 609-300-5171   |                   |                                                                 | Fax:     |                     |
| Email addres   | s:             | isciullo@sciul | loenair           | neering.com                                                     |          |                     |

#### Part 1: Description of Nonstructural Approach to Site Design

In narrative form, provide an overall description of the nonstructural stormwater management approach and strategies incorporated into the proposed site's design. Attach additional pages as necessary. Details of each nonstructural strategy are provided in Part 3 below.

The Development Plan that is the subject of this report is a major site plan for the development of a mixed use project that includes 180 apartments in 6 buildings and approximately 6,000 square feet of retail and restaurant space. The site work includes parking and drives required to meet minimum parking standards, landscaping, lighting and stormwater management facilities. The nonstructural stormwater management strategies that are required have been generally employed in the design of this development and include the following:



- 1. Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss.
  - (a) The site is in a tidal flood hazard area and the development of it will protect the area from erosion and sediment loss and provide water quality benefits.
- 2. Maximize the protection of natural vegetation.
  - (a) There is no natural vegetation at the site since it is the former location of the Pleasantville High School and is currently an open grassed field.
- 3. Minimize the decrease in the "time of concentration" from pre-construction to postconstruction.
  - (a) The time of concentration is decreased with the project development since the project site is required to use inlets and piping since it is relatively flat and has to be filled in order to meet flood hazard standards. As such, the design is "saw toothed" and requires conveyance to drain the site by gravity.
- 4. Minimize land disturbance including clearing and grading.
  - (a) Land disturbance is limited to only that necessary to construct the proposed project and the site is already cleared and was previously developed.
- 5. Minimize soil compaction.
  - (a) Construction traffic will be limited to only those areas to be developed at the site including parking areas and drives.
- 6. Provide low-maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers and pesticides.
  - (a) All landscaping and vegetative restoration will comply with the requirements of the Pleasantville Land Development Ordinance.
- 7. Provide other source controls to prevent or minimize the use or exposure of pollutants at the site in order to prevent or minimize the release of those pollutants into stormwater runoff.
  - (a) Maintenance of the stormwater management facilities will require that any trash or debris must be removed periodically and disposed of according to regulations.
  - (b) Revegetation of disturbed areas with a permanent vegetative cover will be performed in accordance with the Standards for Soil Erosion and Sediment Control in New Jersey.

#### Part 2: Review of Local Stormwater Management Regulations

Title and date of stormwater management regulations used in development design:



| NJ Stormwater Management Rules (NJAC 7:8-5.1 et. seq.).<br>NJ Residential Site Improvement Standards (NJAC 5:21, which refer to NJAC 7:8).<br>Pleasantville Stormwater Management Ordinance Chapters 251 and 300. |                  |              |          |    |     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|----------|----|-----|-----|
| Do regulations include nons                                                                                                                                                                                       | structural requi | rements?     | Yes:     | XX |     | No: |
| If yes, briefly describe: See                                                                                                                                                                                     | e NJAC 7:8-5.3   | 3(b)1-9.     |          |    |     |     |
| List LID-BMP's prohibited by                                                                                                                                                                                      | y local regulati | ons: None    |          |    |     |     |
| Pre-design meeting held?                                                                                                                                                                                          | Yes: XX          | Date: Februa | ary 2019 | 9  |     | No: |
| Meeting held with: City Planning Board and Redevelopment Committee                                                                                                                                                |                  |              |          |    |     |     |
| Pre-design site walk held?                                                                                                                                                                                        | Yes:             | Date:        |          |    | No: | XX  |
| Site walk held with: NA                                                                                                                                                                                           |                  |              |          |    |     |     |
| Other agencies with stormwater review jurisdiction:                                                                                                                                                               |                  |              |          |    |     |     |
| Name:                                                                                                                                                                                                             | Cape Atlantic    | Conservation | District | :  |     |     |
| Required approval: Certification of Soil Erosion and Sediment Control Plan                                                                                                                                        |                  |              |          |    |     |     |

New Jersey Department of Environmental Protection

#### Coastal Area Facilities Review Act (CAFRA) Permit Required approval:

#### Part 3: Nonstructural Strategies and LID-BMP's in Design

#### 3.1 Vegetation and Landscaping

Name:

Effective management of both existing and proposed site vegetation can reduce a development's adverse impacts on groundwater recharges and runoff quality and quantity. This section of the checklist helps identify the vegetation and landscaping strategies and nonstructural LID-BMP's that have been incorporated into the proposed development's design to help maintain existing recharge rates and/or minimize or prevent increases in runoff quantity and pollutant loading.

A. Has an inventory of existing site vegetation been performed? Yes: XX No:

If yes, was this inventory a factor in the site's layout and design? Yes: No: XX

B. Does the site design utilize any of the following nonstructural LID-BMP's?

| Preservation of natural areas? | Yes: | No: XX | If yes, specify % of site: |
|--------------------------------|------|--------|----------------------------|
| Native ground cover?           | Yes: | No: XX | If yes, specify % of site: |



|  | Vegetated buffers? | Yes: No: XX | If yes, specify % of site: |
|--|--------------------|-------------|----------------------------|
|--|--------------------|-------------|----------------------------|

C. Do the land development regulations require these nonstructural LID-BMP's?

| Preservation of natural areas? | Yes: | No: | ХХ | If yes, specify % of site: |
|--------------------------------|------|-----|----|----------------------------|
| Native ground cover?           | Yes: | No: | XX | If yes, specify % of site: |
| Vegetated buffers?             | Yes: | No: | ХХ | If yes, specify % of site: |

D. If vegetated filter strips or buffers are utilized, specify their functions:

| Reduce runoff volume increases through lower runoff coefficient: | Yes: | No: |
|------------------------------------------------------------------|------|-----|
| Reduce runoff pollutant loads through runoff treatment:          | Yes: | No: |
| Maintain groundwater recharge by preserving natural areas:       | Yes: | No: |

#### 3.2 Minimize Land Disturbance

Minimizing land disturbance is a nonstructural LID-BMP that can be applied during both the development's construction and post-construction phases. This section of the checklist helps identify those land disturbance strategies and nonstructural LID-BMP's that have been incorporated into the proposed development's design to minimize land disturbance and the resultant change in the site's hydrologic character.

| A | A. Have inventories of existing site soils and slopes been performed                   | l? Yes: | XX    | No:    |  |
|---|----------------------------------------------------------------------------------------|---------|-------|--------|--|
|   | If yes, were these inventories factors in the site's layout and desi                   | gn? Yes | 6:    | No: XX |  |
| E | B. Does the development's design utilize any of the following nonstructural LID-BMP's? |         |       |        |  |
|   | Restrict permanent site disturbance by land owners?<br>If yes, how:                    | Yes:    | No:   | XX     |  |
|   | Restrict temporary site disturbance during construction?                               | Yes:    | No:   | XX     |  |
|   | If yes, how:                                                                           |         |       |        |  |
|   | Consider soils and slopes in selecting disturbance limits?                             | Yes:    | No:   | XX     |  |
|   | If yes, how:                                                                           |         |       |        |  |
| C | C. Specify percentage of site to be cleared: 0%                                        | Regra   | aded: | 100%   |  |
| г | Creative nerventage of elected erect dans as for huildinger 00/                        |         |       |        |  |

D. Specify percentage of cleared areas done so for buildings: 0%

For driveways and parking: 0% For roadways: 0%

E. What design criteria and/or site changes would be required to reduce the percentages in



C and D above? None.

F. Specify site's (area to be developed) hydrologic soil group (HSG) percentages:

HSG A: 0% HSG B: 51% HSG C: 0% HSG D: 49%

G. Specify percentage of each HSG that will be permanently disturbed:

HSG A: 0% HSG B: 100% HSG C: 0% HSG D: 100%

H. Locating site disturbance within areas with less permeable soils (HSG C and D) and minimizing disturbance within areas with greater permeable soils (HSG A and B) can help maintain groundwater recharge rates and reduce runoff volume increases. In light of the HSG percentages in F and G above, what other practical measures if any can be taken to achieve this?

None.

I. Does the site include Karst topography? Yes: No: XX

If yes, discuss measures taken to limit Karst impacts:

#### 3.3 Impervious Area Management

New impervious surfaces at a development site can have the greatest adverse effect on groundwater recharge and stormwater quality and quantity. This section of the checklist helps identify those nonstructural strategies and LID-BMP's that have been incorporated into a proposed development's design to comprehensively manage the extent and impacts of new impervious surfaces.

- A. Specify impervious cover at site (within area to be developed): Existing: 0.322 acres Proposed: 6.865 acres (73.2%)
- B. Specify maximum site impervious coverage allowed by regulations: 90%
- C. Compare proposed street cartway widths with those required by regulations:

| Type of Street                                         | Proposed Cartway<br>Width (feet) | Required Cartway<br>Width (feet) |
|--------------------------------------------------------|----------------------------------|----------------------------------|
| Residential access - low intensity                     | NA                               | NA                               |
| Residential access - medium intensity                  | NA                               | NA                               |
| Residential access - high intensity with<br>parking    | NA                               | NA                               |
| Residential access - high intensity<br>without parking | NA                               | NA                               |
| Neighborhood                                           | NA                               | NA                               |
| Minor collector -low intensity without<br>parking      | NA                               | NA                               |
| Minor collector - with one parking lane                | NA                               | NA                               |
| Minor collector - with two parking lanes               | NA                               | NA                               |
| Minor collector - without parking                      | NA                               | NA                               |



| Major collector | NA | NA |
|-----------------|----|----|
| Private Drive   | 24 | 24 |

D. Compare proposed parking space dimensions with those required by regulations:

Proposed: onsite 9' x 18' Regulations: 9' x 18'

E. Compare proposed number of parking spaces with those required by regulations (entire site):

Proposed: 306 surface + 96 garage Regulations: 311

F. Specify percentage of total site (current development) impervious cover created by buildings: 27.1%

By driveways and parking: 60.3% By roadways: 12.5%

- G. What design criteria and/or site changes would be required to reduce the percentages in F above? Revise the zoning requirements to allow less coverage and/or require less parking.
- H. Specify percentage of total impervious area that will be unconnected:

Total site: 0% Buildings: 0% Driveways and parking: 0% Roads: 0%

I. Specify percentage of total impervious area that will be porous:

Total site: 0% Buildings: 0% Driveways and parking: 0% Roads: 0%

- J. Specify percentage of total building roof area that will be vegetated: 0%
- K. Specify percentage of total parking area located beneath buildings: 0%
- L. Specify percentage of total parking located within multi-level parking deck: 0%



#### **3.4 Time of Concentration Modifications**

Decreasing a site's time of concentration (Tc) can lead directly to increased site runoff rates which, in turn, can create new and/or aggravate existing erosion and flooding problems downstream. This section of the checklist helps identify those nonstructural strategies and LID-BMP's that have been incorporated into the proposed development's design to effectively minimize such Tc decreases.

When reviewing Tc modification strategies, it is important to remember that a drainage area's Tc should reflect the general conditions throughout the area. As a result, Tc modifications must generally be applied throughout a drainage area, not just along a specific Tc route.

A. Specify percentage of site's total stormwater conveyance system length that will be:

Storm sewer: 83% Vegetated swale: 0% Natural Channel: 0%

Stormwater management facility: 17% Other: NA

Note: the total length of the stormwater conveyance system should be measured from the site's downstream property line to the downstream limit of sheet flow at the system's headwaters.

B. What design criteria and/or site changes would be required to reduce the storm sewer percentages and increase the vegetated swale and natural channel percentages in A above?

Since the site is in a tidal flood hazard area, has to be filled to meet flood hazard standards, and cannot drain overland via gravity without substantial additional fill or impacts to roadways, there is no practicable way to add vegetated conveyance without substantially reducing site yield. Since this is a redevelopment site, and not virgin ground, reducing yield is unreasonable.

C. In conveyance system sub areas that have overland or sheet flow over impervious surfaces or turf grass, what practical and effective site changes can be made to:

Decrease overland flow slope: none

Increase overland flow roughness: none

#### **3.5 Preventative Source Controls**

The most effective way to address water quality concerns is by pollution prevention. This section of the checklist helps identify those nonstructural strategies and LID-BMP's that have been incorporated into the proposed development's design to reduce the exposure of pollutants to prevent their release into the stormwater runoff.

A. Trash Receptacles

Specify the number of trash receptacles provided: 0



Specify the spacing between the trash receptacles: NA

Compare trash receptacles proposed with those required by regulations:

Proposed: 0 Regulations: 0

B. Pet Waste Stations

Specify the number of pet waste stations provided: none

Specify the spacing between the pet waste stations: none

Compare pet waste stations proposed with those required by regulations:

Proposed: NA Regulations: NA

C. Inlets, Trash Racks, and Other Devices that Prevent Discharge of Large Trash and Debris

Specify percentage of total inlets that comply with the NJPDES storm drain inlet criteria: 100%.

D. Maintenance

Specify the frequency of the following maintenance activities:

| Street sweeping:   | Proposed: | annual | Regulations: none |
|--------------------|-----------|--------|-------------------|
| Litter collection: | Proposed: | weekly | Regulations: none |

Identify other stormwater management measures on the site that prevent discharge of large trash and debris: All entrances into the stormwater management system are protected with approved inlet grates or trash racks.

E. Prevention and Containment of Spills

Identify locations where pollutants are located on the site, and the features that prevent these pollutants from being exposed to stormwater runoff:

Pollutant: NA Location: NA

Feature utilized to prevent pollutant exposure, harmful accumulation, or contain spills:

Pollutant: NA Location: NA

Feature utilized to prevent pollutant exposure, harmful accumulation, or contain spills:

Pollutant: NA

Location: NA

Feature utilized to prevent pollutant exposure, harmful accumulation, or contain spills:

Pollutant: NA

Location: NA



Feature utilized to prevent pollutant exposure, harmful accumulation, or contain spills:

Pollutant: NA Location: NA

#### Part 4: Compliance with Nonstructural Requirements of NJDEP Stormwater Management Rules

1. Based upon the checklist responses above, indicate which nonstructural strategies have been incorporated into the proposed development's design in accordance with N.J.A.C. 7:8-5.3(b):

| No. | Nonstructural Strategy                                                                                                                                                | Yes | No |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 1.  | Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss.                                                     | Х   |    |
| 2.  | Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces.                                                                  | Х   |    |
| 3.  | Maximize the protection of natural drainage features and vegetation.                                                                                                  | Х   |    |
| 4.  | Minimize the decrease in the pre-construction time of concentration.                                                                                                  | Х   |    |
| 5.  | Minimize land disturbance including clearing and grading.                                                                                                             | Х   |    |
| 6.  | Minimize soil compaction.                                                                                                                                             | Х   |    |
| 7.  | Provide low maintenance landscaping that<br>encourages retention and planting of native<br>vegetation and minimizes the use of lawns,<br>fertilizers, and pesticides. | Х   |    |
| 8.  | Provide vegetated open-channel conveyance systems discharge into and through stable vegetated areas.                                                                  | Х   |    |
| 9.  | Provide preventative source controls.                                                                                                                                 | Х   |    |

2. For those strategies that have not been incorporated into the proposed development's design, provide engineering, environmental, and/or safety reasons. Attach additional pages as necessary.

The Low Impact Design measures outlined and recommended within the applicable regulations have been incorporated into the design to the maximum extent practicable.



## APPENDIX B

STORMWATER MANAGEMENT FACILITY MAINTENANCE MANUAL

## STORMWATER MANAGEMENT FACILITY MAINTENANCE MANUAL

## INSPECTION, MAINTENANCE AND CONTROL PLAN

#### A. PROJECT INFORMATION

#### I. DRAWINGS OF STORMWATER MANAGEMENT MEASURES:

Site Stormwater Management Plans are included on the Project's Site Plan which is included herein by reference.

# II. LOCATION OF STORMWATER MANAGEMENT MEASURES BY MEANS OF LATITIUDE AND LONGITUDE AND BLOCK AND LOT:

The site's BMP's (Stormwater Management Facilities) are located on Block 255, Lot 1. The center of the site is approximately LAT: 39.385839, LONG: 74.521282

#### **III. PREVENTATIVE CORRECTIVE MAINTENANCE TASKS AND SCHEDULES:**

Refer to SECTION B.III for Summary of Maintenance Procedures.

#### IV. COST ESTIMATE:

Refer to SECTION B.IV, Cost of SWMF Maintenance Tasks

#### V. NAME OF PERSON RESPONSIBLE FOR INSPECTIONS AND MAINTENANCE:

| Company / Individual: | Scarborough Properties     |
|-----------------------|----------------------------|
| CONTACT:              | Sean Scarborough           |
| ADDRESS:              | 6 West Roosevelt Boulevard |
|                       | Marmora, New Jersey 08223  |
| PHONE:                | 609-904-5444               |

## B. PREVENTATIVE MAINTENANCE PROCEDURES

#### I. OBJECTIVES

The purpose of preventative maintenance is to assure that a Stormwater Management Facility (SWMF) remains operational and safe at all times, while minimizing the need for emergency or corrective procedures.

#### II. OVERVIEW

A comprehensive SWMP maintenance program is comprised of several related requirements including:

- A. Providing adequate funding, staffing, equipment, and materials.
- B. Performing routine maintenance procedures on a regular basis.



- C. Performing emergency maintenance procedures and repairs in a timely manner.
- D. Conducting SWMF inspections to determine the need for and effectiveness of maintenance work.
- E. Providing training and instruction to maintenance personnel and inspections.
- F. Conducting periodic program reviews and evaluations to determine the overall effectiveness of the maintenance programs and the need for revised or additional maintenance procedures, personnel, and equipment.
- G. Instilling pride of workmanship and a commitment to excellence in program personnel.

#### III. SUMMARY OF MAINTENANCE PROCEDURES

#### A. PREVENTATIVE MAINTENANCE PROCEDURES

#### 1. Grass Cutting

A regularly scheduled program of mowing and trimming of grass at SWMF's during the growing season will help to maintain a tightly knit turf and will also help to prevent diseases, pests, and the intrusion of weeds. The actual mowing requirements of an area should be tailored to the specific site conditions, grass type, and seasonal variations in the climate. In general, grass should not be allowed to grow more than 1 to 2 inches between cuttings. Allowing the grass to grow more than this amount prior to cutting it may result in damage to the blades growing points and limit its continued healthy growth. Agencies such as the local Soil Conservation District can provide valuable assistance in determining optimum mowing requirements.

#### 2. Grass Maintenance

Grassed areas require periodic fertilizing, de-thatching, and soil conditioning in order to maintain healthy growth. Additionally, provisions should be made to re-seed and reestablish grass cover in areas damaged by sediment accumulation, storm water flow, or other causes. Agencies such as the local Soil Conservation District can provide valuable assistance in establishing a suitable grass maintenance program.

#### 3. Vegetative Cover

Trees, shrubs, and ground cover require periodic maintenance, including fertilizing, pruning, and pest control in order to maintain healthy growth. Agencies such as the local Soil Conservation District can be of assistance in establishing a preventative maintenance program.

#### 4. Removal and Disposal of Trash and Debris

A regularly scheduled program of debris and trash removal from SWMF's will reduce the chance of outlet structures, trash racks, and other components becoming clogged and inoperable during storm events. Specific attention to the weirs within manholes as well



as the oil and grease separators shall be included at each inspection. Additionally, removal of trash and debris will prevent possible damage to vegetated areas and eliminate potential mosquito breeding habitats. Disposal of debris and trash must comply with all local, county, state, and federal waste flow control regulations. Only suitable disposal and recycling sites should be utilized. Agencies such as the Division of Solid Waste Management of the New Jersey Department of Environmental Protection should be contacted for information on disposal regulations.

#### 5. Sediment Removal and Disposal

The roof drainage collection and subterranean storage system are designed as a closed system through the use of gutter guards at the source of the runoff. No other surface runoff is expected to enter this system. Accumulated sediment should be removed before it threatens the operation or storage volume of a SWMF. This includes the sections of the roof drainage collection system, the eccentric manifold at each end of the subterranean basin. Removal of accumulated sediment in these pipes shall be accomplished with the use of Vactor equipment. Disposal of sediment must comply with all local, county, state, and federal regulations. Only suitable disposal sites should be utilized. The sediment removal program in infiltration facilities must also include provisions for monitoring the porosity of the sub-base, and replacement or cleansing of the pervious materials as necessary. Agencies such as the Division of Soil Waste Management of the New Jersey Department of Environmental Protection should be contacted for information on disposal regulations.

#### 6. Mechanical Components

SWMF components, such as valves, sluice gates, pumps, fence gates, locks, and access hatches should remain functional at all times. Regularly scheduled maintenance should be performed in accordance with the manufacturers' recommendations. Additionally, all mechanical components should be operated at least once every three months to assure their continued performance.

#### 7. Elimination of Potential Mosquito Breading Habitats

The most effective mosquito control program is one that eliminates potential breeding habitats. Almost any stagnant pool of water can be attractive to mosquitoes, and the source of a large mosquito population. Ponded water in areas such as open cans and bottles, debris and sediment accumulations and areas of ground settlement provide ideal locations for mosquito breeding. A maintenance program dedicated to eliminating potential breeding areas is certainly preferable to controlling the health and nuisance effects of flying mosquitoes. The local Mosquito Control Commission can provide valuable information on establishing this maintenance program.

#### 8. Inspection

Regularly scheduled inspections of the facility should be performed by qualified inspectors. The primary purpose of the inspections is to ascertain the operational condition of embankments, outlet structures, and other safety-related aspects. Inspections will also provide information on the effectiveness of regularly scheduled preventative and aesthetic maintenance procedures and will help to identify where changes are warranted. Finally, the facility inspections should be used to determine the



need for and timing of corrective maintenance procedures. In addition to regularly scheduled inspections, an informal inspection should be performed during every visit to a SWMF by maintenance or supervisory personnel. An inspection checklist and is included as part of this maintenance plan.

#### 9. Reporting

The recording of all maintenance work and inspections provide valuable data on the facility condition. Along with the written reports, a chain of command for reporting and solving maintenance problems and addressing maintenance needs should be established.

#### **B. CORRECTIVE MAINTENANCE PROCEDURES**

#### 1. Removal of Debris and Sediment

Sediment, debris, and trash should be removed immediately and properly disposed of in a timely manner. Equipment and personnel must be available to perform the removal work on short notice. The lack of an available disposal site should not delay the removal of trash, debris, and sediment. Temporary disposal sites may be utilized if necessary.

#### 2. Structural Repairs

Structural damage to gutter guards, outlet and inlet structures, trash racks, and headwalls from vandalism, flood events, or other causes must be repaired promptly. Equipment, material, and personnel must be available to perform these repairs on short notice. The analysis of structural damage and the design and performance of structural repairs shall only be undertaken by qualified personnel.

#### 3. Dam, Embankment, and Slope Repairs

Damage to dams, embankments, and side slopes must be repaired promptly. Typical problems include settlement, scouring, cracking, sloughing, seepage, and rutting. Equipment, materials, and personnel must be available to perform these repairs on short notice. The immediacy or the repairs will depend upon the nature of the damage and its effects on the safety and operation of the facility. The analysis of damage and the design and performance of geotechnical repairs should only be undertaken by qualified personnel.

#### 4. Dewatering

It may be necessary to remove ponded water from within a malfunctioning SWMF. This ponding may be the result of a blocked principal outlet (detention facility), inoperable low level outlet (retention facility), loss of infiltration capacity (infiltration facility), or poor bottom drainage. Portable pumps may be necessary to remove the ponded water temporarily until a permanent solution can be implemented.

#### 5. Extermination of Mosquitoes

If neglected, a SWMF can readily become an ideal mosquito breeding area. Extermination of mosquitoes will usually require the services of an expert, such as the



local Mosquito Commission. Proper procedures carried out be trained personnel can control the mosquitoes with a minimum of damage or disturbance to the environment. If mosquito control in a facility becomes necessary, the preventative maintenance program should be re-evaluated, and more emphasis placed on control of mosquito breeding habitats.

#### 6. Erosion Repair

Vegetative cover or other protective measures are necessary to prevent the loss of soil from the erosive forces of wind and water. Where a re-seeding program has not been effective in maintaining a non-erosive vegetative cover, or other factors have exposed soils, to erosion, corrective steps should be initiated to prevent further loss of soil and any subsequent danger to the stability of the facility. Soil loss can be controlled by a variety of materials and methods, including riprap, gabion lining, sod, seeding, concrete lining, and re-grading. The local Conservation District can provide assistance in recommending materials and methodologies to control erosion.

#### 7. Fence Repair

Fences are damaged by many factors, including vandalism and storm events. Timely repair will maintain the security of the site.

#### 8. Elimination of Trees, Brush, Roots, and Animal Burrows

Large roots can impair the stability of dams, embankments, and side slopes and animal burrows. Burrows can present a safety hazard for maintenance personnel. Trees and brush with extensive, woody root systems should be completely removed from dams and embankments to prevent their destabilization and the creation of seepage routes. Roots should also be completely removed to prevent their decomposition within the dam or embankment. Rood voids and burrows should be plugged by filling with material similar to the existing material, and capped just below grade with stone, concrete, or other material. If plugging of the burrows does not discourage the animals form returning, further measures should be taken to either remove the animal population or to make critical areas of the facility unattractive to them.

#### 9. Snow and Ice Removal

Accumulations of snow and ice can threaten the functioning of a SWMF, particularly at inlets, outlets, and emergency spillways. Providing the equipment, materials, and personnel to monitor and remove snow and ice from these critical areas is necessary to assure the continued functioning of the facility during the winter months.

#### C. AESTHETIC MAINTENANCE PROCEDURES

#### 1. Graffiti Removal

The timely removal of this eyesore will restore the aesthetic quality of a SWMF. Removal can be accomplished by painting or otherwise covering it, or removing it with scrapers, solvents, or cleansers. Timely removal is important to discourage further graffiti and other acts of vandalism.



#### 2. Grass Trimming

Trimming of grass edges around structures and fences will provide for a neat and attractive appearance of the facility.

#### 3. Control of Weeds

Although a regular grass maintenance program will keep weed intrusion to a minimum, some weeds will appear. Periodic weeding, either chemically or mechanically, will not only help to maintain a healthy turf, but will also keep grassed areas attractive.

#### 4. Details

Careful, meticulous, and frequent attention to the performance of maintenance items such as painting, tree pruning, leaf collection, debris removal, and grass cutting will result in a SWMF that remains both functional and attractive.

#### D. CHECKLISTS AND LOGS

Included in this report are Tables and Sample Checklists and Logs regarding various aspects of SWMF maintenance and inspection.

#### IV. MAINTENANCE EQUIPMENT AND MATERIALS

#### A. GRASS MAINTENANCE EQUIPMENT

- 1. Tractor-Mounted Mowers
- 2. Riding Mowers
- 3. Hand Mowers
- 4. Gas Powered Trimmers
- 5. Gas Powered Edgers
- 6. Seed Spreaders
- 7. Fertilizer Spreaders
- 8. De-Thatching Equipment
- 9. Pesticide and Herbicide Application Equipment
- 10. Grass Clipping and Leaf Collection Equipment

#### B. VEGETATIVE COVER MAINTENANCE EQUIPMENT

- 1. Saws
- 2. Pruning Shears
- 3. Hedge Trimmers
- 4. Wood Chippers

#### C. TRANSPORTATION EQUIPMENT

- 1. Trucks for Transportation of Materials
- 2. Trucks for Transportation of Equipment
- 3. Vehicles for Transportation of Personnel

#### D. DEBRIS, TRASH, AND SEDIMENT REMOVAL EQUIPMENT

- 1. Loader
- 2. Backhoe
- 3. Grader



4. Vactor Equipment

#### E. MISCELLANEOUS EQUIPMENT

- 1. Shovels
- 2. Rakes
- 3. Picks
- 4. Wheelbarrows
- 5. Fence Repair Tools
- 6. Painting Equipment
- 7. Gloves
- 8. Standard Mechanics Tools
- 9. Tools for Maintenance of Equipment
- 10. Office Space
- 11. Office Equipment
- 12. Telephones
- 13. Safety Equipment
- 14. Tools for Concrete Work (Mixers, Form Materials, etc.)
- 15. Welding Equipment (for Repair of Trash Racks, etc.)

#### F. MATERIALS

- 1. Topsoil
- 2. Fill
- 3. Seed
- 4. Soil Amenities (Fertilizer, Lime, etc.)
- 5. Chemicals (Pesticides, Herbicides, etc.)
- 6. Mulch
- 7. Paint
- 8. Paint Removers (for Graffiti)
- 9. Spare Parts for Equipment
- 10. Oil and Grease for Equipment and SWMF Components
- 11. Concrete

## V. SWMF MAINTENANCE EQUIPMENT AND MATERIAL COSTS

This estimate is taken from NJDEP Stormwater Management Facilities Manual Table 6-1 and adjusted for 2020 costs

#### **GRASS MAINTENANCE EQUIPMENT**

|                  | Purchase<br>(dollars) | Rent (per day)<br>(dollars) |
|------------------|-----------------------|-----------------------------|
| Hand Mower       | 300 - 500             | 25 - 40                     |
| Riding Mower     | 3,000 - 5,000         | 75 - 100                    |
| Tractor Mower    | 15,000 - 20,000       | 100 - 300                   |
| Trimmer / Edger  | 200 - 500             | 25 - 35                     |
| Spreader         | 100 - 200             | 20 - 30                     |
| Chemical Sprayer | 200 - 500             | 25 - 40                     |

#### VEGETATIVE COVER MAINTENANCE EQUIPMENT

|          | Purchase<br>(dollars) | Rent (per day)<br>(dollars) |
|----------|-----------------------|-----------------------------|
| Hand Saw | 15                    | 5                           |



| Chain Saw      | 300 - 500     | 15 - 35  |
|----------------|---------------|----------|
| Pruning Shears | 25            | 5        |
| Shrub Trimmer  | 200           | 25 - 35  |
| Brush Chipper  | 1,000 - 5,000 | 50 - 150 |

#### **TRANSPORTATION EQUIPMENT**

|                    | Purchase<br>(dollars) | Lease (per month)<br>(dollars) | Rent (per day)<br>(dollars) |
|--------------------|-----------------------|--------------------------------|-----------------------------|
| Van                | 10,000 - 15,000       | 400                            | 50 - 70                     |
| Pickup Truck       | 10,000 - 15,000       | 400                            | 50 - 70                     |
| Dump Truck         | 30,000 - 50,000       | 1,200                          | 75 - 150                    |
| Light Duty Trailer | 3,000 - 5,000         | 150                            | 30 - 50                     |
| Heavy Duty Trailer | 10,000 - 20,000       | 500                            | 100 - 200                   |

#### DEBRIS, TRASH, AND SEDIMENT REMOVAL EQUIPMENT

|                  | Purchase<br>(dollars) | Lease (per month)<br>(dollars) | Rent (per day)<br>(dollars) |
|------------------|-----------------------|--------------------------------|-----------------------------|
| Front End Loader | 50,000 - 100,000      | 1,500 - 2,000                  | 200 - 400                   |
| Backhoe          | 30,000 - 50,000       | 1,200                          | 150 - 300                   |
| Excavator        | 100,000+              | 2,000                          | 400 - 1,000                 |
| Grader           | 100,000+              | 2,000                          | 400 - 1,000                 |
| Vactor Equipment | 100,000+              | 2,000                          | 400 – 1,000                 |

#### MISCELLANEOUS EQUIPMENT

|                     | Purchase<br>(dollars) | Rent (per day)<br>(dollars) |
|---------------------|-----------------------|-----------------------------|
| Shovel              | 15                    | 5                           |
| Leaf Rake           | 15                    | 5                           |
| Soil Rake           | 15                    | 5                           |
| Pick                | 15                    | 5                           |
| Wheelbarrow         | 100 - 200             | 10                          |
| Gloves              | 5                     | N /A                        |
| Portable Compressor | 500 - 1,000           | 50 - 100                    |
| Portable Generator  | 500 - 1,000           | 50 - 100                    |
| Concrete Mixer      | 500 - 1,000           | 25 - 50                     |
| Welding Equipment   | 500 - 1,500           | 35 - 70                     |

#### MATERIALS

|                                         | Purchase<br>(dollars) |
|-----------------------------------------|-----------------------|
| Topsoil                                 | 35 / cubic yard       |
| Fill Soil                               | 15 / cubic yard       |
| Grass Seed                              | 5 / pound             |
| Soil Amenities (Fertilizer, Lime, etc)  | 0.05 / sq ft          |
| Chemicals (Pesticides, Herbicides, etc) | 10 / gallon           |
| Mulch                                   | 25 / cubic yard       |
| Paint                                   | 20 / gallon           |
| Paint Remover                           | 10 / gallon           |
| Machine / Motor Lubricants              | 5 / gallon            |



| Dry Mortar Mix             | 4 / 50 pound bag      |
|----------------------------|-----------------------|
| Concrete Delivered to Site | 60 – 100 / cubic yard |

Notes:

- 1. These estimates are approximation of the probable construction costs in 2015 dollars and are based upon previous construction experience and should be used as an approximate budget figure only.
- 2. Estimated equipment costs are based upon Industrial / Commercial grade equipment.

#### **VI. COST OF SWMF MAINTENANCE TASKS**

Taken from NJDEP Stormwater Management Facilities Manual Table 6-2

|                        | Small Facility<br>(Man-Hours) | Large Facility<br>(Man-Hours) |
|------------------------|-------------------------------|-------------------------------|
| Grass Cutting          | 1                             | 1 - 2                         |
| Grass Maintenance      | 0.5                           | 1                             |
| Trash & Debris Removal | 0.5                           | 1                             |
| Sediment Removal       | 4                             | 8                             |
| Mobilization           | 1                             | 1                             |
| Inspection & Reporting | 1                             | 2                             |

## **PREVENTATIVE MAINTENANCE TASKS**

#### CORRECTIVE MAINTENANCE TASKS

|                        | Small Facility<br>(Man-Hours) | Large Facility<br>(Man-Hours) |
|------------------------|-------------------------------|-------------------------------|
| Trash & Debris Removal | 4                             | 8                             |
| Structural Repairs     | 2-4                           | 40                            |
| Dewatering             | 4                             | 8                             |
| Mosquito Extermination | 1                             | 2-4                           |
| Erosion Repair         | 4                             | 8                             |
| Fence Repair           | 2-4                           | 4-8                           |
| Snow & Ice Removal     | 1                             | 2                             |
| Mobilization           | 2                             | 2                             |

#### AESTHETIC MAINTENANCE TASKS

|                       | Small Facility<br>(Man-Hours) | Large Facility<br>(Man-Hours) |
|-----------------------|-------------------------------|-------------------------------|
| Grass Trimming        | 0.5                           | 2                             |
| Weed Control          | 0.5                           | 2                             |
| Landscape Maintenance | 1 - 2                         | 2 - 4                         |
| Graffiti Removal      | 2 - 4                         | 4 - 8                         |

Notes:

- 1. This estimate is an approximation of the man-hours as provided in the NJDEP Stormwater Facility Maintenance Manual. It is based upon previous construction experience and should be used as an approximate budget figure only.
- 2. Cost estimates are presented in terms of man-hours. These values should be used in conjunction with applicable personnel rates to determine labor costs for a specific program or facility.
- 3. Facility size definitions: Small Facility: Total SWMF Site Area ¼ Acre



Large Facility: Total SWMF Site Area 1 Acre

Appropriate adjustments to the estimates presented should be made as necessary to account for actual SWMF size.

Table 6-3 Taken from NJDEP Stormwater Management Facilities Manual

# WORKSHEET FOR DETERMINING DEVELOPER'S 10-YEAR MAINTENANCE BOND FOR PRIVATELY HELD SWMF'S OR DEVELOPER'S CONTRIBUTION FOR MUNICIPAL MANAGEMENT OF SWMF'S

#### SURFACE STORMWATER BASINS

#### Total Area of SWMF's = 1.12 Acres Total Area of SWMF's Basin Bottom = 0.60 Acres

#### 1. Mowing

| Α. | Rate per Hour for Labor & Equipment      | 40 | \$        |
|----|------------------------------------------|----|-----------|
| В. | Base number of Hours for Labor and       |    |           |
|    | Equipment for Mobilization and Mowing Up | 2  |           |
|    | to One Acre                              |    |           |
| C. | Number of Hours for Mowing Additional    | 0  |           |
|    | Area (Based on One Hour Per Acre)        | 0  |           |
| D. | Hours per Mowing = $B + C$               | 2  |           |
| E. | Cost per Mowing = A x D                  |    | \$<br>80  |
| F. | Number of Mowings per Year:              | 10 |           |
| G. | Annual Mowing Cost = E x F               |    | \$<br>800 |
| Н. | Materials                                |    | \$<br>100 |
| ١. | Total Cost = G + H                       |    | \$<br>900 |

#### 2. Landscape Maintenance

| Α. | Rate per Hour for Labor & Equipment     | 40       | \$ |     |
|----|-----------------------------------------|----------|----|-----|
| В. | Number of Hours of Required Landscape   | 10       |    |     |
|    | Maintenance per Year                    | 10       |    |     |
| C. | Annual Landscape Maintenance Cost = A   |          | ¢  | 400 |
|    | хB                                      |          | \$ | 400 |
| D. | Total Cost of Original Landscaping (per | \$10,000 |    |     |
|    | Cost Estimate)                          | φ10,000  |    |     |
| E. | Replacement Factor (2% per Year)        | x0.02    |    |     |
| F. | Annual Replacement Cost = D x E         |          | \$ | 200 |
| G. | Total Cost = C + F                      |          | \$ | 600 |

#### 3. General Maintenance

| Α. | Rate per Hour for Labor & Equipment | 40 | \$          |
|----|-------------------------------------|----|-------------|
| В. | Number of Required Hours of General | Λ  |             |
|    | Maintenance per Occurrence          | 4  |             |
| C. | Cost per Occurrence = A x B         |    | \$<br>160   |
| D. | Number of Occurrences per Year      | 20 |             |
| E. | Total Cost = C + D                  |    | \$<br>3,200 |

#### 4. Insurance



| Α. | Annual Insurance Cost | To be<br>determined | \$<br>To be determined |
|----|-----------------------|---------------------|------------------------|

#### 5. Scarify and De-Silt Basin – Every 5 years

| Α. | Rate per Hour for Labor & Equipment | 50  | \$           |
|----|-------------------------------------|-----|--------------|
| В. | Number of Required Hours of General | 50  |              |
|    | Maintenance (@ 40 / acre)           | 50  |              |
| C. | Labor & Equipment Cost = A x B      |     | \$<br>2,500  |
| D. | Cost of Disposal per cubic yard     | 20  | \$           |
| E. | Number of cubic yards (6" Deep      | 485 |              |
|    | Remove & Replace)                   | 400 |              |
| F. | Disposal Cost = D x E               |     | \$<br>9,700  |
| G. | Cost per Occurrence = C + F         |     | \$<br>12,200 |
| Н  | Duration factor = 0.2 (for 5 years) | 0.2 |              |
| ١. | Total Cost = G x H                  |     | \$<br>2,440  |

#### 6. Inspection - Annual

| Α. | Rate per Hour for Labor                    | 100 |     |
|----|--------------------------------------------|-----|-----|
| В. | Number of Required Hours per<br>Inspection | 2   |     |
| C. | Total Cost = A x B                         | \$  | 200 |

#### 7. Total First Year Cost

| Α. | Mowing (1.I)                             | \$<br>900               |
|----|------------------------------------------|-------------------------|
| В. | Landscape Maintenance (2.G)              | \$<br>600               |
| C. | General Maintenance (3.E)                | \$<br>3,200             |
| D. | Insurance (4.A)                          | \$<br>To be determined  |
| E. | Scarify and De-Silt (5.I) x 4 / 20 years | \$<br>2,440             |
| F. | Inspection (6.C)                         | \$<br>200               |
| G. | Total Cost for Year = SUM (A : F)        | \$<br>7,340 + insurance |

#### Total For 10 yr Maintenance Bond

|--|

OR

#### **Calculation of Developer Contribution**

| Α. | Total Cost = (7.G) x 10 years        |        | \$<br>73,400+insurance |
|----|--------------------------------------|--------|------------------------|
| В. | Developer Contribution Percentage    | X 0.75 |                        |
| C. | Total Developer Contribution = A x B |        | \$<br>55,050+insurance |

NOTE: This estimate is an approximation of the probable cost in 2020 dollars. It is based upon previous construction experience and should be used as an approximate budget figure only.



#### VII. MAINTENANCE REQUIREMENTS FOR DRAINAGE SYSTEMS

#### SCHEDULE A

## MAINTENANCE REQUIREMENTS FOR DRAINAGE SYSTEMS

The following are those minimum activities that shall be the responsibility of the designated entity for maintenance to ensure that the drainage system will operate as designed. The designated party is only responsible for those activities discussed below that apply to the type of drainage structures existing on the project.

#### **Retention and Detention Basins**

The following are minimum requirements for maintenance of these systems. Other items recommended by the design engineer are encouraged to ensure the system will function as designed.

In the event of standing water in the drainage system longer than 3 days (72 hours) after all maintenance activities have been conducted, the Municipal or County Engineer's Office shall be notified immediately.

#### (1) Inspection Schedule

Drainage systems must be inspected on a routine basis to ensure that they are functioning properly. Inspection shall be conducted a minimum of semi-annually and always after major storms.

#### (2) Inlet and Outlet Structure

All inlet and outlet structures shall be examined at the time of inspection for debris and accumulation of sediment which shall be removed form these structures.

#### (3) Maintenance of Vegetated Basins

- A dense turf with extensive root growth is encouraged to reduce erosion of the sides of the basin. Basin bottom shall be constructed of clean sand to enhance infiltration. Well establish turf forming a porous turf will prevent the formation of an impermeable layer.
- b) Grasses of the fescue family are recommended for seeding primarily due to their adaptability to dry sandy soils, drought resistance, hardiness, and ability to withstand brief inundations. Fescues will also permit longer intervals between mowings.
- c) Mowing of the grass is required twice a year, once around June and again in September. Additional mowing is recommended to ensure the aesthetic quality of the site.
- d) Fertilization and liming is left to the discretion of the maintenance entity. A 10-6-4 ratio fertilizer at a rate of 500 lb. per acre (11 lb. per 1,000 sf) is provided for guidance.

#### (4) Maintenance of Gravel Bottom Retention Basins

a) Sediment shall not be allowed to build up to the point where it reduces the rate of infiltration that the system was designed to accommodate. In the event of standing water greater than 3 days (72) hours because of siltation, the system must be thoroughly cleaned.



- b) If the system still remains inoperable after a thorough cleaning; the system must be removed and replaced so that the system will function as designed.
- (5) Maintenance of Non-Vegetated Basins (Soil Floors)
  - a) All sediment accumulated in the basin bottom must be removed. Sediment removal is only to be conducted when the basin is completely dry, after the silt layer has mud cracks and has separated from the basin floor.
  - b) Tilling is required periodically and at least once annually, form June through September, to restore the natural infiltration capacity the system was designed for by overcoming the effects of surface compaction. All sediment must be removed prior to tilling the basin bottom.
  - c) Rotary tillers or disc harrows should be used since precise blade control and equipment maneuverability are essential in small areas.
  - d) After tilling the basin floor should be smooth and free of ridges and furrows to enable easy removal of sediment during future cleaning operations. The basin floor should slope toward a low-flow channel wherever applicable.

#### Manufactured Treatment Devices (CDS by Contech)

The following are minimum requirements for maintenance of these systems as recommended by the manufacturer:

#### Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

#### Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is included in this manual.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allow both sump cleanout and access outside the screen. The CDS system should be cleaned when the level of sediment has



reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated.

If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine whether the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

#### Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area. In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris. Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.



## VIII. MAINTENANCE AND INSPECTION LOGS AND CHECKLISTS

#### SWM Maintenance List

#### Page 1 of 4

#### Maintenance Work Order and Checklist for Stormwater Management Facilities

 Name of Facility:
 \_\_\_\_\_\_

 Location:
 \_\_\_\_\_\_

Date:

| Crew:      |  | Work Started:              |  | Time: |  |
|------------|--|----------------------------|--|-------|--|
| Equipment: |  | Work Completed:            |  | Time: |  |
| Weather:   |  | Total Man-hours for Work:: |  |       |  |

#### A. Preventative Maintenance

|                                | ltems<br>Reguired | ltems<br>Done |                                   |
|--------------------------------|-------------------|---------------|-----------------------------------|
| 1. Grass Cutting               | √ .               | $\checkmark$  | Comments and Special Instructions |
| A. Bottoms                     |                   |               |                                   |
| B. Embankments and Side Slopes |                   |               |                                   |
| C. Perimeter Areas             |                   |               |                                   |
| D. Access Areas and Roads      |                   |               |                                   |
| E. Other:                      |                   |               |                                   |
|                                | ltems<br>Required | Items<br>Done |                                   |
| 2. Grass Maintenance           | $\checkmark$      | $\checkmark$  | Comments and Special Instructions |
| A. Fertilizing                 |                   |               |                                   |
| B. Re-Seeding                  |                   |               |                                   |
| C. De-Thatching                |                   |               |                                   |
| D. Pest Control                |                   |               |                                   |
| E. Other:                      |                   |               |                                   |
|                                | Items<br>Required | Items<br>Done |                                   |
| 3. Vegetative Cover            | $\checkmark$      | $\checkmark$  | Comments and Special Instructions |
| A. Fertilizing                 |                   |               |                                   |
| B. Pruning                     |                   |               |                                   |
| C. Pest Control                |                   |               |                                   |
| D. Other:                      |                   |               |                                   |
|                                | Items<br>Required | Items<br>Done |                                   |
| 4. Trash and Debris Removal    | $\checkmark$      | $\checkmark$  | Comments and Special Instructions |
| A. Bottoms                     |                   |               |                                   |
| B. Embankments and Side Slopes |                   |               |                                   |
| C. Perimeter Areas             |                   |               |                                   |
| D. Access Areas and Roads      |                   |               |                                   |
| E. Inlets                      |                   |               |                                   |
| F. Outlets and Trash Racks     |                   |               |                                   |
| G. Other:                      |                   |               |                                   |



#### SWM Maintenance List

## Page 2 of 4

|                                                           | Items<br>Required      | ltems<br>Done      |                                     |
|-----------------------------------------------------------|------------------------|--------------------|-------------------------------------|
| 5. Sediment Removal                                       |                        | $\checkmark$       | Comments and Special Instructions   |
| A. Inlets                                                 |                        |                    |                                     |
| B. Outlets and Trash Racks                                |                        |                    |                                     |
| C. Bottoms                                                |                        |                    |                                     |
| E. Other                                                  |                        |                    |                                     |
|                                                           | ltems<br>Required      | Items<br>Done      |                                     |
| 6. Mechanical Components                                  | $\checkmark$           | $\checkmark$       | Comments and Special Instructions   |
| A. Valves                                                 |                        |                    |                                     |
| B. Sluice Gates                                           |                        |                    |                                     |
| C. Pumps                                                  |                        |                    |                                     |
| D. Fence Gates                                            |                        |                    |                                     |
| E. Locks                                                  |                        |                    |                                     |
| F. Access Hatches                                         |                        |                    |                                     |
| G. Other:                                                 |                        |                    |                                     |
| 7. Elimination of Potential<br>Mosquito Breeding Habitats | ltems<br>Required<br>√ | ltems<br>Done<br>√ | Comments and Special Instructions   |
| A.                                                        |                        |                    |                                     |
| В.                                                        |                        |                    |                                     |
| С.                                                        |                        |                    |                                     |
| D.                                                        |                        |                    |                                     |
|                                                           | Items                  | Items              |                                     |
| 8. Pond Maintenance                                       | Required               | Done<br>√          |                                     |
| A. Aeration Equipment                                     |                        | N                  | ✓ Comments and Special Instructions |
|                                                           |                        |                    |                                     |
| B. Debris & Trash Removal<br>C. Weed Removal              |                        |                    |                                     |
|                                                           |                        |                    |                                     |
| D. Other:                                                 |                        |                    |                                     |
|                                                           | ltems<br>Required      | ltems<br>Done      |                                     |
| 9. Other Preventative Maintenance                         | $\checkmark$           | $\checkmark$       | Comments and Special Instructions   |
| Α.                                                        |                        |                    |                                     |
| В.                                                        |                        |                    |                                     |
| С.                                                        |                        |                    |                                     |
| D.                                                        |                        |                    |                                     |



#### SWM Maintenance List

#### **B.** Corrective Maintenance

| Work Item                                            | ltems<br>Required<br>√ | ltems<br>Done<br>√ | Location, Comments, and Special Instructions |
|------------------------------------------------------|------------------------|--------------------|----------------------------------------------|
| 1. Removal of Debris & Sediment                      |                        |                    |                                              |
| 2. Structural Repairs                                |                        |                    |                                              |
| 3. Dam, Embankment & Slope Repairs                   |                        |                    |                                              |
| 4. Dewatering                                        |                        |                    |                                              |
| 5. Control of Mosquitoes                             |                        |                    |                                              |
|                                                      |                        |                    |                                              |
| 6. Pond Maintenance                                  |                        |                    |                                              |
| 7. Erosion Repair , Roots &                          |                        |                    |                                              |
| 8. Fence Repair                                      |                        |                    |                                              |
| 9. Elimination of Trees, Brush<br>and Animal Burrows |                        |                    |                                              |
| 10. Snow & Ice Removal                               |                        |                    |                                              |
| 11. Other                                            |                        |                    |                                              |
|                                                      |                        |                    |                                              |

## C. Aesthetic Maintenance

| Work Item           | Items<br>Required<br> | ltems<br>Done<br>√ | Location, Comments, and Special Instructions |
|---------------------|-----------------------|--------------------|----------------------------------------------|
| 1. Graffiti Removal |                       |                    |                                              |
| 2. Grass Trimming   |                       |                    |                                              |
| 3. Weeding          |                       |                    |                                              |
| 4. Other            |                       |                    |                                              |



#### SWM Maintenance List

Remarks: (Refer to Item No, If Applicable)

Work Order Prepared By:

Work Completed By: \_\_\_\_\_



Page 4 of 4

Page 1 of 3

## Maintenance Log Stormwater Management Facilities

## A. Preventative Maintenance

| Date:                          |                                                   |   |   |   |           |     |   |   |       |
|--------------------------------|---------------------------------------------------|---|---|---|-----------|-----|---|---|-------|
| Work Item                      |                                                   |   |   | ( | √) Comple | ted |   |   | <br>_ |
|                                |                                                   |   |   |   |           |     |   |   |       |
| 1. Grass Cutting               | · · · · · · ·                                     | 1 | 1 | n | n         | n   | n | n | <br>· |
| A. Bottoms                     |                                                   |   |   |   |           |     |   |   |       |
| B. Embankments and Side        |                                                   |   |   |   |           |     |   |   |       |
| Slopes                         |                                                   |   |   |   |           |     |   |   |       |
| C. Perimeter Areas             |                                                   |   |   |   |           |     |   |   |       |
| D. Access Areas and Roads      |                                                   |   |   |   |           |     |   |   |       |
| E. Other:                      |                                                   |   |   |   |           |     |   |   |       |
|                                |                                                   |   |   |   |           |     |   |   |       |
| 2. Grass Maintenance           |                                                   |   | 1 |   |           |     |   |   |       |
| A. Fertilizing                 |                                                   |   |   |   |           |     |   |   |       |
| B. Re-Seeding                  | -                                                 |   |   |   |           |     |   |   |       |
| C. De-Thatching                | -                                                 |   |   |   |           |     |   |   | ┝───┥ |
| D. Pest Control                |                                                   |   |   |   |           |     |   |   | <br>  |
| E. Other:                      |                                                   |   |   |   |           |     |   |   |       |
| 3. Vegetative Cover            |                                                   |   |   |   |           |     |   |   |       |
| A. Fertilizing                 |                                                   |   |   |   |           |     |   |   |       |
| B. Pruning                     |                                                   |   |   |   |           |     |   |   |       |
| C. Pest Control                |                                                   |   |   |   |           |     |   |   |       |
| D. Other:                      |                                                   |   |   |   |           |     |   |   |       |
|                                |                                                   |   |   |   |           |     |   |   |       |
| 4. Trash and Debris Removal    | <del>,                                     </del> |   |   |   |           |     |   |   |       |
| A. Bottoms                     |                                                   |   |   |   |           |     |   |   | <br>  |
| B. Embankments and Side Slopes |                                                   |   |   |   |           |     |   |   |       |
| C. Perimeter Areas             |                                                   |   |   |   |           |     |   |   | ┝───┤ |
| D. Access Areas and Roads      |                                                   |   |   |   |           |     |   |   | <br>  |
| E. Inlets:                     |                                                   |   |   |   |           |     |   |   | <br>  |
| F. Outlets and Trash Racks     |                                                   |   |   |   |           |     |   |   |       |
| G. Other:                      |                                                   |   |   |   |           |     |   |   |       |

#### 5. Sediment Removal

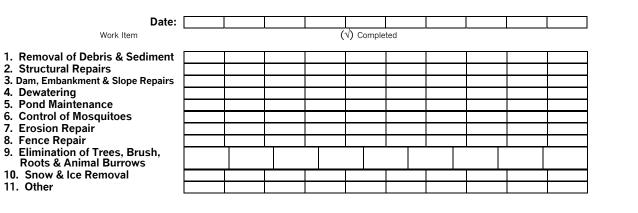
| A. Inlets                  |  |  |  |  |  |
|----------------------------|--|--|--|--|--|
| B. Outlets and Trash Racks |  |  |  |  |  |
| C. Bottoms                 |  |  |  |  |  |
| D. Other:                  |  |  |  |  |  |



#### Page 2 of 3

| I                           | Date: |                |        |  |  |
|-----------------------------|-------|----------------|--------|--|--|
| Work Item                   |       | <b>(√)</b> Com | pleted |  |  |
| 6. Mechanical Components    |       |                |        |  |  |
| A. Valves                   |       |                |        |  |  |
| B. Sluice Gates             |       |                |        |  |  |
| C. Pumps                    |       |                |        |  |  |
| D. Fence Gates              |       |                |        |  |  |
| E. Locks                    |       |                |        |  |  |
| F. Access Hatches           |       |                |        |  |  |
| G. Other                    |       |                |        |  |  |
| 7. Elimination of Potential |       |                |        |  |  |
| Mosquito Breeding Habits    |       |                |        |  |  |

| Α. |  |  |  |  |  |
|----|--|--|--|--|--|
| В. |  |  |  |  |  |
| С. |  |  |  |  |  |


#### 8. Pond Maintenance

| A. Aeration Equipment     |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
| B. Debris & Trash Removal |  |  |  |  |  |
| C. Weed Removal           |  |  |  |  |  |
| D. Other:                 |  |  |  |  |  |

#### 9. Other Preventative Maintenance

| Α. |  |  |  |  |  |
|----|--|--|--|--|--|
| В. |  |  |  |  |  |
| C. |  |  |  |  |  |
| D. |  |  |  |  |  |

## **B.** Corrective Maintenance





## Page 3 of 3

## C. Aesthetic Maintenance

|                                             | Date: |          |    |     |          |   |  |  |  |
|---------------------------------------------|-------|----------|----|-----|----------|---|--|--|--|
|                                             |       | Work Ite | em | (√) | Complete | d |  |  |  |
| 1 One (fill Demonster)                      | Γ     |          |    |     |          |   |  |  |  |
| 1. Graffiti Removal                         |       |          |    |     |          |   |  |  |  |
| 2. Grass Trimming                           |       |          |    |     |          |   |  |  |  |
| <ol> <li>Weeding</li> <li>Other:</li> </ol> |       |          |    |     |          |   |  |  |  |
| 4. Other:                                   | l     |          |    |     |          |   |  |  |  |

Remarks: (Refer to Item No, If Applicable)

Work Order Prepared By:

Work Completed By:



## SWM Inspection List

Page 1 of 3

#### Inspection Checklist for Stormwater Management Facilities

| Name of Facility:                      |      |                      |                     |                       |
|----------------------------------------|------|----------------------|---------------------|-----------------------|
| Location:                              |      |                      |                     | Date:                 |
| Weather:                               |      |                      |                     |                       |
| Facility Item                          | ΟΚ1  | Routine <sup>2</sup> | Urgent <sup>3</sup> | Comments <sup>4</sup> |
| 1. Embankments and Side Slopes         |      |                      |                     | 1                     |
| A. Vegetation                          |      |                      |                     |                       |
| B. Linings                             |      |                      |                     |                       |
| C. Erosion                             |      |                      |                     |                       |
| D. Settlement                          |      |                      |                     |                       |
| E. Sloughing                           |      |                      |                     |                       |
| F. Trash And Debris                    |      |                      |                     |                       |
| G. Seepage                             |      |                      |                     |                       |
| H. Aesthetics                          |      |                      |                     |                       |
| I. Other:                              |      |                      |                     |                       |
| 2. Bottoms (Detention and Infiltration | ion) |                      |                     |                       |
| A. Vegetation                          |      |                      |                     |                       |
| B. Erosion                             |      |                      |                     |                       |
| C. Standing Water                      |      |                      |                     |                       |
| D. Settlement                          |      |                      |                     |                       |
| E. Trash and Debris                    |      |                      |                     |                       |
| F. Sediment                            |      |                      |                     |                       |
| G. Aesthetics                          |      |                      |                     |                       |
| H. Other:                              |      |                      |                     |                       |
|                                        |      |                      |                     |                       |
| 3. Low Flow Channels (Detention)       |      |                      |                     | 1                     |
| A. Vegetation                          |      |                      |                     |                       |
| B. Linings                             |      |                      |                     |                       |
| C. Erosion                             |      |                      |                     | <u> </u>              |
| D. Settlement                          |      |                      |                     | <u> </u>              |
| E. Standing Water                      |      |                      |                     | <u> </u>              |
| F. Trash and Debris                    |      |                      |                     | <u> </u>              |
| G. Sediment                            |      |                      |                     | <u> </u>              |
| H. Other:                              |      |                      |                     |                       |

1. The item checked is in good condition and the maintenance program is adequate.

2. The item checked requires attention but does not present an immediate threat to the facility function or other facility components.

3. The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.

4. Provide explanation and details if columns 2 or 3 are checked.



## SWM Inspection List

| Facility Item                    | <b>OK</b> 1 | Routine <sup>2</sup> | Urgent <sup>3</sup> | Comments <sup>4</sup> |
|----------------------------------|-------------|----------------------|---------------------|-----------------------|
| 4. Ponds (Retention)             |             | I I                  |                     |                       |
| A. Vegetation                    |             |                      |                     |                       |
| B. Shoreline Erosion             |             |                      |                     |                       |
| C. Aeration Equipment            |             |                      |                     |                       |
| D. Trash and Debris              |             |                      |                     |                       |
| E. Sediment                      |             |                      |                     |                       |
| F. Water Quality                 |             |                      |                     |                       |
| G. Other:                        |             |                      |                     |                       |
| 5. Inlet Structure               |             |                      |                     |                       |
| A. Condition of Structure        |             |                      |                     |                       |
| B. Erosion                       |             |                      |                     |                       |
| C. Trash & Debris                |             |                      |                     |                       |
| D. Sediment                      |             |                      |                     |                       |
| E. Aesthetics                    |             |                      |                     |                       |
| F. Other:                        |             |                      |                     |                       |
| 6. Outlet Structure (Detention & | Retention)  |                      |                     |                       |
| A. Condition of Structure        |             |                      |                     |                       |
| B. Erosion                       |             |                      |                     |                       |
| C. Trash & Debris                |             |                      |                     |                       |
| D. Sediment                      |             |                      |                     |                       |
| E. Mechanical Components         |             |                      |                     |                       |
| F. Aesthetics                    |             |                      |                     |                       |
| G. Other:                        |             |                      |                     |                       |
| 7. Emergency Spillway            |             |                      |                     |                       |
| A. Vegetation                    |             |                      |                     |                       |
| B. Lining                        |             |                      |                     |                       |
| C. Erosion                       |             |                      |                     |                       |
| D. Trash & Debris                |             |                      |                     |                       |
| E. Other:                        |             |                      |                     |                       |
| 8. Perimeter                     |             |                      |                     |                       |
| A. Vegetation                    |             |                      |                     |                       |
| B. Erosion                       |             |                      |                     |                       |
| C. Trash & Debris                |             |                      |                     |                       |
| D. Fences & Gates                |             |                      |                     |                       |
| E. Aesthetics                    |             |                      |                     |                       |
| F. Other:                        |             |                      |                     |                       |
| 9. Access Roads                  |             | I                    |                     |                       |
| A. Vegetation                    |             |                      |                     |                       |
| B. Road Surface                  |             |                      |                     |                       |
| C. Fences & Gates                |             |                      |                     |                       |
| D. Erosion                       |             |                      |                     |                       |
| E. Aesthetics                    |             |                      |                     |                       |
|                                  |             |                      |                     |                       |

F. Other:

1.

The item checked is in good condition and the maintenance program is adequate. The item checked requires attention but does not present an immediate threat to the facility function or other facility components. 2.

The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.
 Provide explanation and details if columns 2 or 3 are checked.



Page 2 of 3

## SWM Inspection List

## Page 3 of 3

| Facility Item                             | OK1 | Routine <sup>2</sup> | Urgent <sup>3</sup> | Comments <sup>4</sup> |
|-------------------------------------------|-----|----------------------|---------------------|-----------------------|
| 10. Miscellaneous                         |     |                      |                     |                       |
| A. Effectiveness of Exist. Maint. Program |     |                      |                     |                       |
| B. Dam Inspections                        |     |                      |                     |                       |
| C. Potential Mosquito Habitats            |     |                      |                     |                       |
| D. Mosquitoes                             |     |                      |                     |                       |
| Ε.                                        |     |                      |                     |                       |
| F.                                        |     |                      |                     |                       |
| G. :                                      |     |                      |                     |                       |

1. The item checked is in good condition and the maintenance program is adequate.

2. The item checked requires attention but does not present an immediate threat to the facility function or other facility components.

3. The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.

4. Provide explanation and details if columns 2 or 3 are checked.

Remarks: (Refer to Item No, If Applicable)

Inspector:



## SWM Inspection

Page 1 of 3

## Maintenance Log Stormwater Management Facilities

| Name of Facility:                                  |              |  |   |   |   |   |   |       |   |   | - |
|----------------------------------------------------|--------------|--|---|---|---|---|---|-------|---|---|---|
| Location:                                          |              |  |   |   |   |   |   | Date: |   |   |   |
|                                                    |              |  |   | 1 |   |   |   |       |   |   | 1 |
|                                                    | Date:        |  |   |   |   |   |   |       |   |   | l |
| Facility Item Indicate Condition (i.e. 1, 2, or 3) |              |  |   |   |   |   |   |       |   |   |   |
| 1. Embankments and Side S                          | lopes        |  | 1 | r |   |   | [ |       |   | [ | T |
| A. Vegetation                                      |              |  | - |   |   |   |   |       |   |   | ļ |
| B. Linings                                         |              |  |   |   |   |   |   |       |   |   | ł |
| C. Erosion                                         |              |  |   |   |   |   |   |       |   |   | ł |
| D. Settlement                                      |              |  |   |   |   |   |   |       |   |   | ł |
| E. Sloughing:                                      |              |  |   |   |   |   |   |       |   |   | ł |
| F. Trash and Debris                                |              |  |   |   |   |   |   |       |   |   | ł |
| G. Seepage                                         |              |  |   |   |   |   |   |       |   |   | ł |
| H. Aesthetics                                      |              |  |   |   |   |   |   |       |   |   | ł |
| I. Other                                           | <i>a</i>     |  |   |   |   |   |   |       |   |   | 1 |
| 2. Bottoms (Detention and In                       | nfiltration) |  |   | 1 |   |   |   |       |   |   | ī |
| A. Vegetation                                      |              |  |   |   |   |   |   |       |   |   | ł |
| B. Erosion                                         |              |  |   |   |   |   |   |       |   |   | ł |
| C. Standing Water                                  |              |  |   |   |   |   |   |       |   |   | ł |
| D. Settlement                                      |              |  |   |   |   |   |   |       |   |   | ł |
| E. Trash and Debris                                |              |  |   |   |   |   |   |       |   |   | ł |
| F. Sediment                                        |              |  |   |   |   |   |   |       |   |   | ł |
| G. Aesthetics                                      |              |  |   |   |   |   |   |       |   |   | ł |
| H. Other                                           |              |  |   |   |   |   |   |       |   |   | 1 |
| 3. Low Flow Channels (Dete                         | ntion)       |  |   | 1 | 1 | 1 |   | 1     | 1 |   | T |
| A. Vegetation                                      |              |  |   |   |   |   |   |       |   |   | ł |
| B. Linings                                         |              |  |   |   |   |   |   |       |   |   | ł |
| C. Erosion                                         |              |  |   |   |   |   |   |       |   |   | ł |
| D. Settlement:                                     |              |  |   |   |   |   |   |       |   |   | ł |
| E. Standing Water                                  |              |  |   |   |   |   |   |       |   |   | ł |
| F. Trash and Debris                                |              |  |   |   |   |   |   |       |   |   | ł |
| G. Sediment                                        |              |  |   |   |   |   |   |       |   |   | ł |
| H. Other                                           |              |  |   |   |   |   |   |       |   |   | l |
| 4. Ponds                                           |              |  |   | 1 |   |   |   |       |   |   | T |
| A. Vegetation                                      |              |  |   |   |   |   |   |       |   |   | ł |
| B. Shoreline Erosion                               |              |  | + |   |   |   |   |       |   |   | ł |
| C. Aeration Equipment                              |              |  |   |   |   |   |   |       |   |   | ł |
| D. Trash & Debris                                  |              |  | + |   |   |   |   |       |   |   | ł |
| E. Sediment                                        |              |  | + |   |   |   |   |       |   |   | ł |
| F. Water Quality                                   |              |  |   |   |   |   |   |       |   |   | ł |
| G. Other:                                          |              |  |   |   |   |   |   |       |   |   | i |


1 The item checked is in good condition and the maintenance program is adequate.

2 The item checked requires attention, but does not present an immediate threat to the facility function or other facility components.

3 The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.



Page 2 of 3



5. Inlet Structure

| A. Condition of Structure |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
| B. Erosion                |  |  |  |  |  |
| C. Trash & Debris         |  |  |  |  |  |
| D. Sediment:              |  |  |  |  |  |
| E. Aesthetics             |  |  |  |  |  |
| F. Other:                 |  |  |  |  |  |

#### 6. Outlet Structure (Detention & Retention)

| A. Condition of Structure |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
| B. Erosion                |  |  |  |  |  |
| C. Trash & Debris         |  |  |  |  |  |
| D. Sediment               |  |  |  |  |  |
| E. Mechanical Components  |  |  |  |  |  |
| F. Aesthetics             |  |  |  |  |  |
| G. Other                  |  |  |  |  |  |

#### 7. Emergency Spillway

| A. Vegetation     |  |  |  |  |  |
|-------------------|--|--|--|--|--|
| B. Lining         |  |  |  |  |  |
| C. Trash & Debris |  |  |  |  |  |
| D. Other:         |  |  |  |  |  |

#### 8. Perimeter

| A. Vegetation      |  |  |  |  |  |
|--------------------|--|--|--|--|--|
| B. Erosion         |  |  |  |  |  |
| C. Trash & Debris  |  |  |  |  |  |
| D. Fences & Gates: |  |  |  |  |  |
| E. Aesthetics      |  |  |  |  |  |
| F. Other:          |  |  |  |  |  |

#### 9. Access Roads

| A. Vegetation     |  |  |  |  |  |
|-------------------|--|--|--|--|--|
| B. Road Surface   |  |  |  |  |  |
| C. Trash & Debris |  |  |  |  |  |
| D. Fences & Gates |  |  |  |  |  |
| E. Aesthetics     |  |  |  |  |  |
| F. Other:         |  |  |  |  |  |

1 The item checked is in good condition and the maintenance program is adequate.

2 The item checked requires attention, but does not present an immediate threat to the facility function or other facility components.

3 The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.



## Page 3 of 3

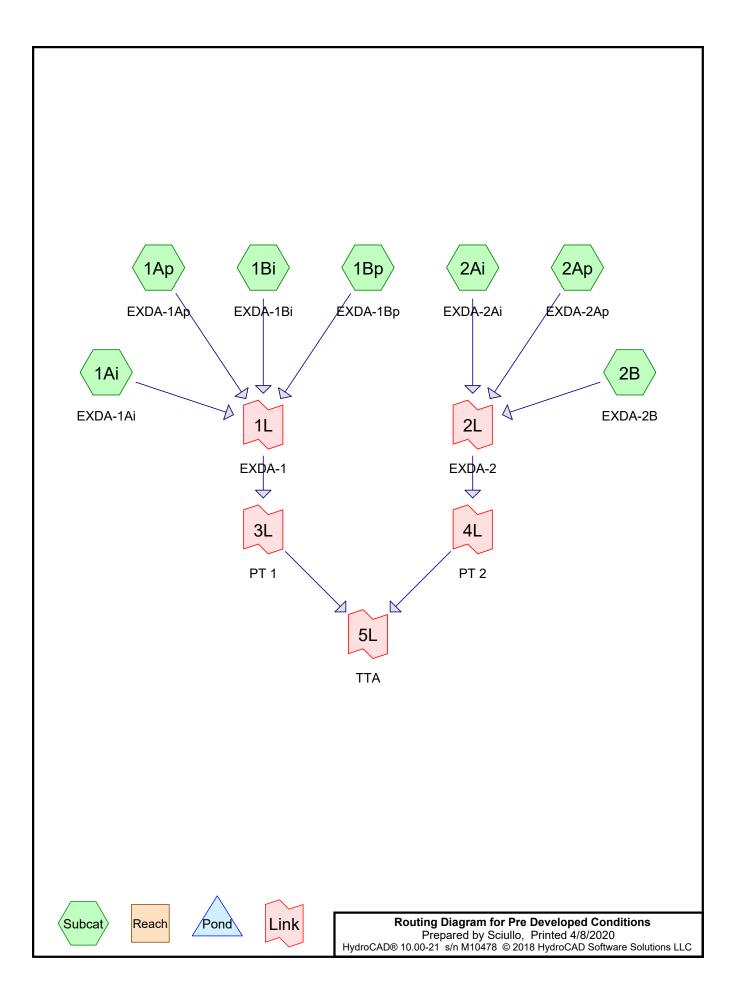
| 10. Miscellaneou | IS |
|------------------|----|
|------------------|----|

| A. Effectiveness of Exist.     |  |  |  |  |  |
|--------------------------------|--|--|--|--|--|
| Maintenance Program            |  |  |  |  |  |
| B. Dam Inspections             |  |  |  |  |  |
| C. Potential Mosquito Habitats |  |  |  |  |  |
| D. Mosquitoes                  |  |  |  |  |  |
| E.                             |  |  |  |  |  |
| F.                             |  |  |  |  |  |
| G.                             |  |  |  |  |  |

1 The item checked is in good condition and the maintenance program is adequate.

2 The item checked requires attention, but does not present an immediate threat to the facility function or other facility components.

3 The item checked requires immediate attention to keep the facility operational or to prevent damage to other facility components.


Remarks: (Refer to Item No, If Applicable)

Prepared By:



# APPENDIX C

PRE-DEVELOPED RUNOFF CALCULATIONS



## Area Listing (all nodes)

| Area    | CN | Description                                       |
|---------|----|---------------------------------------------------|
| (acres) |    | (subcatchment-numbers)                            |
| 4.570   | 61 | >75% Grass cover, Good, HSG B (1Ap, 1Bp, 2Ap, 2B) |
| 4.959   | 80 | >75% Grass cover, Good, HSG D (1Ap, 1Bp, 2Ap, 2B) |
| 0.498   | 82 | Dirt roads, HSG B (2Ap, 2B)                       |
| 0.715   | 98 | Paved parking, HSG B (1Ai, 1Bi, 2Ai)              |
| 0.741   | 98 | Paved parking, HSG D (1Ai, 1Bi, 2Ai)              |
| 0.185   | 55 | Woods, Good, HSG B (1Ap, 1Bp, 2Ap, 2B)            |
| 11.668  | 74 | TOTAL AREA                                        |

## Soil Listing (all nodes)

| Area    | Soil  | Subcatchment                     |
|---------|-------|----------------------------------|
| (acres) | Group | Numbers                          |
| 0.000   | HSG A |                                  |
| 5.968   | HSG B | 1Ai, 1Ap, 1Bi, 1Bp, 2Ai, 2Ap, 2B |
| 0.000   | HSG C |                                  |
| 5.700   | HSG D | 1Ai, 1Ap, 1Bi, 1Bp, 2Ai, 2Ap, 2B |
| 0.000   | Other |                                  |
| 11.668  |       | TOTAL AREA                       |

Pre Developed Conditions Prepared by Sciullo HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Printed 4/8/2020 Page 4

| <br>HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other<br>(acres) | Total<br>(acres) | Ground<br>Cover             | Subcatchment<br>Numbers     |
|----------------------|------------------|------------------|------------------|------------------|------------------|-----------------------------|-----------------------------|
| 0.000                | 4.570            | 0.000            | 4.959            | 0.000            | 9.529            | >75% Grass cover, Good      | 1Ap,<br>1Bp,<br>2Ap, 2B     |
| 0.000<br>0.000       | 0.498<br>0.715   | 0.000<br>0.000   | 0.000<br>0.741   | 0.000<br>0.000   | 0.498<br>1.456   | Dirt roads<br>Paved parking | 2Ap, 2B<br>1Ai, 1Bi,<br>2Ai |
| 0.000                | 0.185            | 0.000            | 0.000            | 0.000            | 0.185            | Woods, Good                 | 1Ap,<br>1Bp,<br>2Ap, 2B     |
| 0.000                | 5.968            | 0.000            | 5.700            | 0.000            | 11.668           | TOTAL AREA                  |                             |

### Ground Covers (all nodes)

| Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width<br>(inches) | Height<br>(inches) | Inside-Fill<br>(inches) |
|-------|----------------|---------------------|----------------------|------------------|------------------|-------|------------------------|--------------------|-------------------------|
| 1     | 1Ai            | 0.00                | 0.00                 | 1,185.0          | 0.0030           | 0.013 | 18.0                   | 0.0                | 0.0                     |
| 2     | 1Ap            | 0.00                | 0.00                 | 920.0            | 0.0010           | 0.015 | 18.0                   | 0.0                | 0.0                     |
| 3     | 1Bi            | 0.00                | 0.00                 | 1,185.0          | 0.0030           | 0.013 | 18.0                   | 0.0                | 0.0                     |
| 4     | 1Bp            | 0.00                | 0.00                 | 920.0            | 0.0010           | 0.013 | 18.0                   | 0.0                | 0.0                     |

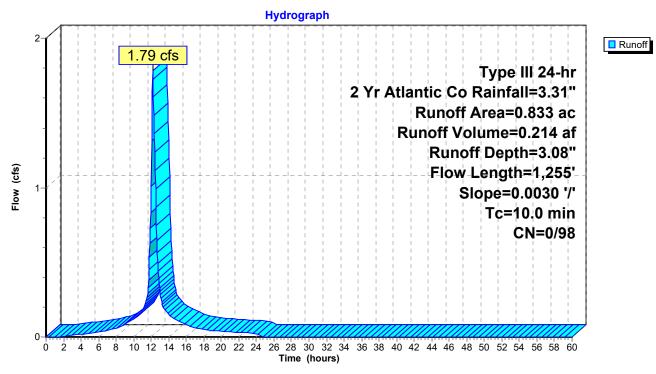
### Pipe Listing (all nodes)

| Pre Developed Conditions                            | Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31" | ' |
|-----------------------------------------------------|------------------------------------------------|---|
| Prepared by Sciullo                                 | Printed 4/8/2020                               |   |
| HvdroCAD® 10.00-21 s/n M10478 © 2018 HvdroCAD Softw | are Solutions LLC Page 6                       |   |

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment1Ai: EXDA-1Ai<br>Flow Length=1,255 | Runoff Area=0.833 ac 100.00% Impervious Runoff Depth=3.08"<br>' Slope=0.0030 '/' Tc=10.0 min CN=0/98 Runoff=1.79 cfs 0.214 af |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment1Ap: EXDA-1Ap                      | Runoff Area=0.315 ac 0.00% Impervious Runoff Depth=0.70"<br>low Length=1,435' Tc=63.7 min CN=66/0 Runoff=0.05 cfs 0.018 af    |
| Subcatchment1Bi: EXDA-1Bi<br>Flow Length=1,255 | Runoff Area=0.322 ac 100.00% Impervious Runoff Depth=3.08"<br>' Slope=0.0030 '/' Tc=10.0 min CN=0/98 Runoff=0.69 cfs 0.083 af |
| Subcatchment1Bp: EXDA-1Bp<br>F                 | Runoff Area=7.068 ac 0.00% Impervious Runoff Depth=0.94"<br>low Length=1,435' Tc=45.7 min CN=71/0 Runoff=2.05 cfs 0.557 af    |
| Subcatchment2Ai: EXDA-2Ai<br>Flow Length=274   | Runoff Area=0.301 ac 100.00% Impervious Runoff Depth=3.08"<br>' Slope=0.0070 '/' Tc=10.0 min CN=0/98 Runoff=0.65 cfs 0.077 af |
| Subcatchment2Ap: EXDA-2Ap                      | Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=0.65"<br>Flow Length=402' Tc=27.2 min CN=65/0 Runoff=0.10 cfs 0.022 af     |
| Subcatchment2B: EXDA-2B                        | Runoff Area=2.418 ac 0.00% Impervious Runoff Depth=1.17"<br>Flow Length=402' Tc=27.2 min CN=75/0 Runoff=1.25 cfs 0.236 af     |
| Link 1L: EXDA-1                                | Inflow=3.06 cfs 0.871 af<br>Primary=3.06 cfs 0.871 af                                                                         |
| Link 2L: EXDA-2                                | Inflow=1.75 cfs 0.335 af<br>Primary=1.75 cfs 0.335 af                                                                         |
| Link 3L: PT 1                                  | Inflow=3.06 cfs 0.871 af<br>Primary=3.06 cfs 0.871 af                                                                         |
| Link 4L: PT 2                                  | Inflow=1.75 cfs 0.335 af<br>Primary=1.75 cfs 0.335 af                                                                         |
| Link 5L: TTA                                   | Inflow=4.80 cfs 1.206 af<br>Primary=4.80 cfs 1.206 af                                                                         |
|                                                |                                                                                                                               |

| Total Runoff Area = 11.668 ac | Runoff Volume = 1.206 af | Average Runoff Depth = 1.24" |
|-------------------------------|--------------------------|------------------------------|
| 87.5                          | 2% Pervious = 10.212 ac  | 12.48% Impervious = 1.456 ac |


### Summary for Subcatchment 1Ai: EXDA-1Ai

Runoff = 1.79 cfs @ 12.16 hrs, Volume= 0.214 af, Depth= 3.08"

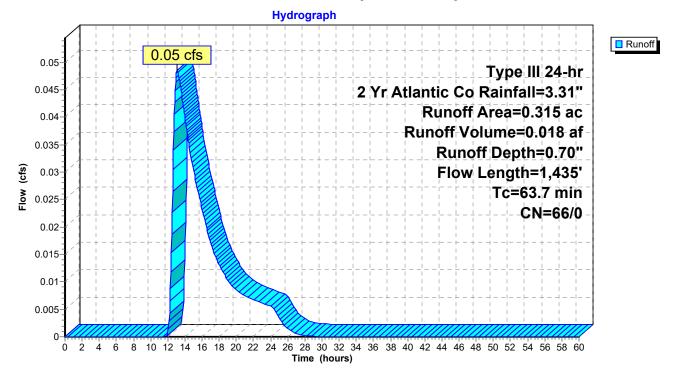
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area         | (ac) C | N Des    | cription   |             |                                               |
|--------------|--------|----------|------------|-------------|-----------------------------------------------|
| 0.4          | 475 9  | 98 Pave  | ed parking | , HSG B     |                                               |
| 0.3          | 358 9  | 98 Pav   | ed parking | , HSG D     |                                               |
| 0.8          | 833 9  | 98 Wei   | ghted Aver | age         |                                               |
| 0.8          | 833 9  | 98 100.  | .00% Impe  | rvious Area |                                               |
|              |        |          |            |             |                                               |
| Тс           | Length | Slope    | Velocity   | Capacity    | Description                                   |
| <u>(min)</u> | (feet) | (ft/ft)  | (ft/sec)   | (cfs)       |                                               |
| 1.9          | 70     | 0.0030   | 0.61       |             | Sheet Flow, EXDA-1A.1                         |
|              |        |          |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.1          | 1,185  | 0.0030   | 3.26       | 5.75        | Pipe Channel, EXDA-1A.2                       |
|              |        |          |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|              |        |          |            |             | n= 0.013 Concrete pipe, bends & connections   |
| 8.0          | 1,255  | Total, I | ncreased t | o minimum   | Tc = 10.0 min                                 |

### Subcatchment 1Ai: EXDA-1Ai



### Summary for Subcatchment 1Ap: EXDA-1Ap


Runoff = 0.05 cfs @ 13.13 hrs, Volume= 0.018 af, Depth= 0.70"

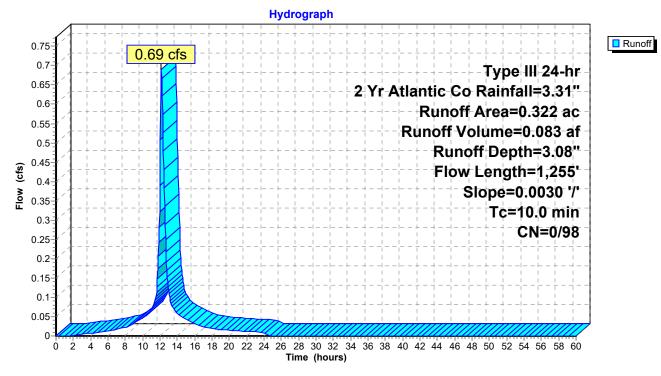
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area  | (ac) C | N Desc  | cription   |             |                                               |
|-------|--------|---------|------------|-------------|-----------------------------------------------|
| 0.    | 220 6  | 61 >75% | % Grass co | over, Good, | , HSG B                                       |
| 0.    | 005 5  | 5 Woo   | ds, Good,  | HSG B       |                                               |
| 0.    | 090 8  | 30 >75% | % Grass co | over, Good, | , HSG D                                       |
| 0.    | 315 6  | 6 Weig  | ghted Aver | age         |                                               |
| 0.    | 315 6  | 6 100.  | 00% Pervi  | ous Area    |                                               |
|       |        |         |            |             |                                               |
| Tc    | Length | Slope   | Velocity   | Capacity    | Description                                   |
| (min) | (feet) | (ft/ft) | (ft/sec)   | (cfs)       |                                               |
| 46.2  | 100    | 0.0010  | 0.04       |             | Sheet Flow, EXDA-1B.1                         |
|       |        |         |            |             | Grass: Dense n= 0.240 P2= 3.36"               |
| 6.6   | 350    | 0.0030  | 0.88       |             | Shallow Concentrated Flow, EXDA-1B.2          |
|       |        |         |            |             | Unpaved Kv= 16.1 fps                          |
| 1.5   | 65     | 0.0020  | 0.72       |             | Shallow Concentrated Flow, EXDA-1B.3          |
|       |        |         |            |             | Unpaved Kv= 16.1 fps                          |
| 9.4   | 920    | 0.0010  | 1.63       | 2.88        | Pipe Channel, EXDA-1B.4                       |
|       |        |         |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|       |        |         |            |             | n= 0.015 Concrete sewer w/manholes & inlets   |



### Subcatchment 1Ap: EXDA-1Ap




### Summary for Subcatchment 1Bi: EXDA-1Bi

Runoff = 0.69 cfs @ 12.16 hrs, Volume= 0.083 af, Depth= 3.08"

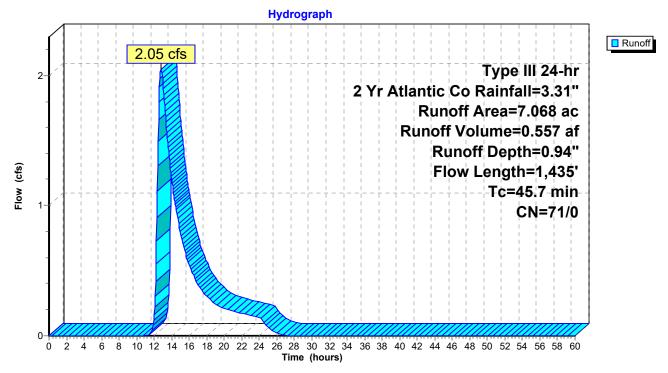
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area (a                   | c) C   | N Desc    | cription    |             |                                               |  |
|---------------------------|--------|-----------|-------------|-------------|-----------------------------------------------|--|
| 0.10                      | 08 9   | 8 Pave    | ed parking, | HSG B       |                                               |  |
| 0.21                      | 14 9   | 8 Pave    | ed parking, | HSG D       |                                               |  |
| 0.322 98 Weighted Average |        |           |             |             |                                               |  |
| 0.32                      | 22 9   |           |             | rvious Area |                                               |  |
|                           |        |           |             |             |                                               |  |
| Tc L                      | ength  | Slope     | Velocity    | Capacity    | Description                                   |  |
| (min)                     | (feet) | (ft/ft)   | (ft/sec)    | (cfs)       | ·                                             |  |
| 1.9                       | 70     | 0.0030    | 0.61        |             | Sheet Flow, EXDA-1A.1                         |  |
|                           |        |           |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |
| 6.1                       | 1,185  | 0.0030    | 3.26        | 5.75        | Pipe Channel, EXDA-1B.4                       |  |
|                           |        |           |             |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |
|                           |        |           |             |             | n= 0.013 Concrete pipe, bends & connections   |  |
| 8.0                       | 1,255  | Total, Ir | ncreased t  | o minimum   | Tc = 10.0 min                                 |  |

### Subcatchment 1Bi: EXDA-1Bi



### Summary for Subcatchment 1Bp: EXDA-1Bp


Runoff = 2.05 cfs @ 12.79 hrs, Volume= 0.557 af, Depth= 0.94"

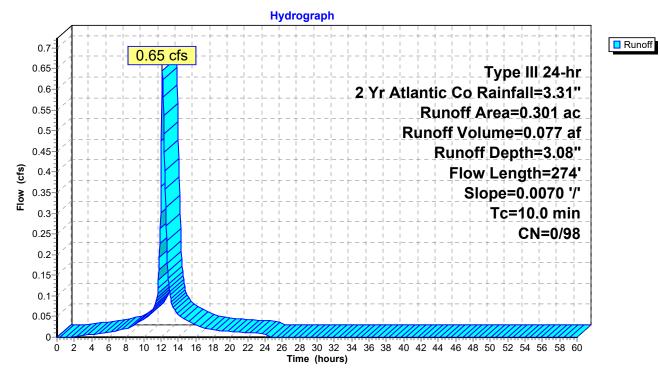
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area  | (ac) C | N Dese              | cription   |             |                                               |
|-------|--------|---------------------|------------|-------------|-----------------------------------------------|
| 3.    | 483 6  | 61 >75 <sup>9</sup> | % Grass co | over, Good, | , HSG B                                       |
| 0.    | 037 5  | 5 Woo               | ds, Good,  | HSG B       |                                               |
| 3.    | 548 8  | <u> </u>            | % Grass co | over, Good, | , HSG D                                       |
| 7.    | 068 7  | 1 Weig              | ghted Aver | age         |                                               |
| 7.    | 068 7  | <b>'</b> 1 100.     | 00% Pervi  | ous Area    |                                               |
|       |        |                     |            |             |                                               |
| Tc    | Length | Slope               | Velocity   | Capacity    | Description                                   |
| (min) | (feet) | (ft/ft)             | (ft/sec)   | (cfs)       |                                               |
| 29.7  | 100    | 0.0030              | 0.06       |             | Sheet Flow, EXDA-1B.1                         |
|       |        |                     |            |             | Grass: Dense n= 0.240 P2= 3.36"               |
| 6.6   | 350    | 0.0030              | 0.88       |             | Shallow Concentrated Flow, EXDA-1B.2          |
|       |        |                     |            |             | Unpaved Kv= 16.1 fps                          |
| 1.2   | 65     | 0.0020              | 0.91       |             | Shallow Concentrated Flow, EXDA-1B.3          |
|       |        |                     |            |             | Paved Kv= 20.3 fps                            |
| 8.2   | 920    | 0.0010              | 1.88       | 3.32        |                                               |
|       |        |                     |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|       |        |                     |            |             | n= 0.013 Concrete pipe, bends & connections   |

45.7 1,435 Total

### Subcatchment 1Bp: EXDA-1Bp




### Summary for Subcatchment 2Ai: EXDA-2Ai

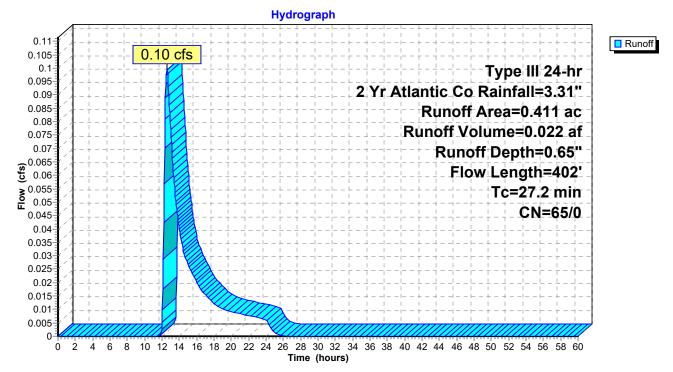
Runoff = 0.65 cfs @ 12.16 hrs, Volume= 0.077 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| _ | Area  | (ac)   | CN    | Des     | cription    |            |                                      |
|---|-------|--------|-------|---------|-------------|------------|--------------------------------------|
|   | 0.    | 132    | 98    |         | ed parking, |            |                                      |
|   | 0.    | 169    | 98    | Pav     | ed parking, | HSG D      |                                      |
|   | 0.    | 301    | 98    | Wei     | ghted Aver  | age        |                                      |
|   | 0.    | 301    | 98    | 100.    | .00% Imper  | vious Area |                                      |
|   |       |        |       |         |             |            |                                      |
|   | Тс    | Length |       | Slope   | Velocity    | Capacity   | Description                          |
| _ | (min) | (feet  | :)    | (ft/ft) | (ft/sec)    | (cfs)      |                                      |
|   | 1.8   | 100    | 0.0   | 0070    | 0.93        |            | Sheet Flow, EXDA2A.1                 |
|   |       |        |       |         |             |            | Smooth surfaces n= 0.011 P2= 3.36"   |
|   | 1.7   | 174    | 4 0.0 | 0070    | 1.70        |            | Shallow Concentrated Flow, EXDA-2A.2 |
|   |       |        |       |         |             |            | Paved Kv= 20.3 fps                   |
|   | 3.5   | 274    | 4 To  | otal, I | ncreased to | o minimum  | Tc = 10.0 min                        |

### Subcatchment 2Ai: EXDA-2Ai




### Summary for Subcatchment 2Ap: EXDA-2Ap

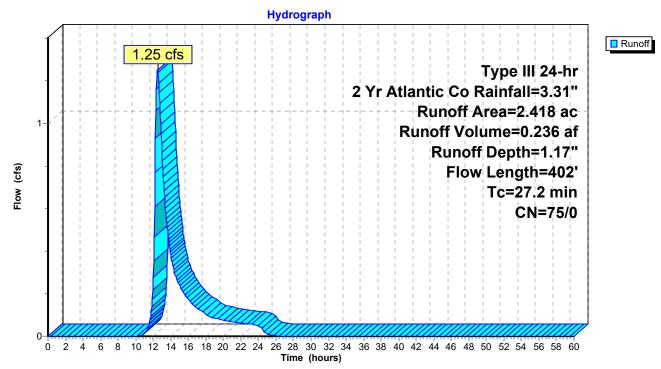
Runoff = 0.10 cfs @ 12.58 hrs, Volume= 0.022 af, Depth= 0.65"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area         | (ac) ( | CN De  | scription         |            |                                      |
|--------------|--------|--------|-------------------|------------|--------------------------------------|
| 0.           | .006   | 82 Dir | t roads, HS       | G B        |                                      |
| 0.           | .311   | 61 >7  | 5% Grass c        | over, Good | , HSG B                              |
| 0.           | .011   |        | ods, Good,        |            |                                      |
| 0.           | .083   | 80 >7  | <u>5% Grass c</u> | over, Good | , HSG D                              |
| 0.           | 411    | 65 We  | eighted Ave       | rage       |                                      |
| 0.           | .411   | 65 10  | 0.00% Perv        | ious Area  |                                      |
|              |        |        |                   |            |                                      |
| Тс           | Length |        |                   | Capacity   | Description                          |
| <u>(min)</u> | (feet) | (ft/ft | ) (ft/sec)        | (cfs)      |                                      |
| 24.2         | 100    | 0.0050 | 0.07              |            | Sheet Flow, EXDA2B.1                 |
|              |        |        |                   |            | Grass: Dense n= 0.240 P2= 3.36"      |
| 1.9          | 210    | 0.0130 | ) 1.84            |            | Shallow Concentrated Flow, EXDA-2B.2 |
|              |        |        |                   |            | Unpaved Kv= 16.1 fps                 |
| 1.1          | 92     | 0.0050 | ) 1.44            |            | Shallow Concentrated Flow, EXDA-2A.3 |
|              |        |        |                   |            | Paved Kv= 20.3 fps                   |
| 27.2         | 402    | Total  |                   |            |                                      |

### Subcatchment 2Ap: EXDA-2Ap



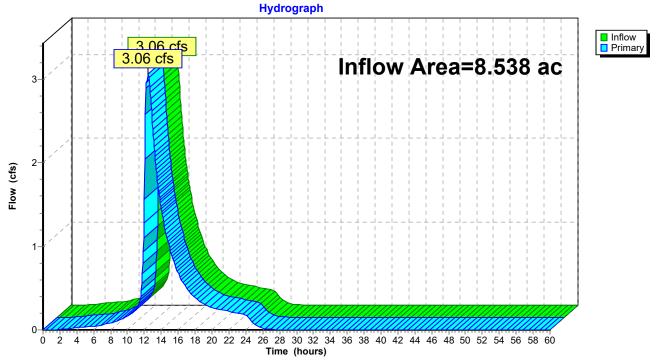

### Summary for Subcatchment 2B: EXDA-2B

Runoff = 1.25 cfs @ 12.50 hrs, Volume= 0.236 af, Depth= 1.17"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area  | (ac)   | CN    | Desc    | cription   |             |                                      |
|-------|--------|-------|---------|------------|-------------|--------------------------------------|
| 0     | .492   | 82    | Dirt r  | oads, HS   | ЭB          |                                      |
| 0     | .556   | 61    | >75%    | % Grass co | over, Good, | , HSG B                              |
| 0     | .132   | 55    | Woo     | ds, Good,  | HSG B       |                                      |
| 1     | .238   | 80    | >75%    | % Grass co | over, Good, | , HSG D                              |
| 2     | .418   | 75    | Weig    | phted Aver | age         |                                      |
| 2     | .418   | 75    | 100.    | 00% Pervi  | ous Area    |                                      |
|       |        |       |         |            |             |                                      |
| Tc    | Lengtl | n S   | lope    | Velocity   | Capacity    | Description                          |
| (min) | (feet  | )     | (ft/ft) | (ft/sec)   | (cfs)       |                                      |
| 24.2  | 100    | ).O C | 0050    | 0.07       |             | Sheet Flow, EXDA-2B.1                |
|       |        |       |         |            |             | Grass: Dense n= 0.240 P2= 3.36"      |
| 1.9   | 210    | 0.0   | 0130    | 1.84       |             | Shallow Concentrated Flow, EXDA-2B.2 |
|       |        |       |         |            |             | Unpaved Kv= 16.1 fps                 |
| 1.1   | 92     | 2 0.0 | 0050    | 1.44       |             | Shallow Concentrated Flow, EXDA-2B.3 |
|       |        |       |         |            |             | Paved Kv= 20.3 fps                   |
| 27.2  | 402    | 2 To  | otal    |            |             |                                      |

### Subcatchment 2B: EXDA-2B




### Summary for Link 1L: EXDA-1

| Inflow Area | a = | 8.538 ac, 13.53% Impervious, Inflow Depth = 1.22" for 2 Yr Atlantic Co event |
|-------------|-----|------------------------------------------------------------------------------|
| Inflow      | =   | 3.06 cfs @ 12.48 hrs, Volume= 0.871 af                                       |
| Primary     | =   | 3.06 cfs @ 12.48 hrs, Volume= 0.871 af, Atten= 0%, Lag= 0.0 min              |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

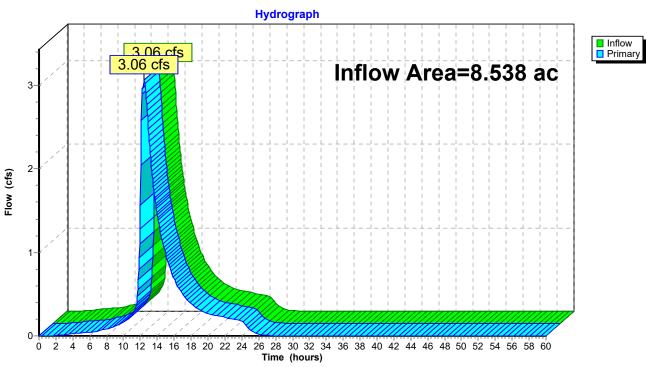
# Link 1L: EXDA-1



### Summary for Link 2L: EXDA-2

| Inflow Area | a = | 3.130 ac,  | 9.62% Impervious, Inflow D | epth = 1.29" for 2 Yr Atlantic Co event |
|-------------|-----|------------|----------------------------|-----------------------------------------|
| Inflow      | =   | 1.75 cfs @ | 12.41 hrs, Volume=         | 0.335 af                                |
| Primary     | =   | 1.75 cfs @ | 12.41 hrs, Volume=         | 0.335 af, Atten= 0%, Lag= 0.0 min       |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

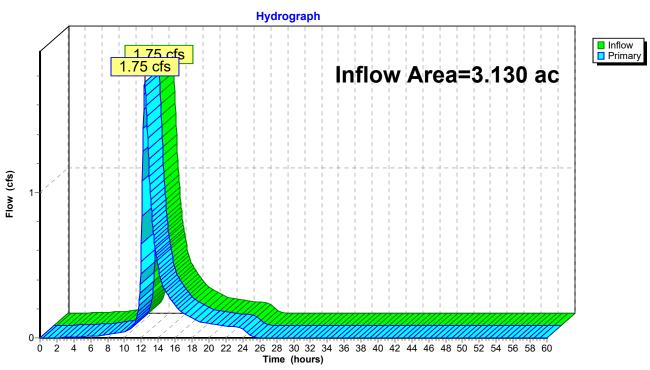

# (9) of the second secon

### Link 2L: EXDA-2

### Summary for Link 3L: PT 1

| Inflow Area | a = | 8.538 ac, 13.53% Impervious, Inflow Depth = 1.22" for 2 Yr Atlantic Co event |
|-------------|-----|------------------------------------------------------------------------------|
| Inflow      | =   | 3.06 cfs @ 12.48 hrs, Volume= 0.871 af                                       |
| Primary     | =   | 3.06 cfs @ 12.48 hrs, Volume= 0.871 af, Atten= 0%, Lag= 0.0 min              |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs



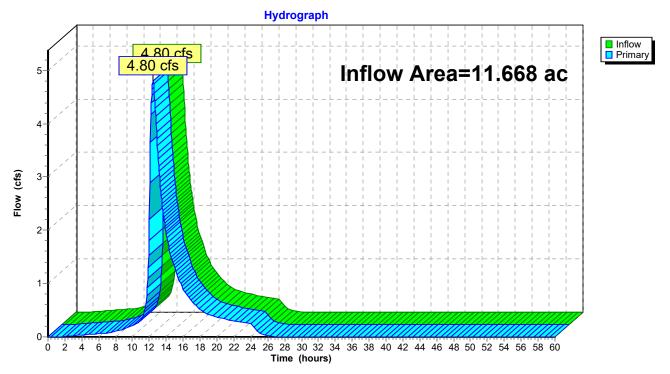

### Link 3L: PT 1

### Summary for Link 4L: PT 2

| Inflow Area | a = | 3.130 ac,  | 9.62% Impervious, Inflow D | epth = 1.29" for 2 Yr Atlantic Co event |
|-------------|-----|------------|----------------------------|-----------------------------------------|
| Inflow      | =   | 1.75 cfs @ | 12.41 hrs, Volume=         | 0.335 af                                |
| Primary     | =   | 1.75 cfs @ | 12.41 hrs, Volume=         | 0.335 af, Atten= 0%, Lag= 0.0 min       |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs




### Link 4L: PT 2

### Summary for Link 5L: TTA

| Inflow Are | a = | 11.668 ac, 12.48% Impervious, Inflow Depth = 1.24" for 2 Yr Atlantic Co event |
|------------|-----|-------------------------------------------------------------------------------|
| Inflow     | =   | 4.80 cfs @ 12.43 hrs, Volume= 1.206 af                                        |
| Primary    | =   | 4.80 cfs @ 12.43 hrs, Volume= 1.206 af, Atten= 0%, Lag= 0.0 min               |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

### Link 5L: TTA

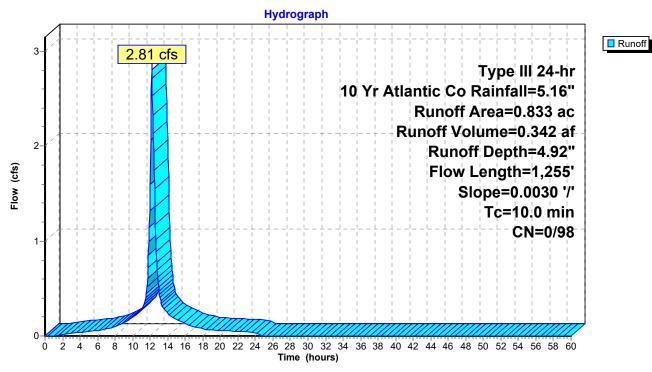


| Pre Developed Conditions                         | Type III 24-hr 10 Yr Atlantic Co Rai | infall=5.16" |
|--------------------------------------------------|--------------------------------------|--------------|
| Prepared by Sciullo                              | Printe                               | d 4/8/2020   |
| HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD So | ftware Solutions LLC                 | Page 19      |

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment1Ai: EXDA-1Ai<br>Flow Length=1,255 | Runoff Area=0.833 ac 100.00% Impervious Runoff Depth=4.92"<br>Slope=0.0030 '/' Tc=10.0 min CN=0/98 Runoff=2.81 cfs 0.342 af |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Subcatchment1Ap: EXDA-1Ap                      | Runoff Area=0.315 ac 0.00% Impervious Runoff Depth=1.84"<br>Flow Length=1,435' Tc=63.7 min CN=66/0 Runoff=0.15 cfs 0.048 af |
| Subcatchment1Bi: EXDA-1Bi<br>Flow Length=1,255 | Runoff Area=0.322 ac 100.00% Impervious Runoff Depth=4.92"<br>Slope=0.0030 '/' Tc=10.0 min CN=0/98 Runoff=1.09 cfs 0.132 af |
| Subcatchment1Bp: EXDA-1Bp                      | Runoff Area=7.068 ac 0.00% Impervious Runoff Depth=2.24"<br>Now Length=1,435' Tc=45.7 min CN=71/0 Runoff=5.35 cfs 1.318 af  |
| Subcatchment2Ai: EXDA-2Ai<br>Flow Length=274   | Runoff Area=0.301 ac 100.00% Impervious Runoff Depth=4.92"<br>Slope=0.0070 '/' Tc=10.0 min CN=0/98 Runoff=1.01 cfs 0.123 af |
| Subcatchment2Ap: EXDA-2Ap                      | Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=1.76"<br>Flow Length=402' Tc=27.2 min CN=65/0 Runoff=0.32 cfs 0.060 af   |
| Subcatchment2B: EXDA-2B                        | Runoff Area=2.418 ac 0.00% Impervious Runoff Depth=2.58"<br>Flow Length=402' Tc=27.2 min CN=75/0 Runoff=2.91 cfs 0.520 af   |
| Link 1L: EXDA-1                                | Inflow=6.94 cfs 1.840 af<br>Primary=6.94 cfs 1.840 af                                                                       |
| Link 2L: EXDA-2                                | Inflow=3.89 cfs 0.704 af<br>Primary=3.89 cfs 0.704 af                                                                       |
| Link 3L: PT 1                                  | Inflow=6.94 cfs 1.840 af<br>Primary=6.94 cfs 1.840 af                                                                       |
| Link 4L: PT 2                                  | Inflow=3.89 cfs 0.704 af<br>Primary=3.89 cfs 0.704 af                                                                       |
| Link 5L: TTA                                   | Inflow=10.71 cfs 2.544 af<br>Primary=10.71 cfs 2.544 af                                                                     |
|                                                |                                                                                                                             |

| Total Runoff Area = 11.668 ac | Runoff Volume = 2.544 af | Average Runoff Depth = 2.62" |
|-------------------------------|--------------------------|------------------------------|
| 87.5                          | 2% Pervious = 10.212 ac  | 12.48% Impervious = 1.456 ac |


### Summary for Subcatchment 1Ai: EXDA-1Ai

Runoff = 2.81 cfs @ 12.16 hrs, Volume= 0.342 af, Depth= 4.92"

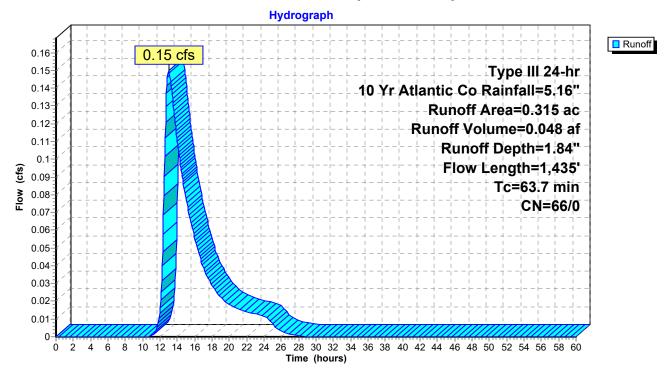
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| Area (ac)      | ) Cl  | N Desc    | cription    |             |                                               |
|----------------|-------|-----------|-------------|-------------|-----------------------------------------------|
| 0.475          | 59    | 8 Pave    | ed parking, | HSG B       |                                               |
| 0.358          | 89    | 8 Pave    | ed parking, | HSG D       |                                               |
| 0.833          | 3 9   | 8 Weig    | hted Aver   | age         |                                               |
| 0.833          | 39    | 8 100.    | 00% Impe    | rvious Area |                                               |
|                |       |           |             |             |                                               |
| Tc Le          | ngth  | Slope     | Velocity    | Capacity    | Description                                   |
| <u>(min) (</u> | feet) | (ft/ft)   | (ft/sec)    | (cfs)       |                                               |
| 1.9            | 70    | 0.0030    | 0.61        |             | Sheet Flow, EXDA-1A.1                         |
|                |       |           |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.1 1          | ,185  | 0.0030    | 3.26        | 5.75        | Pipe Channel, EXDA-1A.2                       |
|                |       |           |             |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|                |       |           |             |             | n= 0.013 Concrete pipe, bends & connections   |
| 8.0 1          | ,255  | Total, Ir | ncreased t  | o minimum   | Tc = 10.0 min                                 |

### Subcatchment 1Ai: EXDA-1Ai



### Summary for Subcatchment 1Ap: EXDA-1Ap


Runoff = 0.15 cfs @ 13.01 hrs, Volume= 0.048 af, Depth= 1.84"

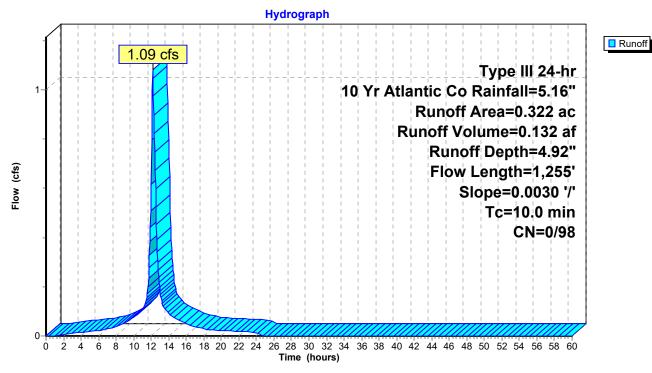
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| Area  | (ac) C       | N Desc  | cription   |             |                                               |
|-------|--------------|---------|------------|-------------|-----------------------------------------------|
| 0.    | 220 6        | 61 >75% | % Grass co | over, Good, | , HSG B                                       |
| 0.    | 005 5        | 5 Woo   | ds, Good,  | HSG B       |                                               |
| 0.    | <u>090</u> 8 | 30 >75% | 6 Grass co | over, Good, | , HSG D                                       |
| 0.    | 315 6        | 6 Weig  | ghted Aver | age         |                                               |
| 0.    | 315 6        | 6 100.  | 00% Pervi  | ous Area    |                                               |
|       |              |         |            |             |                                               |
| Tc    | Length       | Slope   | Velocity   | Capacity    | Description                                   |
| (min) | (feet)       | (ft/ft) | (ft/sec)   | (cfs)       |                                               |
| 46.2  | 100          | 0.0010  | 0.04       |             | Sheet Flow, EXDA-1B.1                         |
|       |              |         |            |             | Grass: Dense n= 0.240 P2= 3.36"               |
| 6.6   | 350          | 0.0030  | 0.88       |             | Shallow Concentrated Flow, EXDA-1B.2          |
|       |              |         |            |             | Unpaved Kv= 16.1 fps                          |
| 1.5   | 65           | 0.0020  | 0.72       |             | Shallow Concentrated Flow, EXDA-1B.3          |
|       |              |         |            |             | Unpaved Kv= 16.1 fps                          |
| 9.4   | 920          | 0.0010  | 1.63       | 2.88        | Pipe Channel, EXDA-1B.4                       |
|       |              |         |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|       |              |         |            |             | n= 0.015 Concrete sewer w/manholes & inlets   |

63.7 1,435 Total

### Subcatchment 1Ap: EXDA-1Ap




### Summary for Subcatchment 1Bi: EXDA-1Bi

Runoff = 1.09 cfs @ 12.16 hrs, Volume= 0.132 af, Depth= 4.92"

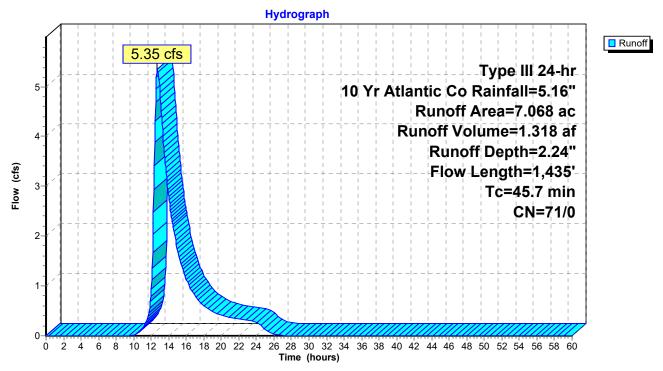
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| Area         | (ac) C | N Des    | cription   |             |                                               |
|--------------|--------|----------|------------|-------------|-----------------------------------------------|
| 0.           | 108 9  | 98 Pave  | ed parking | , HSG B     |                                               |
| 0.           | 214 9  | 98 Pave  | ed parking | , HSG D     |                                               |
| 0.           | 322 9  | 98 Weig  | ghted Aver | age         |                                               |
| 0.           | 322 9  | 98 100.  | 00% Impe   | rvious Area |                                               |
|              |        |          |            |             |                                               |
| Tc           | Length | Slope    | Velocity   | Capacity    | Description                                   |
| <u>(min)</u> | (feet) | (ft/ft)  | (ft/sec)   | (cfs)       |                                               |
| 1.9          | 70     | 0.0030   | 0.61       |             | Sheet Flow, EXDA-1A.1                         |
|              |        |          |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.1          | 1,185  | 0.0030   | 3.26       | 5.75        | Pipe Channel, EXDA-1B.4                       |
|              |        |          |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|              |        |          |            |             | n= 0.013 Concrete pipe, bends & connections   |
| 8.0          | 1,255  | Total, I | ncreased t | o minimum   | Tc = 10.0 min                                 |

### Subcatchment 1Bi: EXDA-1Bi



### Summary for Subcatchment 1Bp: EXDA-1Bp


Runoff = 5.35 cfs @ 12.72 hrs, Volume= 1.318 af, Depth= 2.24"

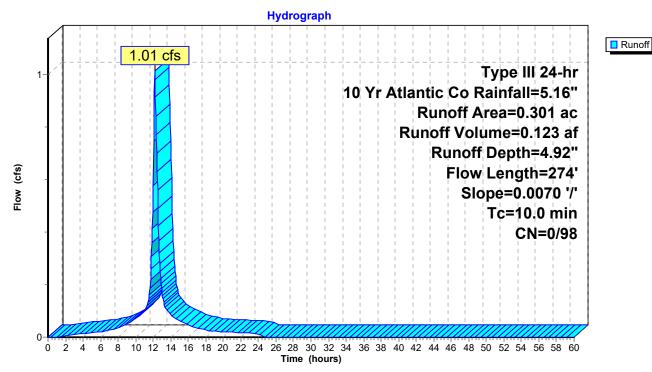
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| Area  | (ac) C | N Dese              | cription   |             |                                               |
|-------|--------|---------------------|------------|-------------|-----------------------------------------------|
| 3.    | 483 6  | 61 >75 <sup>9</sup> | % Grass co | over, Good, | , HSG B                                       |
| 0.    | 037 5  | 5 Woo               | ds, Good,  | HSG B       |                                               |
| 3.    | 548 8  | <u> </u>            | % Grass co | over, Good, | , HSG D                                       |
| 7.    | 068 7  | 1 Weig              | ghted Aver | age         |                                               |
| 7.    | 068 7  | <b>'</b> 1 100.     | 00% Pervi  | ous Area    |                                               |
|       |        |                     |            |             |                                               |
| Tc    | Length | Slope               | Velocity   | Capacity    | Description                                   |
| (min) | (feet) | (ft/ft)             | (ft/sec)   | (cfs)       |                                               |
| 29.7  | 100    | 0.0030              | 0.06       |             | Sheet Flow, EXDA-1B.1                         |
|       |        |                     |            |             | Grass: Dense n= 0.240 P2= 3.36"               |
| 6.6   | 350    | 0.0030              | 0.88       |             | Shallow Concentrated Flow, EXDA-1B.2          |
|       |        |                     |            |             | Unpaved Kv= 16.1 fps                          |
| 1.2   | 65     | 0.0020              | 0.91       |             | Shallow Concentrated Flow, EXDA-1B.3          |
|       |        |                     |            |             | Paved Kv= 20.3 fps                            |
| 8.2   | 920    | 0.0010              | 1.88       | 3.32        |                                               |
|       |        |                     |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|       |        |                     |            |             | n= 0.013 Concrete pipe, bends & connections   |

45.7 1,435 Total

### Subcatchment 1Bp: EXDA-1Bp




### Summary for Subcatchment 2Ai: EXDA-2Ai

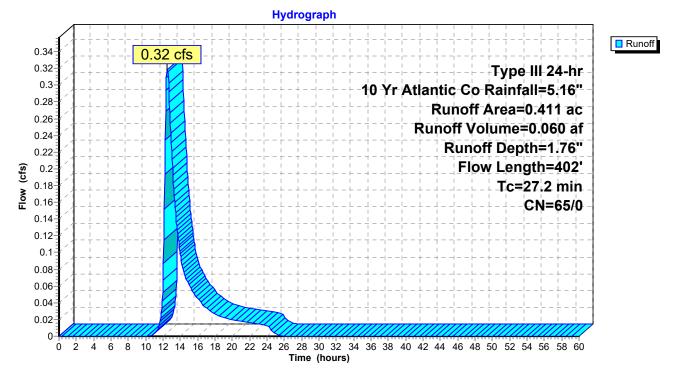
Runoff = 1.01 cfs @ 12.16 hrs, Volume= 0.123 af, Depth= 4.92"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| _ | Area        | (ac) (           | CN De        | scription    |                   |                                                                                                  |
|---|-------------|------------------|--------------|--------------|-------------------|--------------------------------------------------------------------------------------------------|
|   | 0.          | 132              |              | ved parking  |                   |                                                                                                  |
| _ | 0.          | 169              | <u>98 Pa</u> | ved parking  | , HSG D           |                                                                                                  |
|   | 0.          | 301              | 98 We        | eighted Aver | rage              |                                                                                                  |
|   | 0.          | 301              | 98 10        | 0.00% Impe   | rvious Area       | l                                                                                                |
|   | Tc<br>(min) | Length<br>(feet) |              |              | Capacity<br>(cfs) | Description                                                                                      |
|   | 1.8         | 100              | 0.0070       | 0.93         |                   | Sheet Flow, EXDA2A.1                                                                             |
|   | 1.7         | 174              | 0.0070       | ) 1.70       |                   | Smooth surfaces n= 0.011 P2= 3.36"<br>Shallow Concentrated Flow, EXDA-2A.2<br>Paved Kv= 20.3 fps |
|   | 3.5         | 274              | Total,       | Increased t  | o minimum         | Tc = 10.0 min                                                                                    |

### Subcatchment 2Ai: EXDA-2Ai




### Summary for Subcatchment 2Ap: EXDA-2Ap

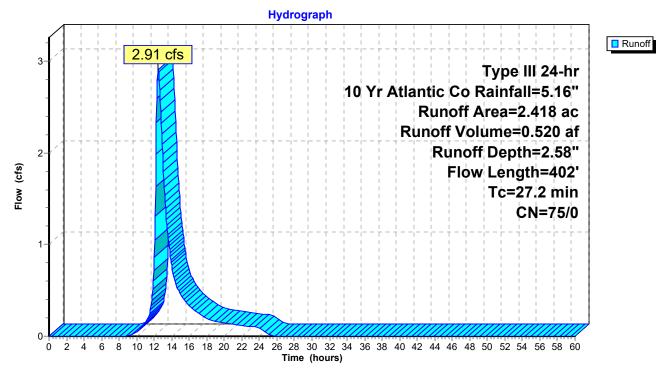
Runoff = 0.32 cfs @ 12.50 hrs, Volume= 0.060 af, Depth= 1.76"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| _                          | Area  | (ac) ( | CN Des    | cription          |            |                                      |
|----------------------------|-------|--------|-----------|-------------------|------------|--------------------------------------|
| 0.006 82 Dirt roads, HSG B |       |        | roads, HS | ЭB                |            |                                      |
|                            | 0.    | 311    | 61 >75    | % Grass co        | over, Good | , HSG B                              |
|                            | 0.    | 011    | 55 Woo    | ods, Good,        | HSG B      |                                      |
| _                          | 0.    | 083    | 80 >75    | <u>% Grass co</u> | over, Good | , HSG D                              |
|                            | 0.    | 411    |           | ghted Aver        |            |                                      |
|                            | 0.    | 411    | 65 100.   | .00% Pervi        | ous Area   |                                      |
|                            | _     |        |           |                   | <b>.</b> . |                                      |
|                            | Tc    | Length |           | Velocity          | Capacity   | Description                          |
| _                          | (min) | (feet) | (ft/ft)   | (ft/sec)          | (cfs)      |                                      |
|                            | 24.2  | 100    | 0.0050    | 0.07              |            | Sheet Flow, EXDA2B.1                 |
|                            |       |        |           |                   |            | Grass: Dense n= 0.240 P2= 3.36"      |
|                            | 1.9   | 210    | 0.0130    | 1.84              |            | Shallow Concentrated Flow, EXDA-2B.2 |
|                            |       |        |           |                   |            | Unpaved Kv= 16.1 fps                 |
|                            | 1.1   | 92     | 0.0050    | 1.44              |            | Shallow Concentrated Flow, EXDA-2A.3 |
| _                          |       |        |           |                   |            | Paved Kv= 20.3 fps                   |
|                            | 27.2  | 402    | Total     |                   |            |                                      |

### Subcatchment 2Ap: EXDA-2Ap




### Summary for Subcatchment 2B: EXDA-2B

Runoff = 2.91 cfs @ 12.46 hrs, Volume= 0.520 af, Depth= 2.58"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| Area                       | (ac)   | CN    | Desc    | cription          |            |                                      |
|----------------------------|--------|-------|---------|-------------------|------------|--------------------------------------|
| 0.492 82 Dirt roads, HSG B |        |       |         |                   | ЭB         |                                      |
| 0                          | .556   | 61    | >75%    | 6 Grass co        | over, Good | , HSG B                              |
| 0                          | .132   | 55    |         | ds, Good,         |            |                                      |
| 1                          | .238   | 80    | >75%    | <u>% Grass co</u> | over, Good | , HSG D                              |
| 2                          | .418   | 75    | Weig    | phted Aver        | age        |                                      |
| 2                          | .418   | 75    | 100.    | 00% Pervi         | ous Area   |                                      |
| _                          |        | _     |         |                   |            |                                      |
| Tc                         | Length |       | lope    | Velocity          | Capacity   | Description                          |
| <u>(min)</u>               | (feet  | ) (   | (ft/ft) | (ft/sec)          | (cfs)      |                                      |
| 24.2                       | 100    | 0.0   | 0050    | 0.07              |            | Sheet Flow, EXDA-2B.1                |
|                            |        |       |         |                   |            | Grass: Dense n= 0.240 P2= 3.36"      |
| 1.9                        | 21(    | 0.0   | 0130    | 1.84              |            | Shallow Concentrated Flow, EXDA-2B.2 |
|                            |        |       |         |                   |            | Unpaved Kv= 16.1 fps                 |
| 1.1                        | 92     | 2 0.0 | 0050    | 1.44              |            | Shallow Concentrated Flow, EXDA-2B.3 |
|                            |        |       |         |                   |            | Paved Kv= 20.3 fps                   |
| 27.2                       | 402    | 2 To  | tal     |                   |            |                                      |

### Subcatchment 2B: EXDA-2B

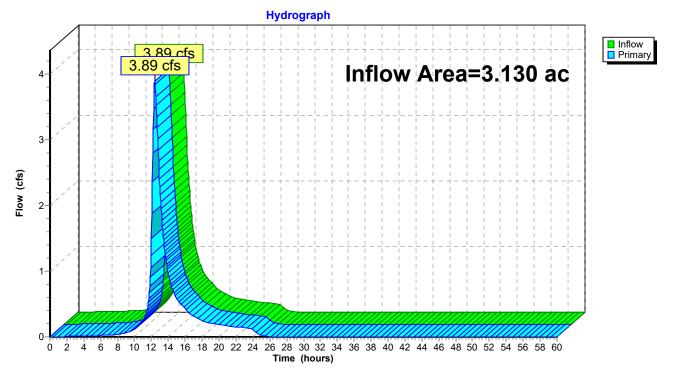


### Summary for Link 1L: EXDA-1

| Inflow Area | a = | 8.538 ac, 13.53% Impervious, Inflow Depth = 2.59" for 10 Yr Atlantic Co event |
|-------------|-----|-------------------------------------------------------------------------------|
| Inflow      | =   | 6.94 cfs @ 12.54 hrs, Volume= 1.840 af                                        |
| Primary     | =   | 6.94 cfs @ 12.54 hrs, Volume= 1.840 af, Atten= 0%, Lag= 0.0 min               |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

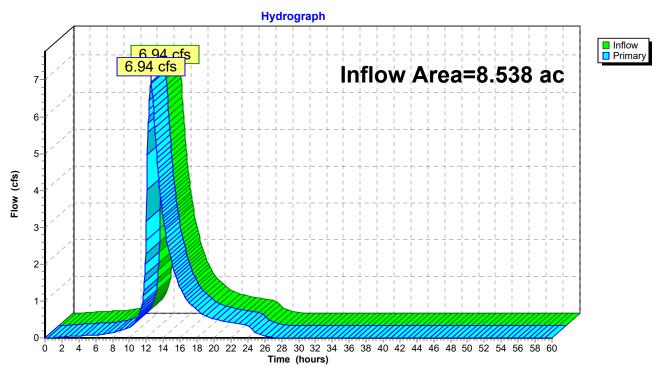
## Hydrograph Inflow Primary 6.94 cfs 6.94 cfs Inflow Area=8.538 ac 7 6-5-Flow (cfs) 4 3-2 1 0-8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 2 4 6 ò Time (hours)


### Link 1L: EXDA-1

### Summary for Link 2L: EXDA-2

| Inflow Area | a = | 3.130 ac,  | 9.62% Impervious, Inflow E | epth = 2.70"  | for 10 Yr Atlantic Co event |
|-------------|-----|------------|----------------------------|---------------|-----------------------------|
| Inflow      | =   | 3.89 cfs @ | 12.40 hrs, Volume=         | 0.704 af      |                             |
| Primary     | =   | 3.89 cfs @ | 12.40 hrs, Volume=         | 0.704 af, Att | en= 0%, Lag= 0.0 min        |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

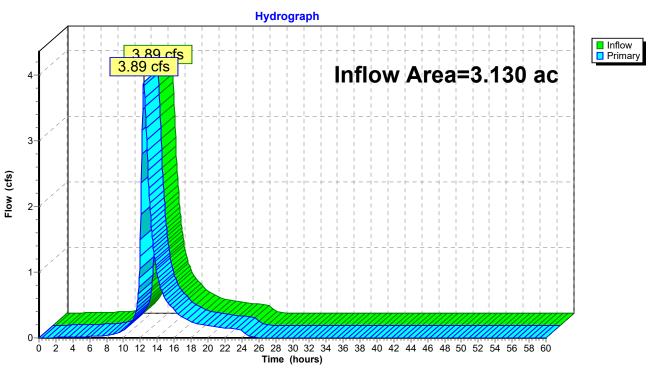

### Link 2L: EXDA-2



### Summary for Link 3L: PT 1

| Inflow Area | a = | 8.538 ac, 13.53% Impervious, Inflow Depth = 2.59" for 10 Yr Atlantic Co event |
|-------------|-----|-------------------------------------------------------------------------------|
| Inflow      | =   | 6.94 cfs @ 12.54 hrs, Volume= 1.840 af                                        |
| Primary     | =   | 6.94 cfs @ 12.54 hrs, Volume= 1.840 af, Atten= 0%, Lag= 0.0 min               |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

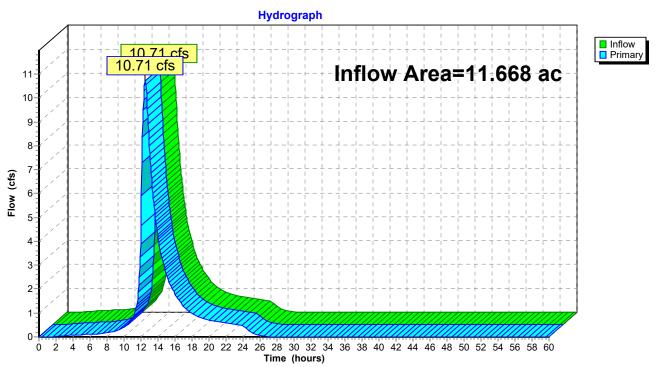



### Link 3L: PT 1

### Summary for Link 4L: PT 2

| Inflow Area | a = | 3.130 ac,  | 9.62% Impervious, Inflow E | epth = 2.70"  | for 10 Yr Atlantic Co event |
|-------------|-----|------------|----------------------------|---------------|-----------------------------|
| Inflow      | =   | 3.89 cfs @ | 12.40 hrs, Volume=         | 0.704 af      |                             |
| Primary     | =   | 3.89 cfs @ | 12.40 hrs, Volume=         | 0.704 af, Att | en= 0%, Lag= 0.0 min        |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs




### Link 4L: PT 2

### Summary for Link 5L: TTA

| Inflow Are | a = | 11.668 ac, 12.48% Impervious, Inflow Depth = 2.62" for 10 Yr Atlantic Co event |
|------------|-----|--------------------------------------------------------------------------------|
| Inflow     | =   | 10.71 cfs @ 12.49 hrs, Volume= 2.544 af                                        |
| Primary    | =   | 10.71 cfs @ 12.49 hrs, Volume= 2.544 af, Atten= 0%, Lag= 0.0 min               |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs



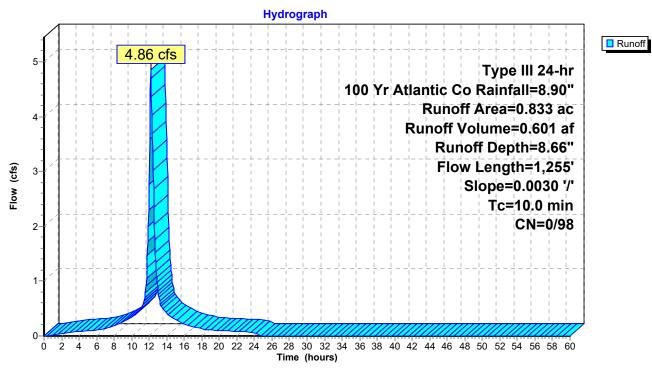
### Link 5L: TTA

| Pre Developed Conditions                      | Type III 24-hr 100 Yr At | lantic Co Rainfall=8.90" |
|-----------------------------------------------|--------------------------|--------------------------|
| Prepared by Sciullo                           |                          | Printed 4/8/2020         |
| HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD | Software Solutions LLC   | Page 32                  |

Time span=0.00-60.00 hrs, dt=0.05 hrs, 1201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

| Subcatchment1Ai: EXDA-1Ai<br>Flow Length=1,255 | Runoff Area=0.833 ac 100.00% Impervious Runoff Depth=8.66"<br>' Slope=0.0030 '/' Tc=10.0 min CN=0/98 Runoff=4.86 cfs 0.601 af |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment1Ap: EXDA-1Ap                      | Runoff Area=0.315 ac 0.00% Impervious Runoff Depth=4.76"<br>Tow Length=1,435' Tc=63.7 min CN=66/0 Runoff=0.42 cfs 0.125 af    |
| Subcatchment1Bi: EXDA-1Bi<br>Flow Length=1,255 | Runoff Area=0.322 ac 100.00% Impervious Runoff Depth=8.66"<br>' Slope=0.0030 '/' Tc=10.0 min CN=0/98 Runoff=1.88 cfs 0.232 af |
| Subcatchment1Bp: EXDA-1Bp                      | Runoff Area=7.068 ac 0.00% Impervious Runoff Depth=5.37"<br>ow Length=1,435' Tc=45.7 min CN=71/0 Runoff=13.29 cfs 3.163 af    |
| Subcatchment2Ai: EXDA-2Ai<br>Flow Length=274   | Runoff Area=0.301 ac 100.00% Impervious Runoff Depth=8.66"<br>' Slope=0.0070 '/' Tc=10.0 min CN=0/98 Runoff=1.76 cfs 0.217 af |
| Subcatchment2Ap: EXDA-2Ap                      | Runoff Area=0.411 ac 0.00% Impervious Runoff Depth=4.63"<br>Flow Length=402' Tc=27.2 min CN=65/0 Runoff=0.89 cfs 0.159 af     |
| Subcatchment2B: EXDA-2B                        | Runoff Area=2.418 ac 0.00% Impervious Runoff Depth=5.86"<br>Flow Length=402' Tc=27.2 min CN=75/0 Runoff=6.68 cfs 1.181 af     |
| Link 1L: EXDA-1                                | Inflow=16.25 cfs  4.121 af<br>Primary=16.25 cfs  4.121 af                                                                     |
| Link 2L: EXDA-2                                | Inflow=8.77 cfs 1.557 af<br>Primary=8.77 cfs 1.557 af                                                                         |
| Link 3L: PT 1                                  | Inflow=16.25 cfs  4.121 af<br>Primary=16.25 cfs  4.121 af                                                                     |
| Link 4L: PT 2                                  | Inflow=8.77 cfs 1.557 af<br>Primary=8.77 cfs 1.557 af                                                                         |
| Link 5L: TTA                                   | Inflow=24.56 cfs 5.678 af<br>Primary=24.56 cfs 5.678 af                                                                       |
|                                                |                                                                                                                               |

| Total Runoff Area = 11.668 ac | Runoff Volume = 5.678 af | Average Runoff Depth = 5.84" |
|-------------------------------|--------------------------|------------------------------|
| 87.5                          | 2% Pervious = 10.212 ac  | 12.48% Impervious = 1.456 ac |


### Summary for Subcatchment 1Ai: EXDA-1Ai

Runoff = 4.86 cfs @ 12.16 hrs, Volume= 0.601 af, Depth= 8.66"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area (       | (ac) C | N Dese   | cription    |             |                                               |
|--------------|--------|----------|-------------|-------------|-----------------------------------------------|
| 0.4          | 475 9  | 8 Pave   | ed parking, | , HSG B     |                                               |
| 0.3          | 358 9  | 8 Pave   | ed parking, | , HSG D     |                                               |
| 0.8          | 833 9  | 8 Weig   | ghted Aver  | age         |                                               |
| 0.8          | 833 9  | 8 100.   | 00% Impe    | rvious Area |                                               |
|              |        |          |             |             |                                               |
| Тс           | Length | Slope    | Velocity    | Capacity    | Description                                   |
| <u>(min)</u> | (feet) | (ft/ft)  | (ft/sec)    | (cfs)       |                                               |
| 1.9          | 70     | 0.0030   | 0.61        |             | Sheet Flow, EXDA-1A.1                         |
|              |        |          |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.1          | 1,185  | 0.0030   | 3.26        | 5.75        | Pipe Channel, EXDA-1A.2                       |
|              |        |          |             |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|              |        |          |             |             | n= 0.013 Concrete pipe, bends & connections   |
| 8.0          | 1,255  | Total, I | ncreased t  | o minimum   | Tc = 10.0 min                                 |

### Subcatchment 1Ai: EXDA-1Ai



### Summary for Subcatchment 1Ap: EXDA-1Ap

Runoff = 0.42 cfs @ 12.92 hrs, Volume= 0.125 af, Depth= 4.76"

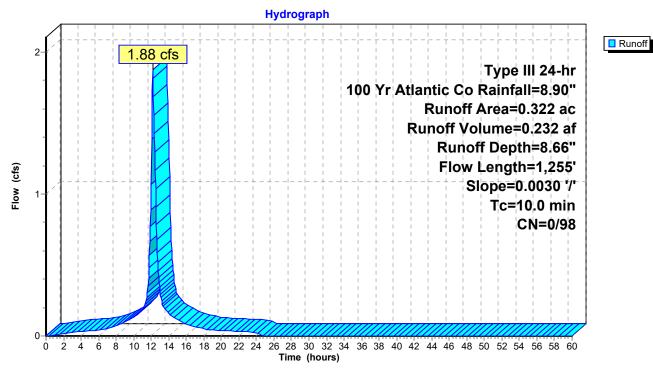
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area  | (ac) C       | N Desc  | cription                      |             |                                               |  |  |  |
|-------|--------------|---------|-------------------------------|-------------|-----------------------------------------------|--|--|--|
| 0.    | 220 6        | 61 >75% | >75% Grass cover, Good, HSG B |             |                                               |  |  |  |
| 0.    | 0.005 55     |         | Woods, Good, HSG B            |             |                                               |  |  |  |
| 0.    | <u>090</u> 8 | 30 >75% | 6 Grass co                    | over, Good, | , HSG D                                       |  |  |  |
| 0.    | 315 6        | 6 Weig  | ghted Aver                    | age         |                                               |  |  |  |
| 0.    | 315 6        | 6 100.  | 00% Pervi                     | ous Area    |                                               |  |  |  |
|       |              |         |                               |             |                                               |  |  |  |
| Tc    | Length       | Slope   | Velocity                      | Capacity    | Description                                   |  |  |  |
| (min) | (feet)       | (ft/ft) | (ft/sec)                      | (cfs)       |                                               |  |  |  |
| 46.2  | 100          | 0.0010  | 0.04                          |             | Sheet Flow, EXDA-1B.1                         |  |  |  |
|       |              |         |                               |             | Grass: Dense n= 0.240 P2= 3.36"               |  |  |  |
| 6.6   | 350          | 0.0030  | 0.88                          |             | Shallow Concentrated Flow, EXDA-1B.2          |  |  |  |
|       |              |         |                               |             | Unpaved Kv= 16.1 fps                          |  |  |  |
| 1.5   | 65           | 0.0020  | 0.72                          |             | Shallow Concentrated Flow, EXDA-1B.3          |  |  |  |
|       |              |         |                               |             | Unpaved Kv= 16.1 fps                          |  |  |  |
| 9.4   | 920          | 0.0010  | 1.63                          | 2.88        | Pipe Channel, EXDA-1B.4                       |  |  |  |
|       |              |         |                               |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |  |  |
|       |              |         |                               |             | n= 0.015 Concrete sewer w/manholes & inlets   |  |  |  |

63.7 1,435 Total

### Subcatchment 1Ap: EXDA-1Ap




### Summary for Subcatchment 1Bi: EXDA-1Bi

Runoff = 1.88 cfs @ 12.16 hrs, Volume= 0.232 af, Depth= 8.66"

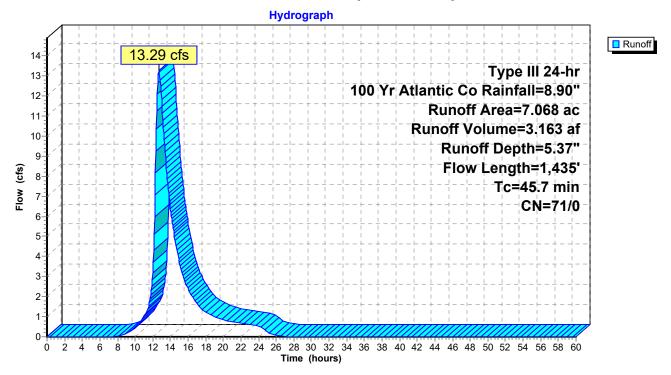
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area     | (ac)     | CN   | Desc                 | cription             |             |                                               |  |  |  |
|----------|----------|------|----------------------|----------------------|-------------|-----------------------------------------------|--|--|--|
| 0.108 98 |          |      | Paved parking, HSG B |                      |             |                                               |  |  |  |
| 0        | 0.214 98 |      |                      | Paved parking, HSG D |             |                                               |  |  |  |
| 0        | 0.322 98 |      |                      | ghted Aver           | age         |                                               |  |  |  |
| 0        | .322     | 98   | 100.                 | 00% Impe             | rvious Area |                                               |  |  |  |
|          |          |      |                      |                      |             |                                               |  |  |  |
| Тс       | Lengt    | h S  | Slope                | Velocity             | Capacity    | Description                                   |  |  |  |
| (min)    | (fee     | t)   | (ft/ft)              | (ft/sec)             | (cfs)       |                                               |  |  |  |
| 1.9      | 7        | 0 0. | .0030                | 0.61                 |             | Sheet Flow, EXDA-1A.1                         |  |  |  |
|          |          |      |                      |                      |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |  |  |
| 6.1      | 1,18     | 5 0. | .0030                | 3.26                 | 5.75        | Pipe Channel, EXDA-1B.4                       |  |  |  |
|          |          |      |                      |                      |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |  |  |
|          |          |      |                      |                      |             | n= 0.013 Concrete pipe, bends & connections   |  |  |  |
| 8.0      | 1,25     | 5 T  | otal, Ir             | ncreased t           | o minimum   | Tc = 10.0 min                                 |  |  |  |

### Subcatchment 1Bi: EXDA-1Bi



### Summary for Subcatchment 1Bp: EXDA-1Bp


Runoff = 13.29 cfs @ 12.69 hrs, Volume= 3.163 af, Depth= 5.37"

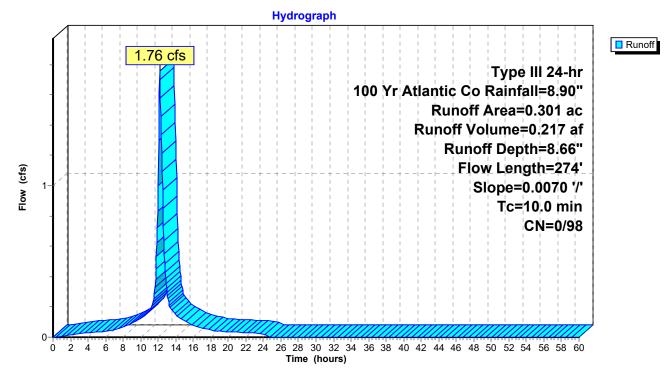
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area                                   | (ac) C | N Desc          | cription   |             |                                               |  |
|----------------------------------------|--------|-----------------|------------|-------------|-----------------------------------------------|--|
| 3.                                     | 483 6  | 61 >759         | % Grass co | over, Good, | , HSG B                                       |  |
| 0.                                     | 037 5  | 5 Woo           | ds, Good,  | HSG B       |                                               |  |
| 3.548 80 >75% Grass cover, Good, HSG D |        |                 |            |             |                                               |  |
| 7.                                     | 068 7  | 1 Weig          | ghted Aver | age         |                                               |  |
| 7.                                     | 068 7  | <b>'</b> 1 100. | 00% Pervi  | ous Area    |                                               |  |
|                                        |        |                 |            |             |                                               |  |
| Tc                                     | Length | Slope           | Velocity   | Capacity    | Description                                   |  |
| (min)                                  | (feet) | (ft/ft)         | (ft/sec)   | (cfs)       |                                               |  |
| 29.7                                   | 100    | 0.0030          | 0.06       |             | Sheet Flow, EXDA-1B.1                         |  |
|                                        |        |                 |            |             | Grass: Dense n= 0.240 P2= 3.36"               |  |
| 6.6                                    | 350    | 0.0030          | 0.88       |             | Shallow Concentrated Flow, EXDA-1B.2          |  |
|                                        |        |                 |            |             | Unpaved Kv= 16.1 fps                          |  |
| 1.2                                    | 65     | 0.0020          | 0.91       |             | Shallow Concentrated Flow, EXDA-1B.3          |  |
|                                        |        |                 |            |             | Paved Kv= 20.3 fps                            |  |
| 8.2                                    | 920    | 0.0010          | 1.88       | 3.32        |                                               |  |
|                                        |        |                 |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |
|                                        |        |                 |            |             | n= 0.013 Concrete pipe, bends & connections   |  |

45.7 1,435 Total

### Subcatchment 1Bp: EXDA-1Bp




### Summary for Subcatchment 2Ai: EXDA-2Ai

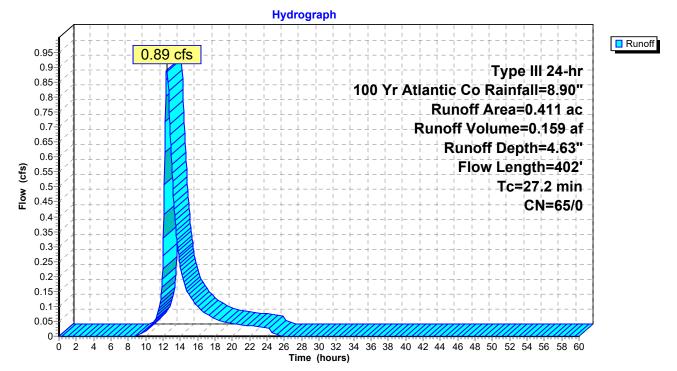
Runoff = 1.76 cfs @ 12.16 hrs, Volume= 0.217 af, Depth= 8.66"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| _ | Area        | (ac)             | CN E | Desc       | cription             |                   |                                                                                                  |
|---|-------------|------------------|------|------------|----------------------|-------------------|--------------------------------------------------------------------------------------------------|
|   | 0.          | 0.132 98         |      |            | ed parking,          |                   |                                                                                                  |
| _ | 0.169 98    |                  | 98 F | Pave       | ed parking,          | , HSG D           |                                                                                                  |
|   | 0.301 98    |                  | 98 V | Veig       | ghted Aver           | age               |                                                                                                  |
|   | 0.301 98    |                  | 98 1 | 00.        | 00% Impe             | rvious Area       |                                                                                                  |
|   | Tc<br>(min) | Length<br>(feet) |      | pe<br>/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                      |
|   | 1.8         | 100              | 0.00 | 70         | 0.93                 |                   | Sheet Flow, EXDA2A.1                                                                             |
|   | 1.7         | 174              | 0.00 | 70         | 1.70                 |                   | Smooth surfaces n= 0.011 P2= 3.36"<br>Shallow Concentrated Flow, EXDA-2A.2<br>Paved Kv= 20.3 fps |
|   | 3.5         | 274              | Tota | al, li     | ncreased t           | o minimum         | Tc = 10.0 min                                                                                    |

### Subcatchment 2Ai: EXDA-2Ai




### Summary for Subcatchment 2Ap: EXDA-2Ap

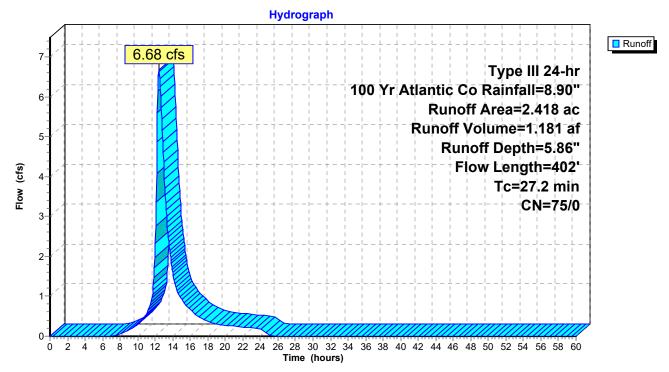
Runoff = 0.89 cfs @ 12.46 hrs, Volume= 0.159 af, Depth= 4.63"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area     | (ac)                       | CN [   | Description                   |            |          |                                      |  |  |  |
|----------|----------------------------|--------|-------------------------------|------------|----------|--------------------------------------|--|--|--|
| 0        | 0.006 82 Dirt roads, HSG B |        |                               |            |          |                                      |  |  |  |
| 0        | .311                       | 61 >   | >75% Grass cover, Good, HSG B |            |          |                                      |  |  |  |
| 0.011 55 |                            | 55 \   | Woods, Good, HSG B            |            |          |                                      |  |  |  |
| 0        | 0.083 80                   |        | >75% Grass cover, Good, HSG D |            |          |                                      |  |  |  |
| 0        | .411                       | 65 \   | Vei                           | ghted Aver | age      |                                      |  |  |  |
| 0        | .411                       | 65 1   | 00.                           | 00% Pervi  | ous Area |                                      |  |  |  |
|          |                            |        |                               |            |          |                                      |  |  |  |
| Tc       | Length                     |        |                               | Velocity   | Capacity | Description                          |  |  |  |
| (min)    | (feet                      | ) (ft  | :/ft)                         | (ft/sec)   | (cfs)    |                                      |  |  |  |
| 24.2     | 100                        | 0.00   | 50                            | 0.07       |          | Sheet Flow, EXDA2B.1                 |  |  |  |
|          |                            |        |                               |            |          | Grass: Dense n= 0.240 P2= 3.36"      |  |  |  |
| 1.9      | 210                        | 0.01 0 | 30                            | 1.84       |          | Shallow Concentrated Flow, EXDA-2B.2 |  |  |  |
|          |                            |        |                               |            |          | Unpaved Kv= 16.1 fps                 |  |  |  |
| 1.1      | 92                         | 2 0.00 | 50                            | 1.44       |          | Shallow Concentrated Flow, EXDA-2A.3 |  |  |  |
|          |                            |        |                               |            |          | Paved Kv= 20.3 fps                   |  |  |  |
| 27.2     | 402                        | 2 Tota | ıl                            |            |          |                                      |  |  |  |

### Subcatchment 2Ap: EXDA-2Ap

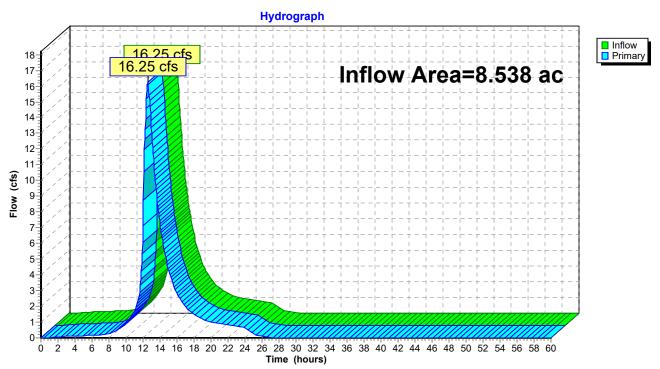



### Summary for Subcatchment 2B: EXDA-2B

Runoff = 6.68 cfs @ 12.43 hrs, Volume= 1.181 af, Depth= 5.86"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area     | (ac)     | CN    | Description                   |           |          |                                      |  |  |  |
|----------|----------|-------|-------------------------------|-----------|----------|--------------------------------------|--|--|--|
| 0.492 82 |          |       | Dirt roads, HSG B             |           |          |                                      |  |  |  |
| 0        | 0.556 61 |       | >75% Grass cover, Good, HSG B |           |          |                                      |  |  |  |
| 0        | 0.132 5  |       | Woods, Good, HSG B            |           |          |                                      |  |  |  |
| 1        | 1.238 8  |       | >75% Grass cover, Good, HSG D |           |          |                                      |  |  |  |
| 2        | .418     | 75    | Weighted Average              |           |          |                                      |  |  |  |
| 2        | .418     | 75    | 100.                          | 00% Pervi | ous Area |                                      |  |  |  |
|          |          |       |                               |           |          |                                      |  |  |  |
| Tc       | Lengtl   | n S   | lope                          | Velocity  | Capacity | Description                          |  |  |  |
| (min)    | (feet    | )     | (ft/ft)                       | (ft/sec)  | (cfs)    |                                      |  |  |  |
| 24.2     | 100      | ).O C | 0050                          | 0.07      |          | Sheet Flow, EXDA-2B.1                |  |  |  |
|          |          |       |                               |           |          | Grass: Dense n= 0.240 P2= 3.36"      |  |  |  |
| 1.9      | 210      | 0.0   | 0130                          | 1.84      |          | Shallow Concentrated Flow, EXDA-2B.2 |  |  |  |
|          |          |       |                               |           |          | Unpaved Kv= 16.1 fps                 |  |  |  |
| 1.1      | 92       | 2 0.0 | 0050                          | 1.44      |          | Shallow Concentrated Flow, EXDA-2B.3 |  |  |  |
|          |          |       |                               |           |          | Paved Kv= 20.3 fps                   |  |  |  |
| 27.2     | 402      | 2 To  | otal                          |           |          |                                      |  |  |  |

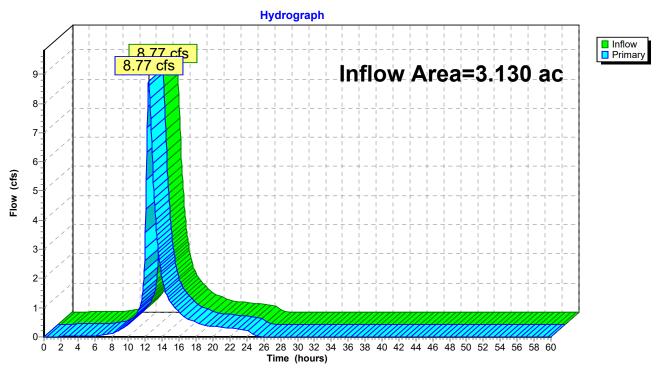

### Subcatchment 2B: EXDA-2B



#### Summary for Link 1L: EXDA-1

| Inflow Area | a = | 8.538 ac, 13.53% Impervious, Inflow Depth = 5.79" for 100 Yr Atlantic Co event |
|-------------|-----|--------------------------------------------------------------------------------|
| Inflow      | =   | 16.25 cfs @  12.58 hrs, Volume=                                                |
| Primary     | =   | 16.25 cfs @ 12.58 hrs, Volume= 4.121 af, Atten= 0%, Lag= 0.0 min               |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

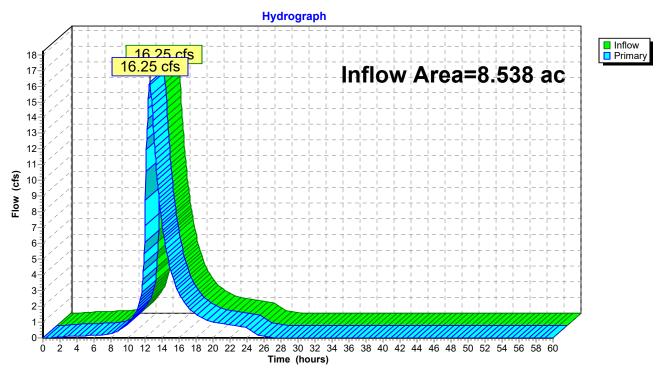



#### Link 1L: EXDA-1

#### Summary for Link 2L: EXDA-2

| Inflow Area | a = | 3.130 ac,  | 9.62% Impervious, Inflow Depth = 5.97" for 100 Yr Atlantic Co event |
|-------------|-----|------------|---------------------------------------------------------------------|
| Inflow      | =   | 8.77 cfs @ | 12.39 hrs, Volume= 1.557 af                                         |
| Primary     | =   | 8.77 cfs @ | 12.39 hrs, Volume= 1.557 af, Atten= 0%, Lag= 0.0 min                |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

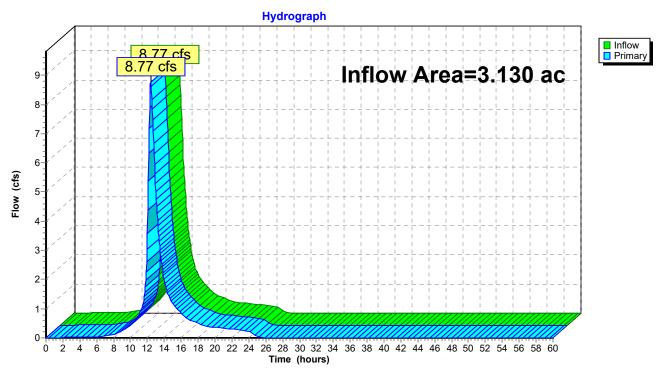



#### Link 2L: EXDA-2

#### Summary for Link 3L: PT 1

| Inflow Area | a = | 8.538 ac, 13.53% Impervious, Inflow Depth = 5.79" for 100 Yr Atlantic Co event |
|-------------|-----|--------------------------------------------------------------------------------|
| Inflow      | =   | 16.25 cfs @  12.58 hrs,  Volume=                                               |
| Primary     | =   | 16.25 cfs @ 12.58 hrs, Volume= 4.121 af, Atten= 0%, Lag= 0.0 min               |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs

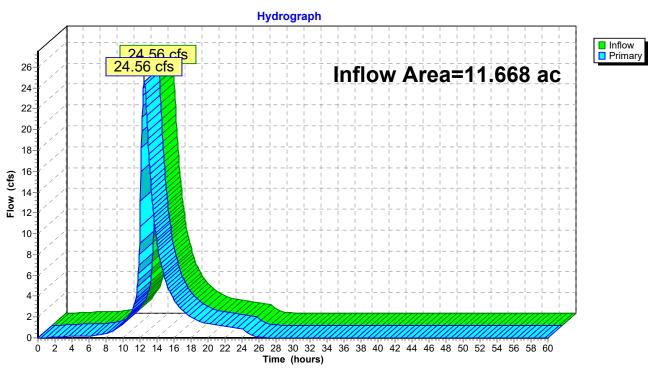



#### Link 3L: PT 1

#### Summary for Link 4L: PT 2

| Inflow Area | a = | 3.130 ac,  | 9.62% Impervious, Inflow Depth = 5.97" for 100 Yr Atlantic Co event |
|-------------|-----|------------|---------------------------------------------------------------------|
| Inflow      | =   | 8.77 cfs @ | 12.39 hrs, Volume= 1.557 af                                         |
| Primary     | =   | 8.77 cfs @ | 12.39 hrs, Volume= 1.557 af, Atten= 0%, Lag= 0.0 min                |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs




#### Link 4L: PT 2

### Summary for Link 5L: TTA

| Inflow Area | = | 11.668 ac, 12.48% Impervious, Inflow Depth = 5.84" for 100 Yr Atlantic Co event |
|-------------|---|---------------------------------------------------------------------------------|
| Inflow      | = | 24.56 cfs @ 12.50 hrs, Volume= 5.678 af                                         |
| Primary     | = | 24.56 cfs @ 12.50 hrs, Volume= 5.678 af, Atten= 0%, Lag= 0.0 min                |

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs



#### Link 5L: TTA

# APPENDIX D

POST-DEVELOPED RUNOFF CALCULATIONS



#### Area Listing (all nodes)

| Area        | CN | Description                                             |
|-------------|----|---------------------------------------------------------|
| <br>(acres) |    | (subcatchment-numbers)                                  |
| 1.824       | 61 | >75% Grass cover, Good, HSG B (1Ap, 1Bp, 2Ap, 2Bp, 2Cp) |
| 1.327       | 80 | >75% Grass cover, Good, HSG D (1Ap, 1Bp, 2Ap, 2Bp, 2Cp) |
| 3.114       | 98 | Paved parking, HSG B (1Ai, 1Bi, 2Ai, 2Bi, 2Ci)          |
| 3.158       | 98 | Paved parking, HSG D (1Ai, 1Bi, 2Ai, 2Bi, 2Ci)          |
| 0.855       | 98 | Roofs, HSG B (Bdg1, Bdg2, Bdg3)                         |
| 0.855       | 98 | Roofs, HSG D (Bdg4, Bdg5, Bdg6)                         |
| 0.138       | 98 | Unconnected roofs, HSG B (1Ai)                          |
| 11.271      | 90 | TOTAL AREA                                              |

#### Soil Listing (all nodes)

| Area    | Soil  | Subcatchment                                                       |
|---------|-------|--------------------------------------------------------------------|
| (acres) | Group | Numbers                                                            |
| 0.000   | HSG A |                                                                    |
| 5.931   | HSG B | 1Ai, 1Ap, 1Bi, 1Bp, 2Ai, 2Ap, 2Bi, 2Bp, 2Ci, 2Cp, Bdg1, Bdg2, Bdg3 |
| 0.000   | HSG C |                                                                    |
| 5.340   | HSG D | 1Ai, 1Ap, 1Bi, 1Bp, 2Ai, 2Ap, 2Bi, 2Bp, 2Ci, 2Cp, Bdg4, Bdg5, Bdg6 |
| 0.000   | Other |                                                                    |
| 11.271  |       | TOTAL AREA                                                         |

Post Developed Conditions Prepared by Sciullo HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Printed 4/8/2020 Page 4

| HSG-A     | HSG-B   | HSG-C   | HSG-D   | Other   | Total   | Ground                 | Subcatchment |
|-----------|---------|---------|---------|---------|---------|------------------------|--------------|
| (acres)   | (acres) | (acres) | (acres) | (acres) | (acres) | Cover                  | Numbers      |
| <br>0.000 | 1.824   | 0.000   | 1.327   | 0.000   | 3.151   | >75% Grass cover, Good | 1Ap,         |
|           |         |         |         |         |         |                        | 1Bp,         |
|           |         |         |         |         |         |                        | 2Ap,         |
|           |         |         |         |         |         |                        | 2Bp, 2Cp     |
| 0.000     | 3.114   | 0.000   | 3.158   | 0.000   | 6.272   | Paved parking          | 1Ai, 1Bi,    |
|           |         |         |         |         |         |                        | 2Ai, 2Bi,    |
|           |         |         |         |         |         |                        | 2Ci          |
| 0.000     | 0.855   | 0.000   | 0.855   | 0.000   | 1.710   | Roofs                  | Bdg1,        |
|           |         |         |         |         |         |                        | Bdg2,        |
|           |         |         |         |         |         |                        | Bdg3,        |
|           |         |         |         |         |         |                        | Bdg4,        |
|           |         |         |         |         |         |                        | Bdg5,        |
|           |         |         |         |         |         |                        | Bdg6         |
| 0.000     | 0.138   | 0.000   | 0.000   | 0.000   | 0.138   | Unconnected roofs      | 1Ai          |
| 0.000     | 5.931   | 0.000   | 5.340   | 0.000   | 11.271  | TOTAL AREA             |              |

#### Ground Covers (all nodes)

# **Post Developed Conditions**

| Prepared by Sciullo           |                                        |
|-------------------------------|----------------------------------------|
| HydroCAD® 10.00-21 s/n M10478 | © 2018 HydroCAD Software Solutions LLC |

Printed 4/8/2020 Page 5

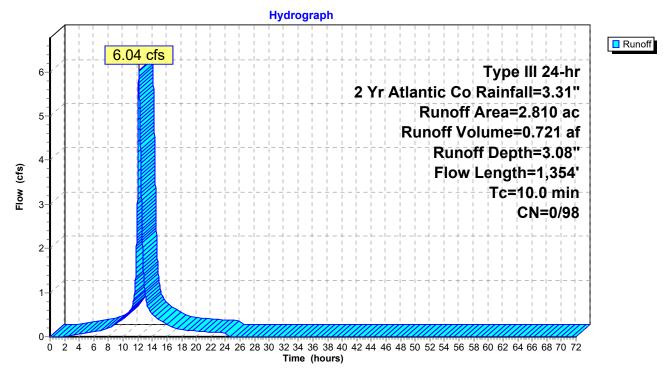
| Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width<br>(inches) | Height<br>(inches) | Inside-Fill<br>(inches) |
|-------|----------------|---------------------|----------------------|------------------|------------------|-------|------------------------|--------------------|-------------------------|
| 1     | 1Ai            | 0.00                | 0.00                 | 1,254.0          | 0.0030           | 0.013 | 18.0                   | 0.0                | 0.0                     |
| 2     | 1Ap            | 0.00                | 0.00                 | 1,254.0          | 0.0030           | 0.013 | 18.0                   | 0.0                | 0.0                     |
| 3     | 2Ai            | 0.00                | 0.00                 | 263.0            | 0.0050           | 0.013 | 15.0                   | 0.0                | 0.0                     |
| 4     | 2Ap            | 0.00                | 0.00                 | 263.0            | 0.0050           | 0.013 | 15.0                   | 0.0                | 0.0                     |
| 5     | 1B             | 3.75                | 3.36                 | 48.0             | 0.0081           | 0.013 | 15.0                   | 0.0                | 0.0                     |
| 6     | 2C             | 3.00                | 1.94                 | 34.0             | 0.0312           | 0.013 | 15.0                   | 0.0                | 0.0                     |

## Pipe Listing (all nodes)

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Sim-Route method - Pond routing by Sim-Route method w/Net Flows

| Subcatchment1Ai: PRDA-1Ai  | Runoff Area=2.810 ac 100.00% Impervious Runoff Depth=3.08"<br>Flow Length=1,354' Tc=10.0 min CN=0/98 Runoff=6.04 cfs 0.721 af |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 1Ap: PRDA-1Ap | Runoff Area=0.795 ac 0.00% Impervious Runoff Depth=0.70"<br>Flow Length=1,354' Tc=10.0 min CN=66/0 Runoff=0.33 cfs 0.046 af   |
| Subcatchment 1Bi: PRDA-1Bi | Runoff Area=0.693 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=1.49 cfs 0.178 af                    |
| Subcatchment1Bp: PRDA-1Bp  | Runoff Area=0.344 ac 0.00% Impervious Runoff Depth=0.70"<br>Tc=10.0 min CN=66/0 Runoff=0.14 cfs 0.020 af                      |
| Subcatchment2Ai: PRDA-2Ai  | Runoff Area=0.502 ac 100.00% Impervious Runoff Depth=3.08"<br>Flow Length=352' Tc=10.0 min CN=0/98 Runoff=1.08 cfs 0.129 af   |
| Subcatchment2Ap: PRDA-2Ap  | Runoff Area=0.399 ac 0.00% Impervious Runoff Depth=0.94"<br>Flow Length=352' Tc=10.0 min CN=71/0 Runoff=0.25 cfs 0.031 af     |
| Subcatchment2Bi: PRDA-2Bi  | Runoff Area=0.581 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=1.25 cfs 0.149 af                    |
| Subcatchment2Bp: PRDA-2Bp  | Runoff Area=0.214 ac 0.00% Impervious Runoff Depth=1.11"<br>Tc=10.0 min CN=74/0 Runoff=0.17 cfs 0.020 af                      |
| Subcatchment2Ci: PRDA-2Ci  | Runoff Area=1.824 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=3.92 cfs 0.468 af                    |
| Subcatchment2Cp: PRDA-2Cp  | Runoff Area=1.399 ac 0.00% Impervious Runoff Depth=0.89"<br>Tc=10.0 min CN=70/0 Runoff=0.83 cfs 0.104 af                      |
| SubcatchmentBdg1: BLDG-1   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=0.61 cfs 0.073 af                    |
| SubcatchmentBdg2: BLDG-2   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=0.61 cfs 0.073 af                    |
| Subcatchment Bdg3: BLDG-3  | Runoff Area=0.285 ac  100.00% Impervious  Runoff Depth=3.08"<br>Tc=10.0 min  CN=0/98  Runoff=0.61 cfs  0.073 af               |
| Subcatchment Bdg4: BLDG-4  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=0.61 cfs 0.073 af                    |
| Subcatchment Bdg5: BLDG-5  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=0.61 cfs 0.073 af                    |
| SubcatchmentBdg6: BLDG-6   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=3.08"<br>Tc=10.0 min CN=0/98 Runoff=0.61 cfs 0.073 af                    |

| Post Developed Conditions<br>Prepared by Sciullo<br>HydroCAD® 10.00-21 s/n M10478 © 2018 H |                                                                                      | Rainfall=3.31"<br>inted 4/8/2020<br>Page 7 |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|
| 11yaloon De 10.00 21 3/11/110470 @ 201011                                                  |                                                                                      |                                            |
| Pond 1B: Basin 1B                                                                          | Peak Elev=7.60' Storage=3,077 cf Inflow=1                                            |                                            |
|                                                                                            | Outflow=1                                                                            | .55 cfs 0.134 af                           |
| Pond 2C: Basin 2C                                                                          | Peak Elev=7.80' Storage=24,774 cf Inflow=6                                           | .15 cfs 0.741 af                           |
|                                                                                            | Outflow=0                                                                            | .24 cfs 0.444 af                           |
|                                                                                            |                                                                                      |                                            |
| Link 1L: PT 1                                                                              | Inflow=11                                                                            | .39 cfs 1.340 af                           |
|                                                                                            | Primary=11                                                                           | .39 cfs 1.340 af                           |
|                                                                                            |                                                                                      |                                            |
| Link 2L: PT 2                                                                              | Inflow=1                                                                             | .33 cfs 0.604 af                           |
|                                                                                            | Primary=1                                                                            | .33 cfs 0.604 af                           |
|                                                                                            |                                                                                      |                                            |
| Link 4L: TTA                                                                               | Inflow=12                                                                            | .72 cfs 1.943 af                           |
|                                                                                            | Primary=12                                                                           | .72 cfs 1.943 af                           |
| Total Runoff Area = 11.271                                                                 | ac Runoff Volume = 2.304 af Average Rund<br>27.96% Pervious = 3.151 ac 72.04% Imperv | off Depth = 2.45"<br>vious = 8.120 ac      |


#### Summary for Subcatchment 1Ai: PRDA-1Ai

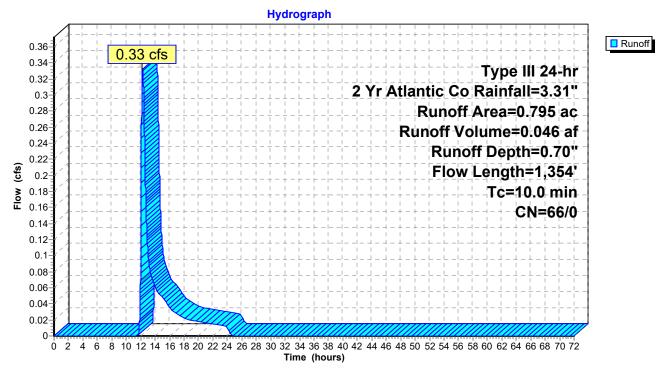
Runoff = 6.04 cfs @ 12.16 hrs, Volume= 0.721 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area  | (ac) ( | CN Des   | cription   |             |                                               |
|-------|--------|----------|------------|-------------|-----------------------------------------------|
| 1.    | 113    | 98 Pav   | ed parking | , HSG B     |                                               |
| 1.    | 559    | 98 Pav   | ed parking | , HSG D     |                                               |
| 0.    | 138    | 98 Unc   | onnected r | oofs, HSG   | В                                             |
| 2.    | 810    | 98 Wei   | ghted Aver | age         |                                               |
| 2.    | 810    | 98 100   | .00% Impe  | rvious Area | 1                                             |
|       |        |          |            |             |                                               |
| Тс    | Length | Slope    | Velocity   | Capacity    | Description                                   |
| (min) | (feet) | (ft/ft)  | (ft/sec)   | (cfs)       | ·                                             |
| 1.4   | 100    | 0.0130   | 1.19       |             | Sheet Flow, PRDA-1.1                          |
|       |        |          |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.4   | 1,254  | 0.0030   | 3.26       | 5.75        | Pipe Channel, PRDA-1.2                        |
|       |        |          |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|       |        |          |            |             | n= 0.013                                      |
| 7.8   | 1,354  | Total, I | ncreased t | o minimum   | Tc = 10.0 min                                 |

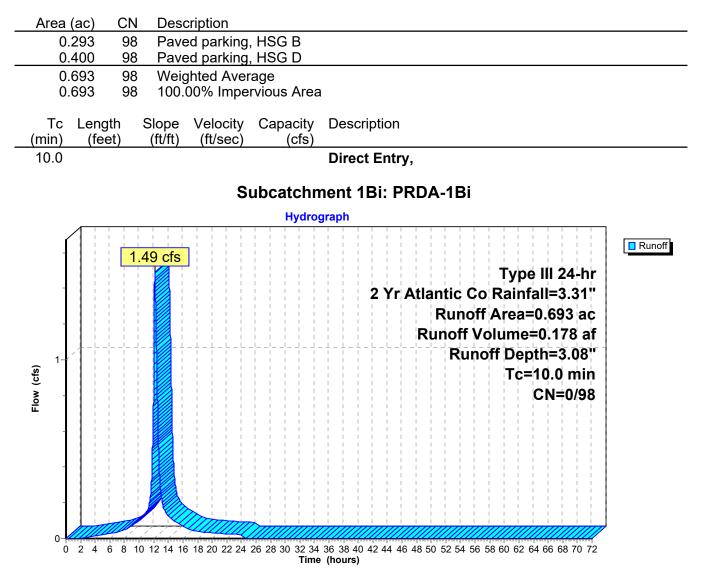
#### Subcatchment 1Ai: PRDA-1Ai




#### Summary for Subcatchment 1Ap: PRDA-1Ap

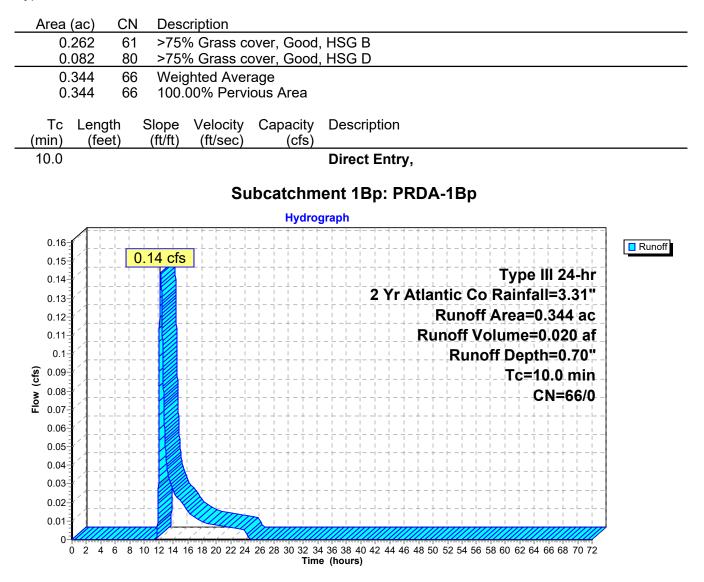
Runoff = 0.33 cfs @ 12.23 hrs, Volume= 0.046 af, Depth= 0.70"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"


| Area  | a (ac) | CN   | Desc     | cription   |             |                                               |
|-------|--------|------|----------|------------|-------------|-----------------------------------------------|
| (     | 0.574  | 61   | >75%     | % Grass co | over, Good, | HSG B                                         |
|       | ).221  | 80   | >759     | % Grass co | over, Good, | HSG D                                         |
| (     | 0.795  | 66   | Weig     | ghted Aver | age         |                                               |
| (     | 0.795  | 66   | 100.     | 00% Pervi  | ous Area    |                                               |
|       |        |      |          |            |             |                                               |
| Tc    | 5      |      | Slope    | Velocity   | Capacity    | Description                                   |
| (min) | (fee   | et)  | (ft/ft)  | (ft/sec)   | (cfs)       |                                               |
| 1.4   | 10     | 0 0  | .0130    | 1.19       |             | Sheet Flow, PRDA-1.1                          |
|       |        |      |          |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.4   | 1,25   | 54 0 | .0030    | 3.26       | 5.75        | Pipe Channel, PRDA-1.2                        |
|       |        |      |          |            |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|       |        |      |          |            |             | n= 0.013                                      |
| 7.8   | 1,35   | 54 T | otal, li | ncreased t | o minimum   | Tc = 10.0 min                                 |

#### Subcatchment 1Ap: PRDA-1Ap




#### Summary for Subcatchment 1Bi: PRDA-1Bi

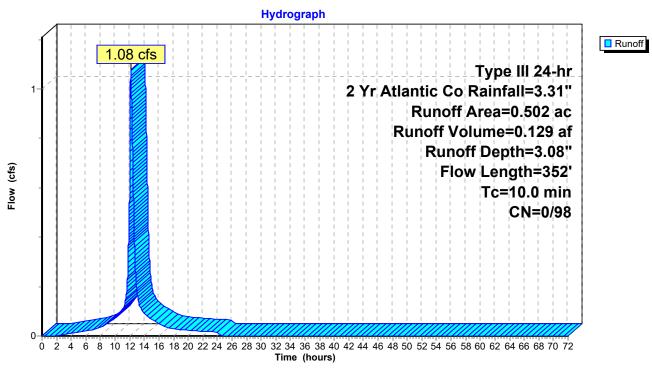
Runoff = 1.49 cfs @ 12.16 hrs, Volume= 0.178 af, Depth= 3.08"



#### Summary for Subcatchment 1Bp: PRDA-1Bp

Runoff = 0.14 cfs @ 12.23 hrs, Volume= 0.020 af, Depth= 0.70"




#### Summary for Subcatchment 2Ai: PRDA-2Ai

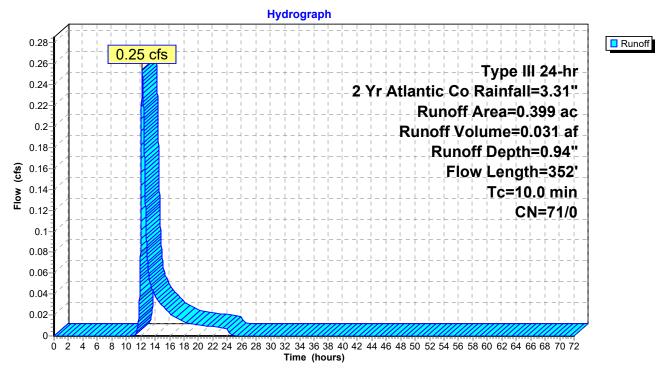
Runoff = 1.08 cfs @ 12.16 hrs, Volume= 0.129 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area         | (ac) C | N Des    | cription    |             |                                               |
|--------------|--------|----------|-------------|-------------|-----------------------------------------------|
| 0.           | 281    |          | ed parking, |             |                                               |
| 0.           | 221    | 98 Pav   | ed parking, | , HSG D     |                                               |
| 0.           | 502    | 98 Wei   | ghted Aver  | age         |                                               |
| 0.           | 502    | 98 100.  | 00% Impe    | rvious Area |                                               |
|              |        |          |             |             |                                               |
| Тс           | Length | Slope    | Velocity    | Capacity    | Description                                   |
| <u>(min)</u> | (feet) | (ft/ft)  | (ft/sec)    | (cfs)       |                                               |
| 1.2          | 89     | 0.0150   | 1.23        |             | Sheet Flow, PRDA-2.1                          |
|              |        |          |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 1.2          | 263    | 0.0050   | 3.72        | 4.57        | Pipe Channel, PRDA-2.1                        |
|              |        |          |             |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |
|              |        |          |             |             | n= 0.013                                      |
| 2.4          | 352    | Total, I | ncreased t  | o minimum   | Tc = 10.0 min                                 |

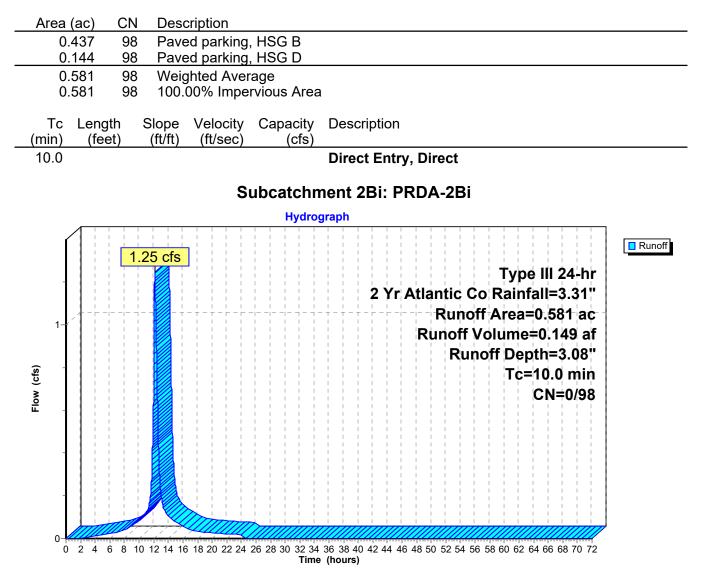
#### Subcatchment 2Ai: PRDA-2Ai




#### Summary for Subcatchment 2Ap: PRDA-2Ap

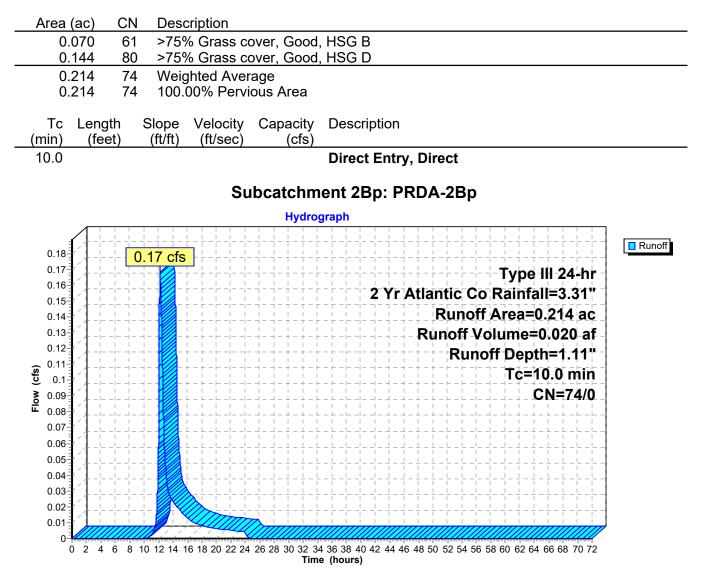
Runoff = 0.25 cfs @ 12.19 hrs, Volume= 0.031 af, Depth= 0.94"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"


| Area (ad | c) C   | N Desc    | cription   |             |                                               |
|----------|--------|-----------|------------|-------------|-----------------------------------------------|
| 0.19     | 3 6    | 1 >75%    | % Grass co | over, Good, | , HSG B                                       |
| 0.20     | 6 8    | 0 >75%    | % Grass co | over, Good, | , HSG D                                       |
| 0.39     | 9 7    | 1 Weig    | ghted Aver | age         |                                               |
| 0.39     | 97     | 1 100.    | 00% Pervi  | ous Area    |                                               |
|          |        |           |            |             |                                               |
| Tc L     | ength  | Slope     | Velocity   | Capacity    | Description                                   |
| (min)    | (feet) | (ft/ft)   | (ft/sec)   | (cfs)       |                                               |
| 1.2      | 89     | 0.0150    | 1.23       |             | Sheet Flow, PRDA-2.1                          |
|          |        |           |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 1.2      | 263    | 0.0050    | 3.72       | 4.57        | Pipe Channel, PRDA-2.1                        |
|          |        |           |            |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |
|          |        |           |            |             | n= 0.013                                      |
| 2.4      | 352    | Total, Ir | ncreased t | o minimum   | Tc = 10.0 min                                 |

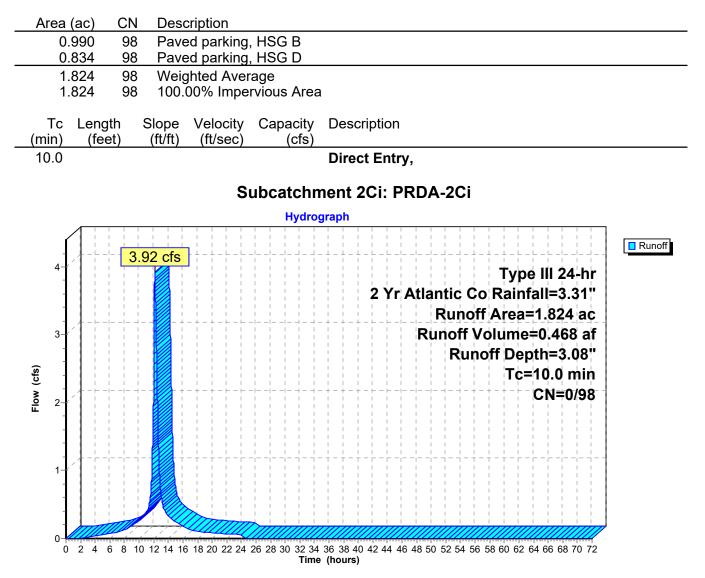
#### Subcatchment 2Ap: PRDA-2Ap




#### Summary for Subcatchment 2Bi: PRDA-2Bi

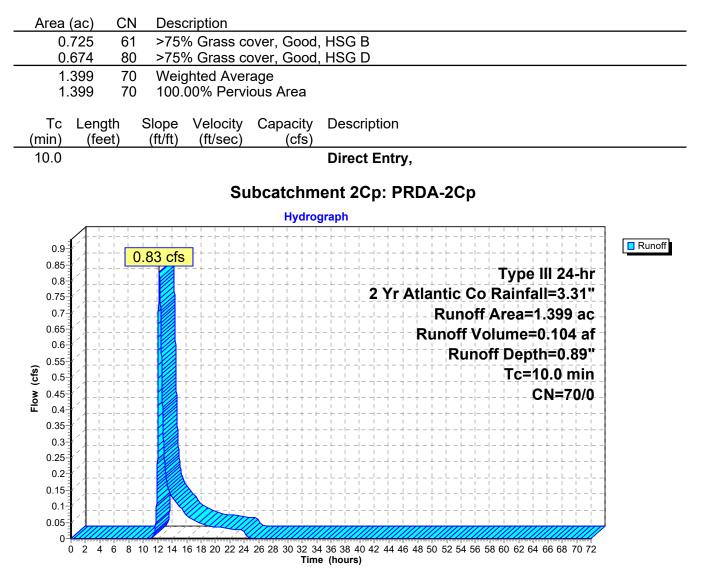
Runoff = 1.25 cfs @ 12.16 hrs, Volume= 0.149 af, Depth= 3.08"




#### Summary for Subcatchment 2Bp: PRDA-2Bp

Runoff = 0.17 cfs @ 12.18 hrs, Volume= 0.020 af, Depth= 1.11"




#### Summary for Subcatchment 2Ci: PRDA-2Ci

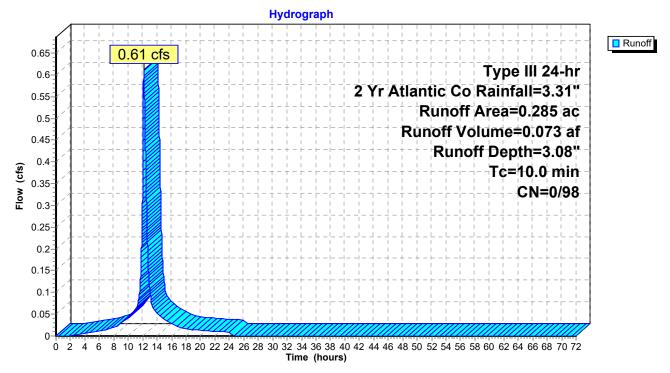
Runoff = 3.92 cfs @ 12.16 hrs, Volume= 0.468 af, Depth= 3.08"



#### Summary for Subcatchment 2Cp: PRDA-2Cp

Runoff = 0.83 cfs @ 12.20 hrs, Volume= 0.104 af, Depth= 0.89"




#### Summary for Subcatchment Bdg1: BLDG-1

Runoff = 0.61 cfs @ 12.16 hrs, Volume= 0.073 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area        | (ac)         | CN | Desc             | cription             |                   |               |
|-------------|--------------|----|------------------|----------------------|-------------------|---------------|
| 0.          | 285          | 98 | Root             | fs, HSG B            |                   |               |
| 0.          | 285          | 98 | 100.             | 00% Impe             | rvious Area       |               |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |
| 10.0        |              |    |                  |                      |                   | Direct Entry, |
|             |              |    |                  | -                    |                   |               |

#### Subcatchment Bdg1: BLDG-1




#### Summary for Subcatchment Bdg2: BLDG-2

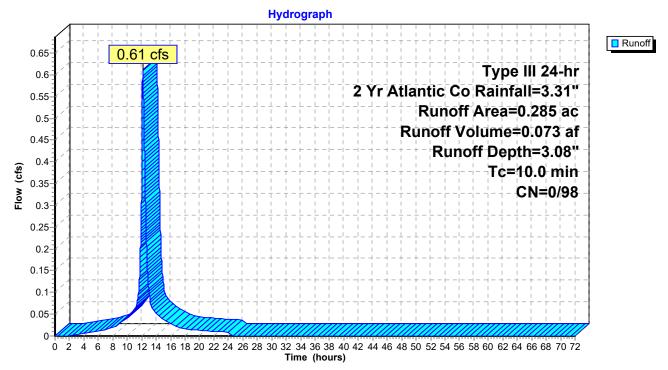
Runoff = 0.61 cfs @ 12.16 hrs, Volume= 0.073 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area        | (ac)         | CN | Desc             | cription             |                   |               |
|-------------|--------------|----|------------------|----------------------|-------------------|---------------|
| 0.          | 285          | 98 | Root             | fs, HSG B            |                   |               |
| 0.          | 285          | 98 | 100.             | 00% Impe             | rvious Area       | 3             |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |
| 10.0        |              |    |                  | · · ·                |                   | Direct Entry, |
|             |              |    |                  |                      |                   |               |

#### Subcatchment Bdg2: BLDG-2




#### Summary for Subcatchment Bdg3: BLDG-3

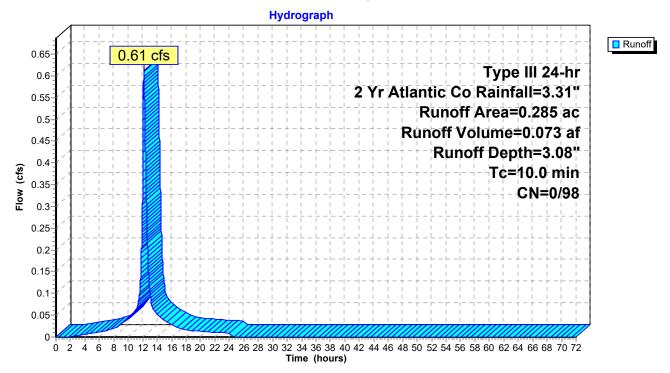
Runoff = 0.61 cfs @ 12.16 hrs, Volume= 0.073 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area        | (ac)         | CN | Desc             | cription             |                   |               |
|-------------|--------------|----|------------------|----------------------|-------------------|---------------|
| 0.          | 285          | 98 | Root             | fs, HSG B            |                   |               |
| 0.          | 285          | 98 | 100.             | 00% Impe             | rvious Area       | 1             |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |
| 10.0        |              |    |                  |                      |                   | Direct Entry, |
|             |              |    |                  |                      |                   |               |

#### Subcatchment Bdg3: BLDG-3




#### Summary for Subcatchment Bdg4: BLDG-4

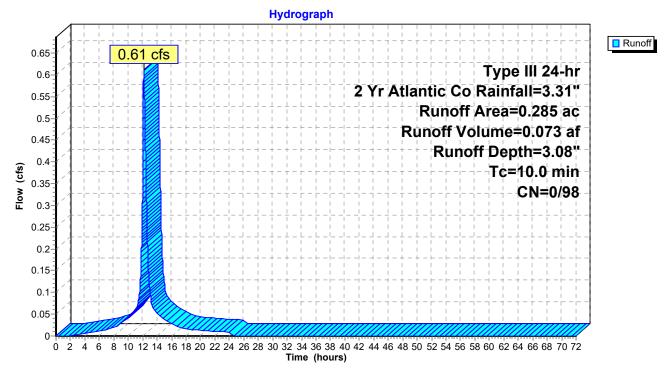
Runoff = 0.61 cfs @ 12.16 hrs, Volume= 0.073 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area        | (ac)         | CN | Desc             | cription             |                   |               |
|-------------|--------------|----|------------------|----------------------|-------------------|---------------|
| 0.          | 285          | 98 | Root             | fs, HSG D            |                   |               |
| 0.          | 285          | 98 | 100.             | 00% Impe             | rvious Area       | l             |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |
| 10.0        |              |    |                  |                      |                   | Direct Entry, |
|             |              |    |                  |                      |                   |               |

#### Subcatchment Bdg4: BLDG-4




#### Summary for Subcatchment Bdg5: BLDG-5

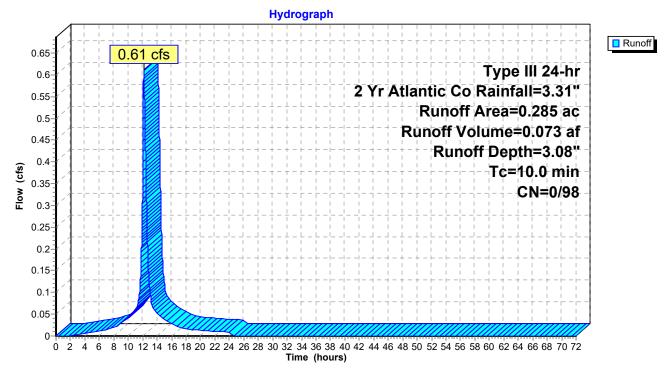
Runoff = 0.61 cfs @ 12.16 hrs, Volume= 0.073 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area        | (ac)         | CN | Desc             | cription             |                   |               |
|-------------|--------------|----|------------------|----------------------|-------------------|---------------|
| 0.          | 285          | 98 | Root             | fs, HSG D            |                   |               |
| 0.          | 285          | 98 | 100.             | 00% Impe             | rvious Area       | a             |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |
| 10.0        |              |    |                  |                      |                   | Direct Entry, |
|             |              |    |                  |                      |                   |               |

#### Subcatchment Bdg5: BLDG-5




#### Summary for Subcatchment Bdg6: BLDG-6

Runoff = 0.61 cfs @ 12.16 hrs, Volume= 0.073 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Yr Atlantic Co Rainfall=3.31"

| Area        | (ac)         | CN | Desc             | cription             |                   |               |
|-------------|--------------|----|------------------|----------------------|-------------------|---------------|
| 0.          | 285          | 98 | Root             | fs, HSG D            |                   |               |
| 0.          | 285          | 98 | 100.             | 00% Impe             | rvious Area       | l             |
| Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description   |
| 10.0        |              |    |                  |                      |                   | Direct Entry, |
|             |              |    |                  |                      |                   |               |

#### Subcatchment Bdg6: BLDG-6

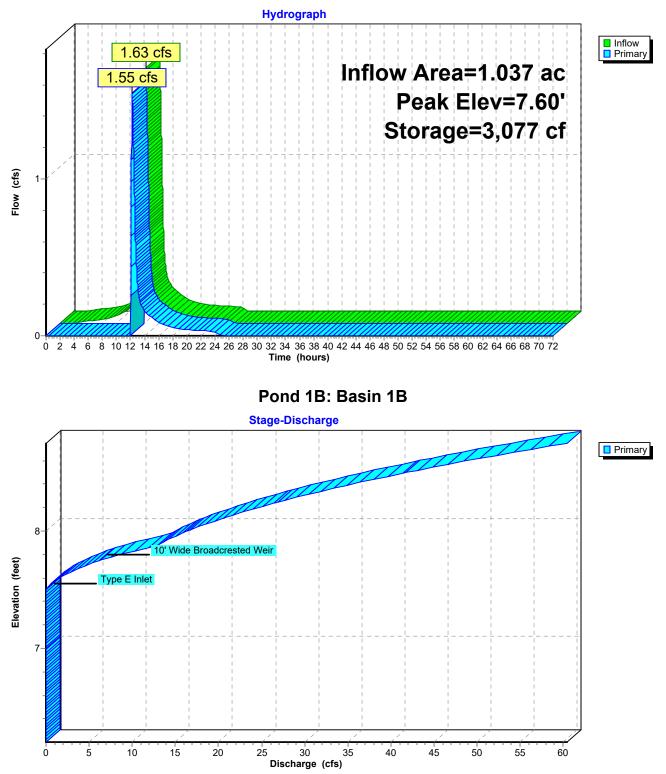


#### Summary for Pond 1B: Basin 1B

| Inflow Area = | 1.037 ac, 66.83% Impervious, Inflow Depth = 2.29" for 2 Yr Atlantic Co | o event |
|---------------|------------------------------------------------------------------------|---------|
| Inflow =      | 1.63 cfs @ 12.16 hrs, Volume= 0.198 af                                 |         |
| Outflow =     | 1.55 cfs @ 12.22 hrs, Volume= 0.134 af, Atten= 5%, Lag= 3.9 m          | nin     |
| Primary =     | 1.55 cfs @ 12.22 hrs, Volume= 0.134 af                                 |         |

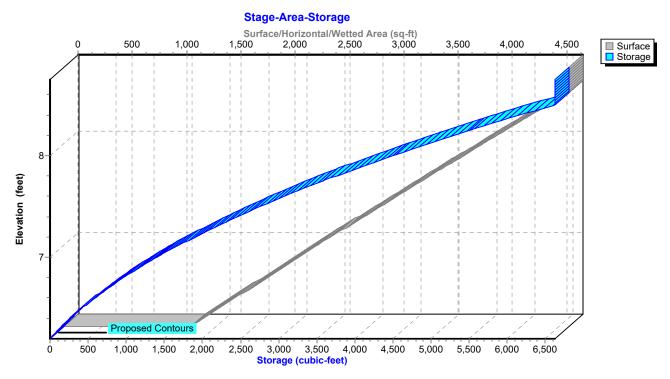
Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.60' @ 12.22 hrs Surf.Area= 3,250 sf Storage= 3,077 cf

Plug-Flow detention time= 191.4 min calculated for 0.134 af (68% of inflow) Center-of-Mass det. time= 89.9 min (868.8 - 778.9)


| Volume   | Inve                                  | rt Avail.Sto | rage Storage  | e Description                |                                  |
|----------|---------------------------------------|--------------|---------------|------------------------------|----------------------------------|
| #1       | 6.20                                  | )' 6,6       | 27 cf Propos  | smatic)Listed below (Recalc) |                                  |
| Flowetic |                                       |              | In a Ctara    | Curra Starra                 |                                  |
| Elevatio |                                       | Surf.Area    | Inc.Store     | Cum.Store                    |                                  |
| (fee     | et)                                   | (sq-ft)      | (cubic-feet)  | (cubic-feet)                 |                                  |
| 6.2      | 6.20 1                                |              | 0             | 0                            |                                  |
| 7.0      | 00                                    | 2,335        | 1,402         | 1,402                        |                                  |
| 8.0      | )0                                    | 3,860        | 3,098         | 4,500                        |                                  |
| 8.5      | 50                                    | 4,650        | 2,128         | 6,627                        |                                  |
|          |                                       |              |               |                              |                                  |
| Device   | Routing                               | Invert       | Outlet Device | es                           |                                  |
| #1       | Primary                               | 3.75'        | 15.0" Round   | d 15" Culvert                |                                  |
|          | ,                                     |              | L= 48.0' RC   | P, sq.cut end proje          | ectina. Ke= 0.500                |
|          |                                       |              |               |                              | 5' S= 0.0081 '/' Cc= 0.900       |
|          |                                       |              |               |                              | oth interior, Flow Area= 1.23 sf |
| #2       | Device 1                              | 7.50'        |               | ' Horiz. Type E In           |                                  |
|          |                                       |              |               | eir flow at low head         |                                  |
| #3       | Primary                               | 7.75'        |               |                              | Cv= 3.10 (C= 3.88)               |
|          | · · · · · · · · · · · · · · · · · · · |              |               | 0.00 0.25 0.50 0.            |                                  |
|          |                                       |              |               | 10.00 11.50 13.0             |                                  |
|          |                                       |              |               | 10.00 11.00 10.0             | 0.00                             |

Primary OutFlow Max=1.54 cfs @ 12.22 hrs HW=7.60' TW=0.00' (Dynamic Tailwater)

-1=15" Culvert (Passes 1.54 cfs of 10.52 cfs potential flow) —2=Type E Inlet (Weir Controls 1.54 cfs @ 1.03 fps)


-3=10' Wide Broadcrested Weir ( Controls 0.00 cfs)

Pond 1B: Basin 1B



#### **Post Developed Conditions** Prepared by Sciullo

Pond 1B: Basin 1B



#### Summary for Pond 2C: Basin 2C

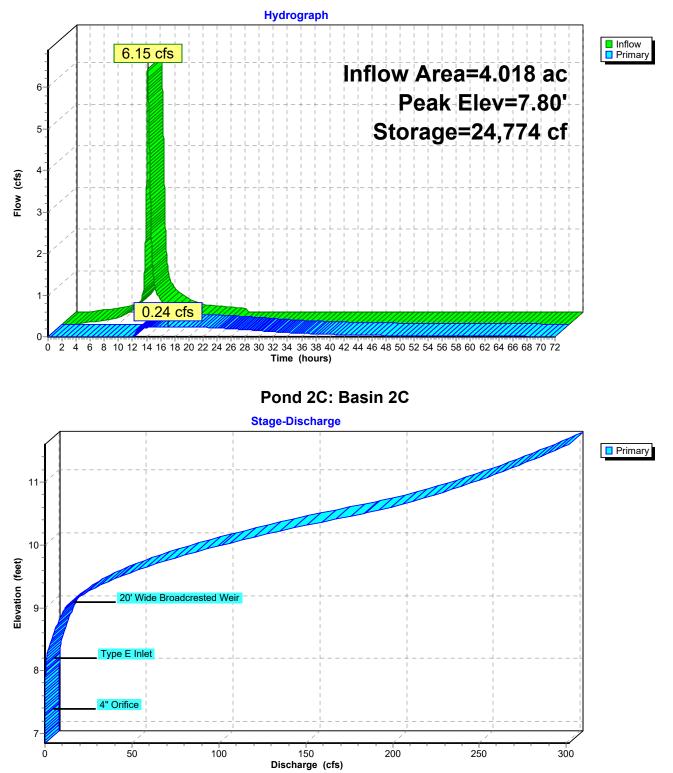
| Inflow Area = | 4.018 ac, 59.86% Impervious, Inflow Depth = 2.21" for 2 Yr Atlantic Co event |
|---------------|------------------------------------------------------------------------------|
| Inflow =      | 6.15 cfs @ 12.16 hrs, Volume= 0.741 af                                       |
| Outflow =     | 0.24 cfs @ 17.08 hrs, Volume= 0.444 af, Atten= 96%, Lag= 295.3 min           |
| Primary =     | 0.24 cfs @ 17.08 hrs, Volume= 0.444 af                                       |

Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.80' @ 17.08 hrs Surf.Area= 27,826 sf Storage= 24,774 cf

Plug-Flow detention time= 965.5 min calculated for 0.444 af (60% of inflow) Center-of-Mass det. time= 851.4 min (1,636.2 - 784.8)

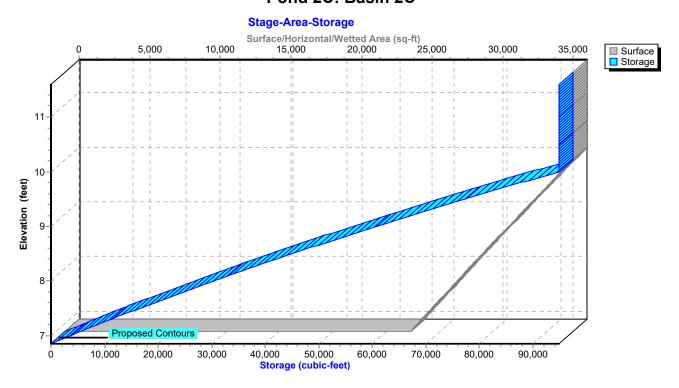
| Volume                                                                        | Inve                                 | rt Avail.Sto | prage Storage Description                                    |              |  |
|-------------------------------------------------------------------------------|--------------------------------------|--------------|--------------------------------------------------------------|--------------|--|
| #1 6.85' 94,944 cf <b>Proposed Contours (Prismatic)</b> Listed below (Recalc) |                                      |              |                                                              |              |  |
| Elevatio                                                                      | on                                   | Surf.Area    | Inc.Store                                                    | Cum.Store    |  |
| (fee                                                                          |                                      | (sq-ft)      | (cubic-feet)                                                 | (cubic-feet) |  |
| 6.8                                                                           | 35                                   | 24,460       | 0                                                            | 0            |  |
| 7.0                                                                           |                                      | 24,990       | 3,709                                                        | 3,709        |  |
| 8.0                                                                           |                                      | 28,545       | 26,768                                                       | 30,476       |  |
| 9.0                                                                           |                                      | 32,215       | 30,380                                                       | 60,856       |  |
| 10.0                                                                          | 00                                   | 35,960       | 34,088                                                       | 94,944       |  |
| Device                                                                        | Routing                              | Invert       | Outlet Devie                                                 | ces          |  |
| #1                                                                            | Primary                              | 3.00'        | 15.0" Round 15" Culvert                                      |              |  |
|                                                                               | -                                    |              | L= 34.0' CPP, square edge headwall, Ke= 0.500                |              |  |
|                                                                               |                                      |              | Inlet / Outlet Invert= 3.00' / 1.94' S= 0.0312 '/' Cc= 0.900 |              |  |
|                                                                               |                                      |              | n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf  |              |  |
| #2                                                                            | Device 1                             | 7.30'        | 4.0" Vert. 4" Orifice C= 0.600                               |              |  |
| #3                                                                            | Device 1                             | 8.10'        |                                                              |              |  |
| #4                                                                            | Primary                              | 9.00'        | , , ,                                                        |              |  |
|                                                                               | Head (feet) 0.00 0.50 1.00 1.50      |              |                                                              |              |  |
|                                                                               | Width (feet) 20.00 23.00 26.00 29.00 |              |                                                              |              |  |
|                                                                               |                                      |              |                                                              |              |  |

Primary OutFlow Max=0.24 cfs @ 17.08 hrs HW=7.80' TW=0.00' (Dynamic Tailwater)


-1=15" Culvert (Passes 0.24 cfs of 12.07 cfs potential flow)

**2=4" Orifice** (Orifice Controls 0.24 cfs @ 2.77 fps)

**3=Type E Inlet** (Controls 0.00 cfs)

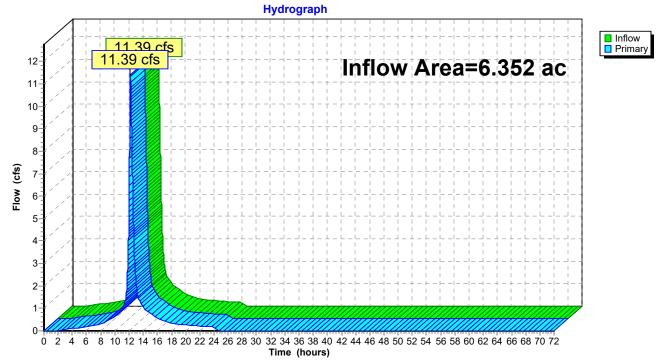

-4=20' Wide Broadcrested Weir (Controls 0.00 cfs)

Pond 2C: Basin 2C



#### **Post Developed Conditions** Prepared by Sciullo

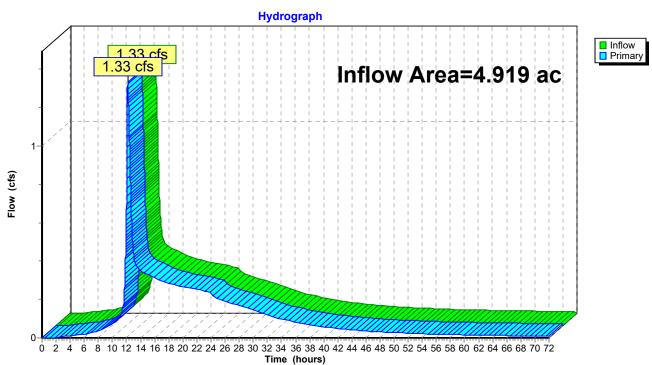
Pond 2C: Basin 2C




# Summary for Link 1L: PT 1

| Inflow Are | a = | 6.352 ac, 82.07% Impervious, Inflow Depth = 2.53" for 2 Yr Atlantic Co event |
|------------|-----|------------------------------------------------------------------------------|
| Inflow     | =   | 11.39 cfs @ 12.17 hrs, Volume=                                               |
| Primary    | =   | 11.39 cfs @ 12.18 hrs, Volume= 1.340 af, Atten= 0%, Lag= 0.6 min             |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs


# Link 1L: PT 1

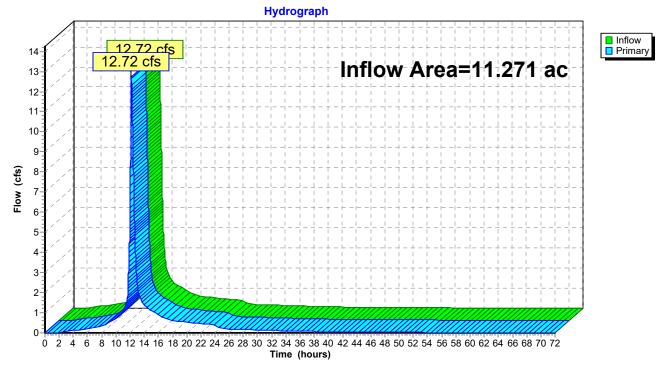


# Summary for Link 2L: PT 2

| Inflow Area | a = | 4.919 ac, 59.10% Impervious, Inflow Depth > 1.47" for 2 Yr Atlantic Co event |
|-------------|-----|------------------------------------------------------------------------------|
| Inflow      | =   | 1.33 cfs @ 12.16 hrs, Volume= 0.604 af                                       |
| Primary     | =   | 1.33 cfs $\overline{@}$ 12.17 hrs, Volume= 0.604 af, Atten= 0%, Lag= 0.6 min |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs




#### Link 2L: PT 2

# Summary for Link 4L: TTA

| Inflow Are | a = | 11.271 ac, 72.04% Impervious, Inflow Depth > 2.07" for 2 Yr Atlantic Co event |
|------------|-----|-------------------------------------------------------------------------------|
| Inflow     | =   | 12.72 cfs @ 12.18 hrs, Volume= 1.943 af                                       |
| Primary    | =   | 12.72 cfs @ 12.19 hrs, Volume= 1.943 af, Atten= 0%, Lag= 0.6 min              |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

# Link 4L: TTA



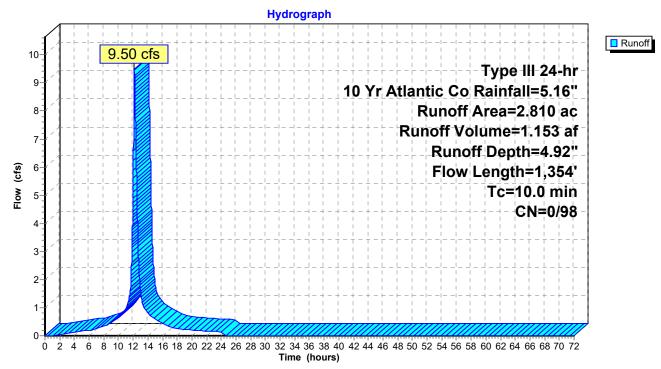
| Post Developed Conditions                         | Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16" |
|---------------------------------------------------|-------------------------------------------------|
| Prepared by Sciullo                               | Printed 4/8/2020                                |
| HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Sof | tware Solutions LLC Page 33                     |

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Sim-Route method - Pond routing by Sim-Route method w/Net Flows

| Subcatchment1Ai: PRDA-1Ai  | Runoff Area=2.810 ac 100.00% Impervious Runoff Depth=4.92"<br>Flow Length=1,354' Tc=10.0 min CN=0/98 Runoff=9.50 cfs 1.153 af |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment1Ap: PRDA-1Ap  | Runoff Area=0.795 ac 0.00% Impervious Runoff Depth=1.84"<br>Flow Length=1,354' Tc=10.0 min CN=66/0 Runoff=1.05 cfs 0.122 af   |
| Subcatchment1Bi: PRDA-1Bi  | Runoff Area=0.693 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=2.34 cfs 0.284 af                    |
| Subcatchment1Bp: PRDA-1Bp  | Runoff Area=0.344 ac 0.00% Impervious Runoff Depth=1.84"<br>Tc=10.0 min CN=66/0 Runoff=0.45 cfs 0.053 af                      |
| Subcatchment 2Ai: PRDA-2Ai | Runoff Area=0.502 ac 100.00% Impervious Runoff Depth=4.92"<br>Flow Length=352' Tc=10.0 min CN=0/98 Runoff=1.70 cfs 0.206 af   |
| Subcatchment2Ap: PRDA-2Ap  | Runoff Area=0.399 ac 0.00% Impervious Runoff Depth=2.24"<br>Flow Length=352' Tc=10.0 min CN=71/0 Runoff=0.67 cfs 0.074 af     |
| Subcatchment2Bi: PRDA-2Bi  | Runoff Area=0.581 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=1.96 cfs 0.238 af                    |
| Subcatchment2Bp: PRDA-2Bp  | Runoff Area=0.214 ac 0.00% Impervious Runoff Depth=2.49"<br>Tc=10.0 min CN=74/0 Runoff=0.40 cfs 0.044 af                      |
| Subcatchment2Ci: PRDA-2Ci  | Runoff Area=1.824 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=6.16 cfs 0.748 af                    |
| Subcatchment2Cp: PRDA-2Cp  | Runoff Area=1.399 ac 0.00% Impervious Runoff Depth=2.16"<br>Tc=10.0 min CN=70/0 Runoff=2.23 cfs 0.251 af                      |
| SubcatchmentBdg1: BLDG-1   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=0.96 cfs 0.117 af                    |
| SubcatchmentBdg2: BLDG-2   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=0.96 cfs 0.117 af                    |
| SubcatchmentBdg3: BLDG-3   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=0.96 cfs 0.117 af                    |
| SubcatchmentBdg4: BLDG-4   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=0.96 cfs 0.117 af                    |
| Subcatchment Bdg5: BLDG-5  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=0.96 cfs 0.117 af                    |
| Subcatchment Bdg6: BLDG-6  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=4.92"<br>Tc=10.0 min CN=0/98 Runoff=0.96 cfs 0.117 af                    |

| <b>Post Developed Conditions</b><br>Prepared by Sciullo<br>HydroCAD® 10.00-21 s/n M10478 © 2018 Hydro | Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"Printed 4/8/2020DCAD Software Solutions LLCPage 34                     |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Pond 1B: Basin 1B                                                                                     | Peak Elev=7.65' Storage=3,229 cf Inflow=2.79 cfs 0.337 af<br>Outflow=2.74 cfs 0.274 af                                |
| Pond 2C: Basin 2C                                                                                     | Dutilow=2.74 cis 0.274 al<br>Peak Elev=8.24' Storage=37,479 cf Inflow=10.75 cfs 1.282 af<br>Outflow=1.05 cfs 0.977 af |
| Link 1L: PT 1                                                                                         | Inflow=18.98 cfs 2.250 af<br>Primary=18.98 cfs 2.250 af                                                               |
| Link 2L: PT 2                                                                                         | Inflow=2.54 cfs 1.257 af<br>Primary=2.54 cfs 1.257 af                                                                 |
| Link 4L: TTA                                                                                          | Inflow=21.51 cfs 3.507 af<br>Primary=21.51 cfs 3.507 af                                                               |
|                                                                                                       | Runoff Volume = 3.876 af Average Runoff Depth = 4.13"<br>7.96% Pervious = 3.151 ac 72.04% Impervious = 8.120 ac       |

#### Summary for Subcatchment 1Ai: PRDA-1Ai


Runoff = 9.50 cfs @ 12.15 hrs, Volume= 1.153 af, Depth= 4.92"

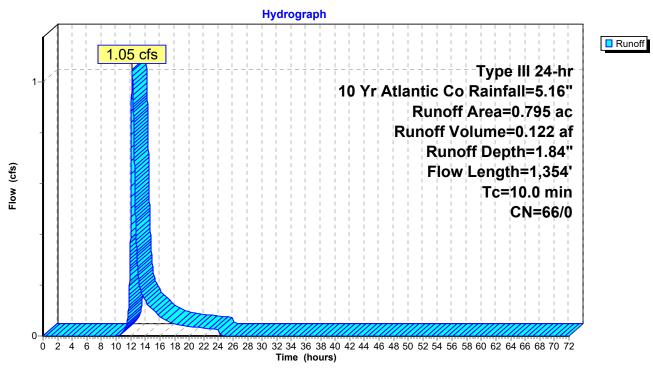
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| _ | Area  | (ac) ( | CN De  | scription    |             |                                               |
|---|-------|--------|--------|--------------|-------------|-----------------------------------------------|
|   | 1.    | .113   | 98 Pa  | ved parking  | , HSG B     |                                               |
|   | 1.    | 559    | 98 Pa  | ved parking  | , HSG D     |                                               |
|   | 0.    | .138   | 98 Un  | connected r  | roofs, HSG  | В                                             |
|   | 2.    | .810   | 98 We  | eighted Aver | rage        |                                               |
|   | 2.    | .810   | 98 100 | 0.00% Impe   | rvious Area | 1                                             |
|   |       |        |        | •            |             |                                               |
|   | Tc    | Length | Slope  | e Velocity   | Capacity    | Description                                   |
|   | (min) | (feet) | (ft/ft | ) (ft/sec)   | (cfs)       |                                               |
| _ | 1.4   | 100    | 0.0130 | ) 1.19       |             | Sheet Flow, PRDA-1.1                          |
|   |       |        |        |              |             | Smooth surfaces n= 0.011 P2= 3.36"            |
|   | 6.4   | 1,254  | 0.0030 | 3.26         | 5.75        | Pipe Channel, PRDA-1.2                        |
|   |       | ,      |        |              |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|   |       |        |        |              |             | n= 0.013                                      |
| _ | 78    | 1 354  | Total  | Increased t  | to minimum  | $T_{c} = 10.0 \text{ min}$                    |

7.8 1,354 Total, Increased to minimum Tc = 10.0 min

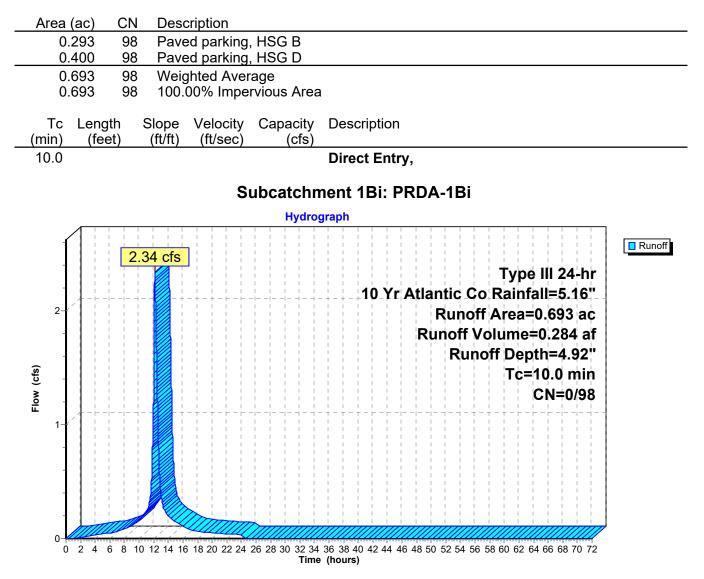
# Subcatchment 1Ai: PRDA-1Ai




### Summary for Subcatchment 1Ap: PRDA-1Ap

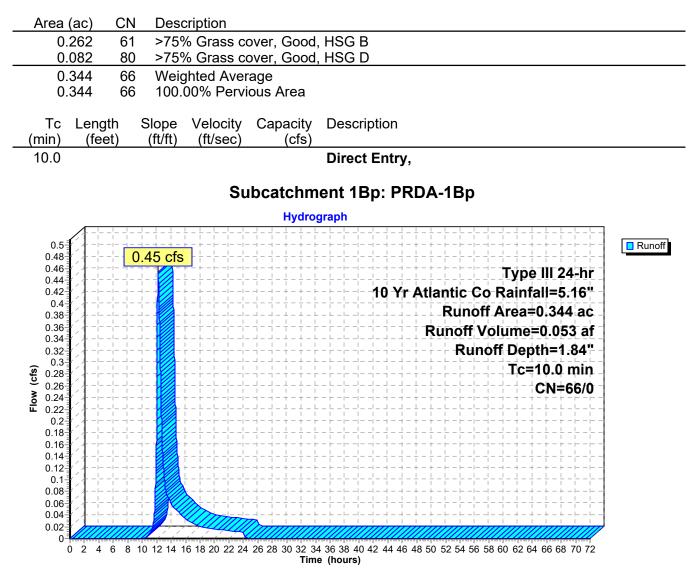
Runoff = 1.05 cfs @ 12.18 hrs, Volume= 0.122 af, Depth= 1.84"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"


| Area (a | ac) C    | N Desc             | cription          |             |                                               |
|---------|----------|--------------------|-------------------|-------------|-----------------------------------------------|
| 0.5     | 674 6    | 51 >759            | % Grass co        | over, Good, | HSG B                                         |
| 0.2     | 21 8     | 30 <b>&gt;</b> 759 | <u>% Grass co</u> | over, Good, | HSG D                                         |
| 0.7     | '95    6 | 6 Weig             | ghted Aver        | age         |                                               |
| 0.7     | '95 6    | 6 100.             | 00% Pervi         | ous Area    |                                               |
|         |          |                    |                   |             |                                               |
| Тс      | Length   | Slope              | Velocity          | Capacity    | Description                                   |
| (min)   | (feet)   | (ft/ft)            | (ft/sec)          | (cfs)       |                                               |
| 1.4     | 100      | 0.0130             | 1.19              |             | Sheet Flow, PRDA-1.1                          |
|         |          |                    |                   |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.4     | 1,254    | 0.0030             | 3.26              | 5.75        | Pipe Channel, PRDA-1.2                        |
|         |          |                    |                   |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|         |          |                    |                   |             | n= 0.013                                      |
| 7.8     | 1,354    | Total, li          | ncreased t        | o minimum   | Tc = 10.0 min                                 |

## Subcatchment 1Ap: PRDA-1Ap




#### Summary for Subcatchment 1Bi: PRDA-1Bi

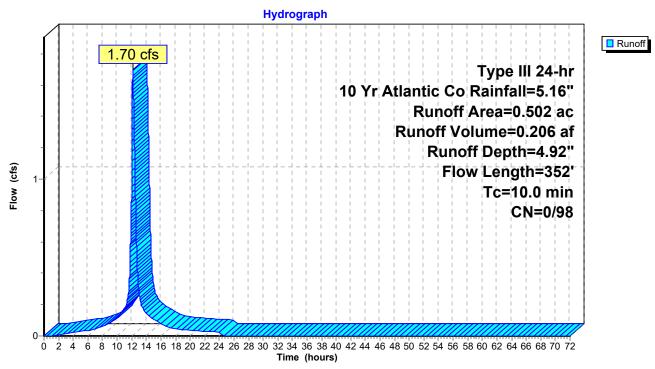
Runoff = 2.34 cfs @ 12.15 hrs, Volume= 0.284 af, Depth= 4.92"



#### Summary for Subcatchment 1Bp: PRDA-1Bp

Runoff = 0.45 cfs @ 12.18 hrs, Volume= 0.053 af, Depth= 1.84"




### Summary for Subcatchment 2Ai: PRDA-2Ai

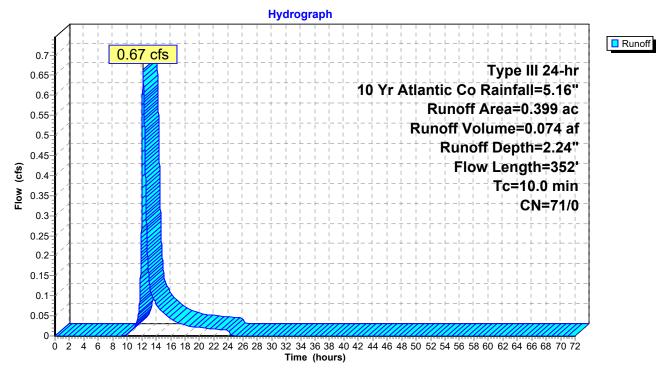
Runoff = 1.70 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 4.92"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"

| Area ( | ac) C  | N Dese   | cription    |             |                                               |
|--------|--------|----------|-------------|-------------|-----------------------------------------------|
| 0.2    | 281 9  | 8 Pave   | ed parking, | HSG B       |                                               |
| 0.2    | 221 9  | 8 Pave   | ed parking, | HSG D       |                                               |
| 0.5    | 502 9  | 8 Weig   | ghted Aver  | age         |                                               |
| 0.5    | 502 9  | 98 100.  | 00% Impe    | rvious Area |                                               |
|        |        |          |             |             |                                               |
| Тс     | Length | Slope    | Velocity    | Capacity    | Description                                   |
| (min)  | (feet) | (ft/ft)  | (ft/sec)    | (cfs)       |                                               |
| 1.2    | 89     | 0.0150   | 1.23        |             | Sheet Flow, PRDA-2.1                          |
|        |        |          |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 1.2    | 263    | 0.0050   | 3.72        | 4.57        | Pipe Channel, PRDA-2.1                        |
|        |        |          |             |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |
|        |        |          |             |             | n= 0.013                                      |
| 2.4    | 352    | Total, I | ncreased t  | o minimum   | Tc = 10.0 min                                 |

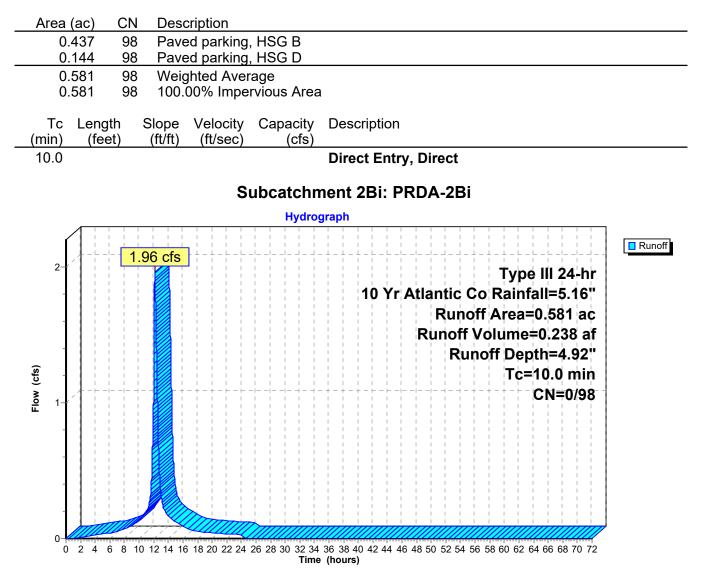
# Subcatchment 2Ai: PRDA-2Ai




### Summary for Subcatchment 2Ap: PRDA-2Ap

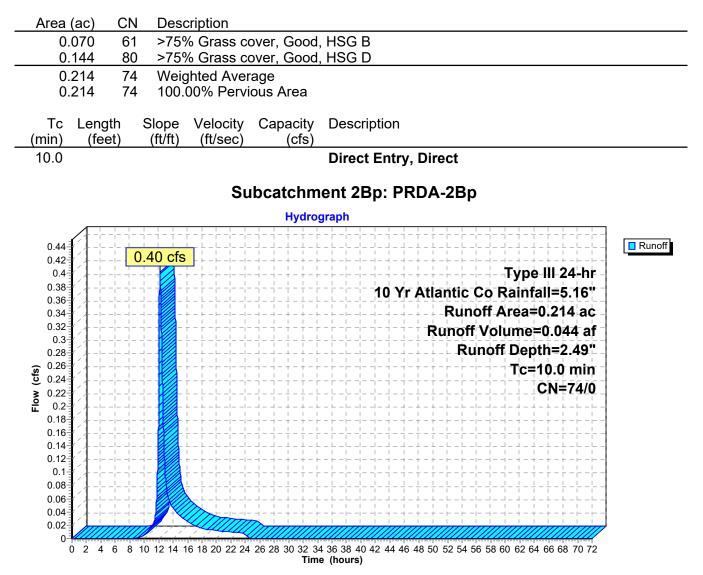
Runoff = 0.67 cfs @ 12.18 hrs, Volume= 0.074 af, Depth= 2.24"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Yr Atlantic Co Rainfall=5.16"


| Area (a       | c) C             | N Desc           | cription             |                   |                                                                                                                      |
|---------------|------------------|------------------|----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|
| 0.19          | 93 6             | 1 >759           | % Grass co           | over, Good,       | HSG B                                                                                                                |
| 0.20          | )6 8             | 0 >759           | % Grass co           | over, Good,       | HSG D                                                                                                                |
| 0.39          | 997              | 1 Weig           | ghted Aver           | age               |                                                                                                                      |
| 0.39          | 997              | 1 100.           | 00% Pervi            | ous Area          |                                                                                                                      |
| Tc L<br>(min) | .ength<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                          |
| 1.2           | 89               | 0.0150           | 1.23                 | (010)             | Sheet Flow, PRDA-2.1                                                                                                 |
| 1.2           | 263              | 0.0050           | 3.72                 | 4.57              | Smooth surfaces n= 0.011 P2= 3.36"<br><b>Pipe Channel, PRDA-2.1</b><br>15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |
|               |                  |                  |                      |                   | n= 0.013                                                                                                             |
| 2.4           | 352              | Total, li        | ncreased t           | o minimum         | Tc = 10.0 min                                                                                                        |

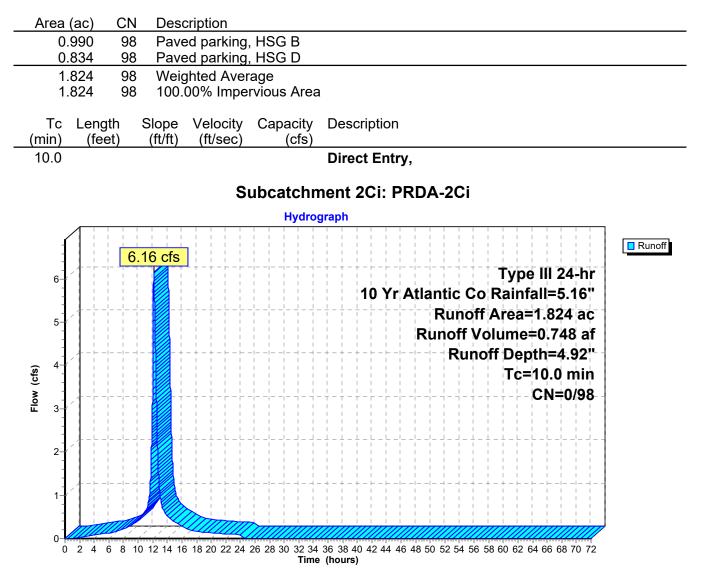
# Subcatchment 2Ap: PRDA-2Ap




#### Summary for Subcatchment 2Bi: PRDA-2Bi

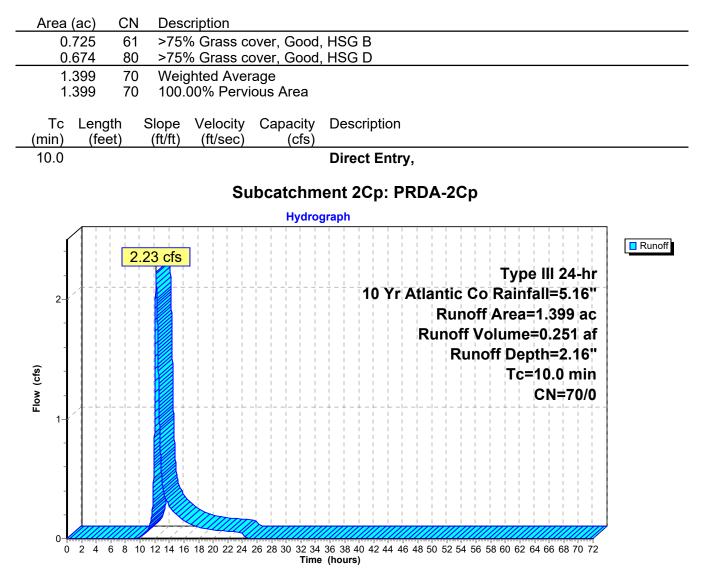
Runoff = 1.96 cfs @ 12.15 hrs, Volume= 0.238 af, Depth= 4.92"




#### Summary for Subcatchment 2Bp: PRDA-2Bp

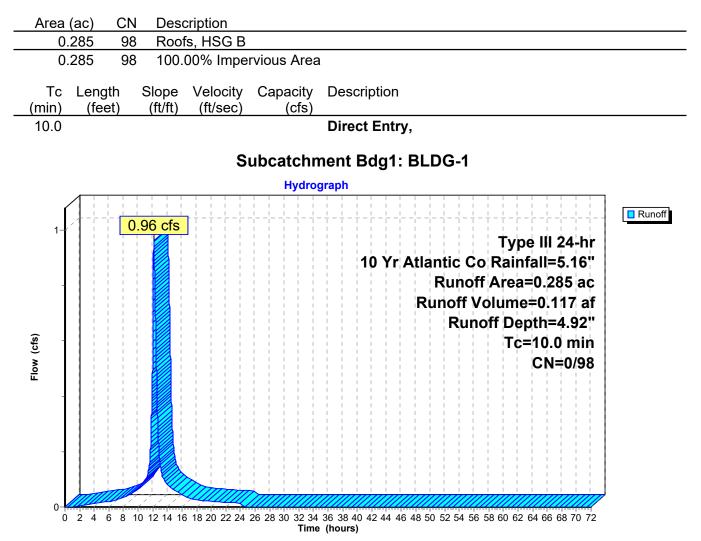
Runoff = 0.40 cfs @ 12.17 hrs, Volume= 0.044 af, Depth= 2.49"




#### Summary for Subcatchment 2Ci: PRDA-2Ci

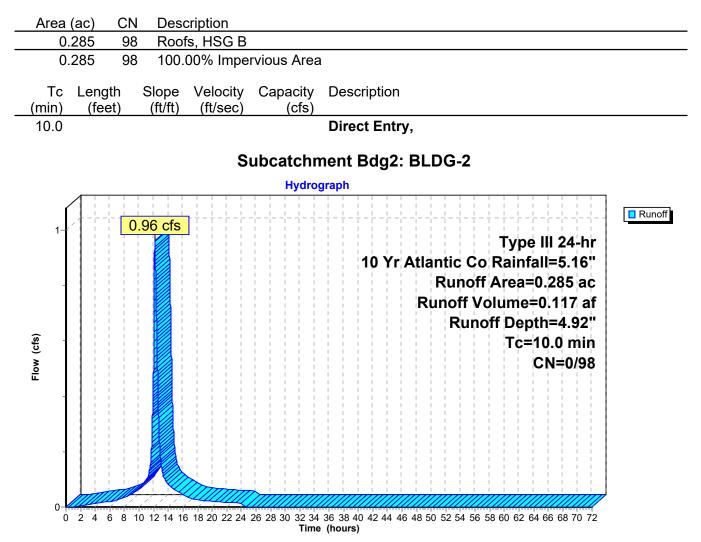
Runoff = 6.16 cfs @ 12.15 hrs, Volume= 0.748 af, Depth= 4.92"




#### Summary for Subcatchment 2Cp: PRDA-2Cp

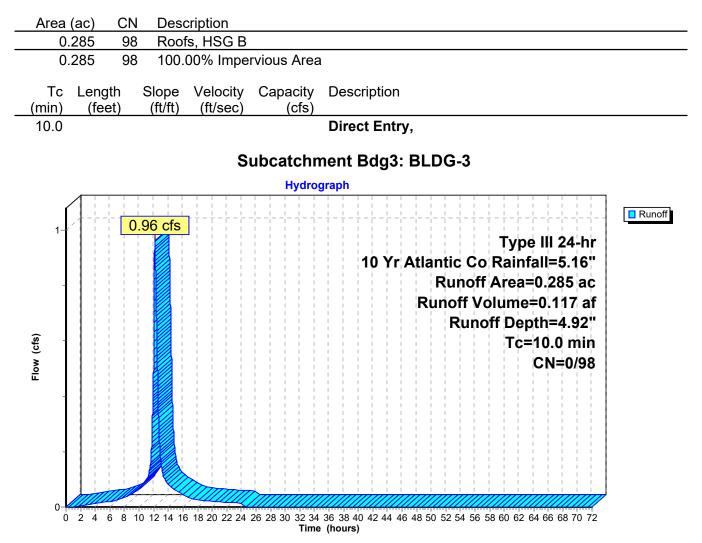
Runoff = 2.23 cfs @ 12.18 hrs, Volume= 0.251 af, Depth= 2.16"




#### Summary for Subcatchment Bdg1: BLDG-1

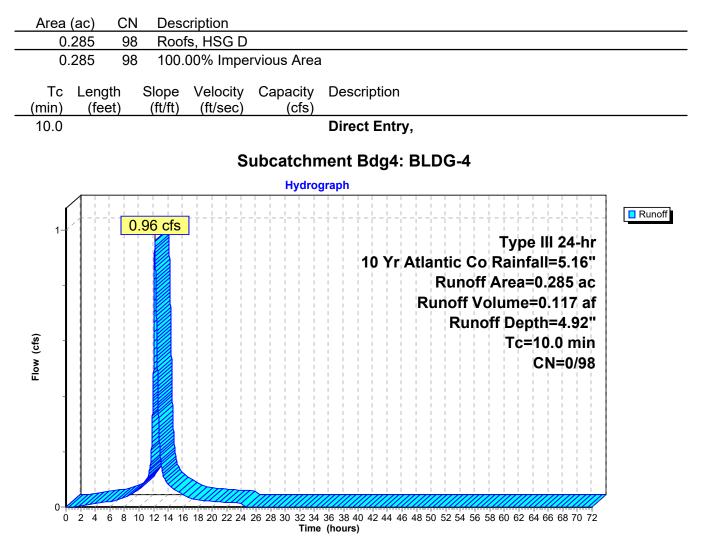
Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.117 af, Depth= 4.92"




#### Summary for Subcatchment Bdg2: BLDG-2

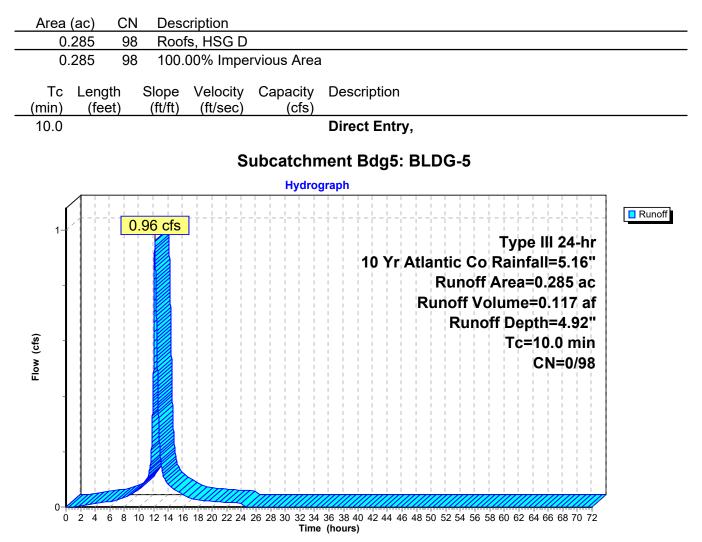
Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.117 af, Depth= 4.92"




#### Summary for Subcatchment Bdg3: BLDG-3

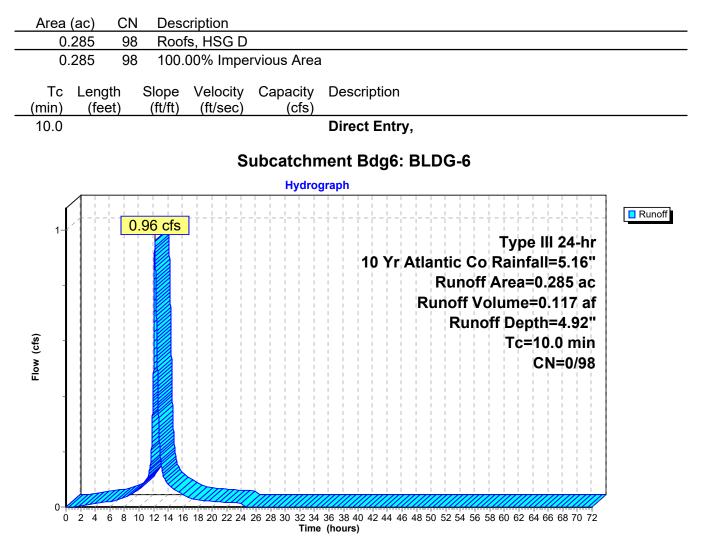
Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.117 af, Depth= 4.92"




#### Summary for Subcatchment Bdg4: BLDG-4

Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.117 af, Depth= 4.92"




#### Summary for Subcatchment Bdg5: BLDG-5

Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.117 af, Depth= 4.92"



#### Summary for Subcatchment Bdg6: BLDG-6

Runoff = 0.96 cfs @ 12.15 hrs, Volume= 0.117 af, Depth= 4.92"

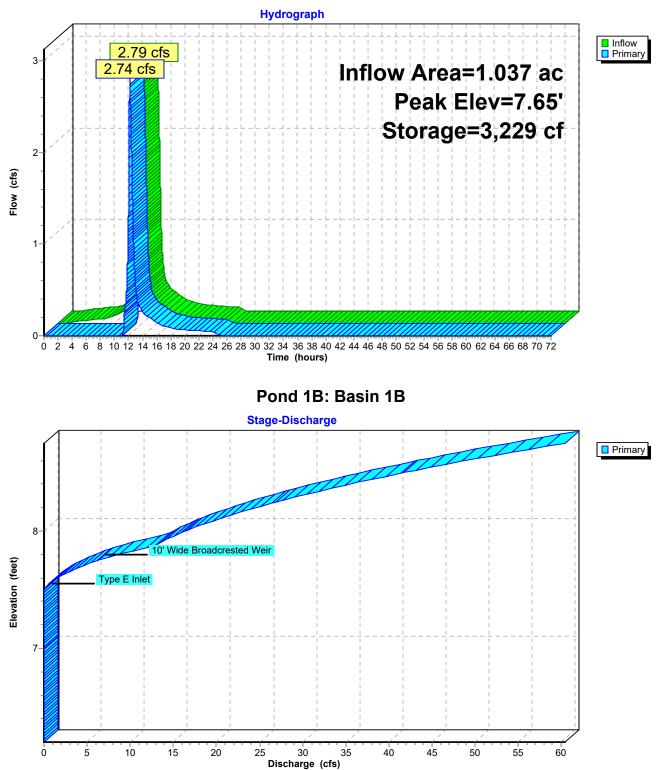


# Summary for Pond 1B: Basin 1B

| Inflow Area = | 1.037 ac, 66.83% Impervious, Inflov | w Depth = 3.90" for 10 Yr Atlantic Co event |
|---------------|-------------------------------------|---------------------------------------------|
| Inflow =      | 2.79 cfs @ 12.16 hrs, Volume=       | 0.337 af                                    |
| Outflow =     | 2.74 cfs @ 12.19 hrs, Volume=       | 0.274 af, Atten= 2%, Lag= 2.2 min           |
| Primary =     | 2.74 cfs @ 12.19 hrs, Volume=       | 0.274 af                                    |

Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.65' @ 12.19 hrs Surf.Area= 3,320 sf Storage= 3,229 cf

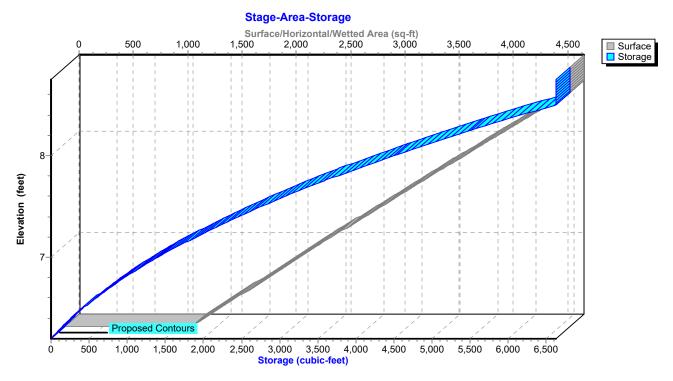
Plug-Flow detention time= 142.9 min calculated for 0.274 af (81% of inflow) Center-of-Mass det. time= 66.2 min (840.5 - 774.3)


| Volume     | Invei    | rt Avail.Sto | orage Storag | ge Description      |                                   |
|------------|----------|--------------|--------------|---------------------|-----------------------------------|
| #1         | 6.20     | )' 6,6       | 27 cf Propo  | osed Contours (Pr   | rismatic)Listed below (Recalc)    |
| <b>-</b> 1 |          |              |              | 0                   |                                   |
| Elevatio   |          | Surf.Area    | Inc.Store    | Cum.Store           |                                   |
| (fee       | et)      | (sq-ft)      | (cubic-feet) | (cubic-feet)        |                                   |
| 6.2        | 20       | 1,170        | 0            | 0                   |                                   |
| 7.0        | 00       | 2,335        | 1,402        | 1,402               |                                   |
| 8.0        | )0       | 3,860        | 3,098        | 4,500               |                                   |
| 8.5        | 50       | 4,650        | 2,128        | 6,627               |                                   |
|            |          |              |              |                     |                                   |
| Device     | Routing  | Invert       | Outlet Devi  | ces                 |                                   |
| #1         | Primary  | 3.75'        | 15.0" Roui   | nd 15" Culvert      |                                   |
|            |          |              | L= 48.0' R   | CP, sq.cut end pro  | ojecting, Ke= 0.500               |
|            |          |              |              |                     | 36' S= 0.0081 '/' Cc= 0.900       |
|            |          |              |              |                     | both interior, Flow Area= 1.23 sf |
| #2         | Device 1 | 7.50'        |              | 0" Horiz. Type E l  |                                   |
|            |          |              |              | eir flow at low hea |                                   |
| #3         | Primary  | 7.75'        |              |                     | , Cv= 3.10 (C= 3.88)              |
|            | ,        | -            |              | 0.00 0.25 0.50      |                                   |
|            |          |              |              | 10.00 11.50 13.     |                                   |
|            |          |              |              | 10.00 11.00 10.     |                                   |

Primary OutFlow Max=2.74 cfs @ 12.19 hrs HW=7.65' TW=0.00' (Dynamic Tailwater)

-1=15" Culvert (Passes 2.74 cfs of 10.60 cfs potential flow) —2=Type E Inlet (Weir Controls 2.74 cfs @ 1.25 fps)

-3=10' Wide Broadcrested Weir (Controls 0.00 cfs)


Pond 1B: Basin 1B



#### **Post Developed Conditions** Prepared by Sciullo

HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Pond 1B: Basin 1B



#### Summary for Pond 2C: Basin 2C

| Inflow Area = | = | 4.018 ac, 59.86% Impervious, Inflow Depth = 3.83" for 10 Yr Atlantic Co event |
|---------------|---|-------------------------------------------------------------------------------|
| Inflow =      | : | 10.75 cfs @ 12.16 hrs, Volume= 1.282 af                                       |
| Outflow =     | : | 1.05 cfs @ 13.89 hrs, Volume= 0.977 af, Atten= 90%, Lag= 104.1 min            |
| Primary =     | : | 1.05 cfs @ 13.89 hrs, Volume= 0.977 af                                        |

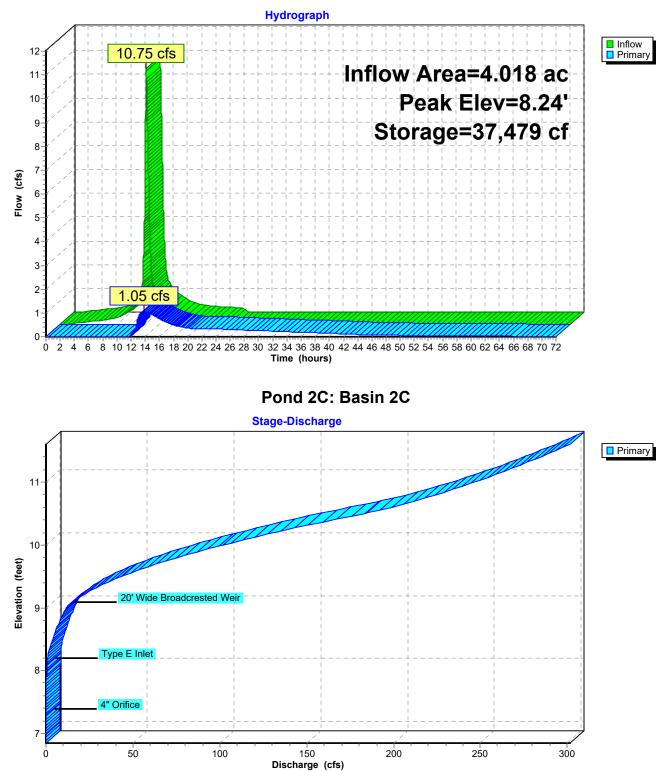
Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.24' @ 13.89 hrs Surf.Area= 29,432 sf Storage= 37,479 cf

Plug-Flow detention time= 840.4 min calculated for 0.976 af (76% of inflow) Center-of-Mass det. time= 753.2 min (1,532.9 - 779.7)

| Volume   | Inver                                                                                                                | t Avail.Sto                                                                                                                                                                  | rage Storage                                                                                                                     | e Description |                                |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|--|--|--|
| #1       | 6.85                                                                                                                 | 5' 94,94                                                                                                                                                                     | 4 cf <b>Proposed Contours (Prismatic)</b> Listed below (Recalc)                                                                  |               | rismatic)Listed below (Recalc) |  |  |  |
| Elevatio | on S                                                                                                                 | Surf.Area                                                                                                                                                                    | Inc.Store                                                                                                                        | Cum.Store     |                                |  |  |  |
| (fee     | et)                                                                                                                  | (sq-ft)                                                                                                                                                                      | (cubic-feet)                                                                                                                     | (cubic-feet)  |                                |  |  |  |
| 6.8      | 35                                                                                                                   | 24,460                                                                                                                                                                       | 0                                                                                                                                | 0             |                                |  |  |  |
| 7.0      | 00                                                                                                                   | 24,990                                                                                                                                                                       | 3,709                                                                                                                            | 3,709         |                                |  |  |  |
| 8.0      | 00                                                                                                                   | 28,545                                                                                                                                                                       | 26,768                                                                                                                           | 30,476        |                                |  |  |  |
| 9.0      | 00                                                                                                                   | 32,215                                                                                                                                                                       | 30,380                                                                                                                           | 60,856        |                                |  |  |  |
| 10.0     | 00                                                                                                                   | 35,960                                                                                                                                                                       | 34,088                                                                                                                           | 94,944        |                                |  |  |  |
| Device   | Routing                                                                                                              | Invert                                                                                                                                                                       | Outlet Device                                                                                                                    | es            |                                |  |  |  |
| #1       | Primary                                                                                                              | 3.00'                                                                                                                                                                        | 15.0" Round                                                                                                                      | d 15" Culvert |                                |  |  |  |
|          |                                                                                                                      | L= 34.0' CPP, square edge headwall, Ke= 0.500<br>Inlet / Outlet Invert= 3.00' / 1.94' S= 0.0312 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf |                                                                                                                                  |               |                                |  |  |  |
| #2       | Device 1                                                                                                             | 7.30'                                                                                                                                                                        | 4.0" Vert. 4" Orifice C= 0.600                                                                                                   |               |                                |  |  |  |
| #3       | Device 1                                                                                                             | 8.10'                                                                                                                                                                        | 48.0" W x 42.0" H Vert. Type E Inlet C= 0.600                                                                                    |               |                                |  |  |  |
| #4       | Primary                                                                                                              | 9.00'                                                                                                                                                                        | <b>20' Wide Broadcrested Weir, Cv= 3.10 (C= 3.88)</b><br>Head (feet) 0.00 0.50 1.00 1.50<br>Width (feet) 20.00 23.00 26.00 29.00 |               |                                |  |  |  |
| Drimon   | <b>Drimony OutFlow Movel OF of <math>\infty</math> 12.00 hrs. <math>UM=0.041</math> TM=0.001 (Dynamic Teilwater)</b> |                                                                                                                                                                              |                                                                                                                                  |               |                                |  |  |  |

**Primary OutFlow** Max=1.05 cfs @ 13.89 hrs HW=8.24' TW=0.00' (Dynamic Tailwater)

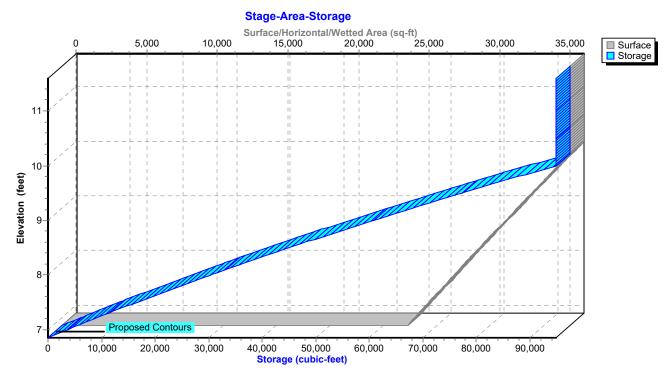
-1=15" Culvert (Passes 1.05 cfs of 12.70 cfs potential flow)


**2=4" Orifice** (Orifice Controls 0.37 cfs @ 4.24 fps)

**-3=Type E Inlet** (Orifice Controls 0.68 cfs @ 1.21 fps)

-4=20' Wide Broadcrested Weir (Controls 0.00 cfs)

# Post Developed ConditionsType III 24-hr10 Yr Atlantic Co Rainfall=5.16"Prepared by SciulloPrinted 4/8/2020HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLCPage 55

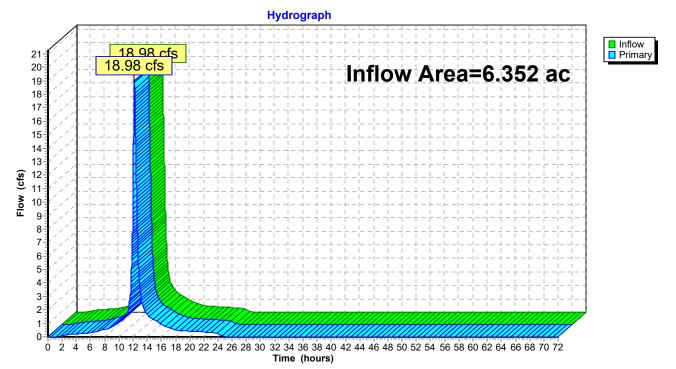

# Pond 2C: Basin 2C



#### **Post Developed Conditions** Prepared by Sciullo

HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

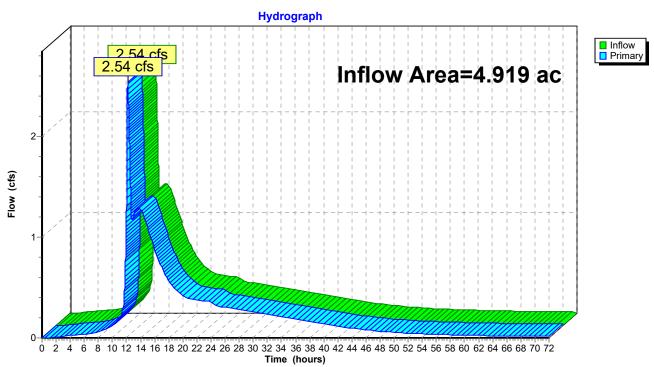
# Pond 2C: Basin 2C




# Summary for Link 1L: PT 1

| Inflow Area | a = | 6.352 ac, 82.07% Impervious, Inflow Depth = 4.25" for 10 Yr Atlantic Co event |
|-------------|-----|-------------------------------------------------------------------------------|
| Inflow      | =   | 18.98 cfs @ 12.16 hrs, Volume= 2.250 af                                       |
| Primary     | =   | 18.98 cfs @ 12.17 hrs, Volume= 2.250 af, Atten= 0%, Lag= 0.6 min              |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs


#### Link 1L: PT 1

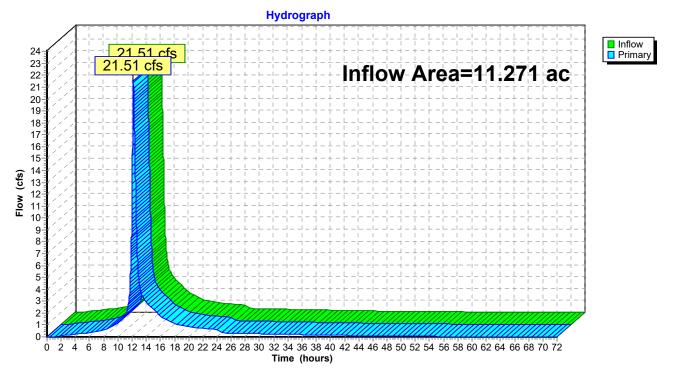


# Summary for Link 2L: PT 2

| Inflow Area | = | 4.919 ac, 59.10% Impervious, Inflow Depth > 3.07" for 10 Yr Atlantic Co event |
|-------------|---|-------------------------------------------------------------------------------|
| Inflow =    | = | 2.54 cfs @ 12.16 hrs, Volume= 1.257 af                                        |
| Primary =   | = | 2.54 cfs @ 12.17 hrs, Volume= 1.257 af, Atten= 0%, Lag= 0.6 min               |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs




#### Link 2L: PT 2

# Summary for Link 4L: TTA

| Inflow Are | a = | 11.271 ac, 72.04% Impervious, Inflow Depth > 3.73" for 10 Yr Atlantic Co event |
|------------|-----|--------------------------------------------------------------------------------|
| Inflow     | =   | 21.51 cfs @ 12.17 hrs, Volume=     3.507 af                                    |
| Primary    | =   | 21.51 cfs @ 12.18 hrs, Volume= 3.507 af, Atten= 0%, Lag= 0.6 min               |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

#### Link 4L: TTA

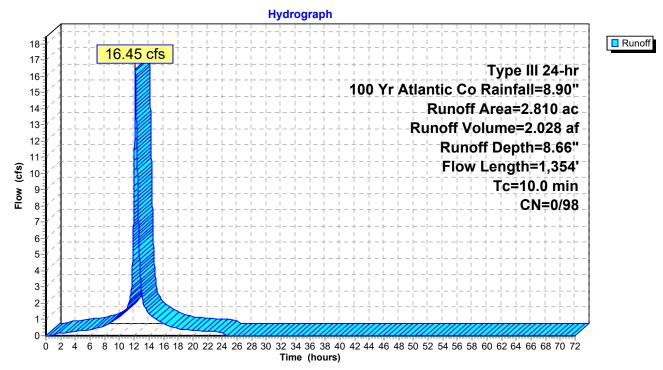


| Post Developed Conditions                        | Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90" |
|--------------------------------------------------|--------------------------------------------------|
| Prepared by Sciullo                              | Printed 4/8/2020                                 |
| HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD So | ftware Solutions LLC Page 60                     |

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Sim-Route method - Pond routing by Sim-Route method w/Net Flows

| Subcatchment1Ai: PRDA-1Ai | Runoff Area=2.810 ac 100.00% Impervious Runoff Depth=8.66"<br>Flow Length=1,354' Tc=10.0 min CN=0/98 Runoff=16.45 cfs 2.028 af |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment1Ap: PRDA-1Ap | Runoff Area=0.795 ac 0.00% Impervious Runoff Depth=4.76"<br>Flow Length=1,354' Tc=10.0 min CN=66/0 Runoff=2.88 cfs 0.315 af    |
| Subcatchment1Bi: PRDA-1Bi | Runoff Area=0.693 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=4.06 cfs 0.500 af                     |
| Subcatchment1Bp: PRDA-1Bp | Runoff Area=0.344 ac 0.00% Impervious Runoff Depth=4.76"<br>Tc=10.0 min CN=66/0 Runoff=1.25 cfs 0.136 af                       |
| Subcatchment2Ai: PRDA-2Ai | Runoff Area=0.502 ac 100.00% Impervious Runoff Depth=8.66"<br>Flow Length=352' Tc=10.0 min CN=0/98 Runoff=2.94 cfs 0.362 af    |
| Subcatchment2Ap: PRDA-2Ap | Runoff Area=0.399 ac 0.00% Impervious Runoff Depth=5.37"<br>Flow Length=352' Tc=10.0 min CN=71/0 Runoff=1.64 cfs 0.179 af      |
| Subcatchment2Bi: PRDA-2Bi | Runoff Area=0.581 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=3.40 cfs 0.419 af                     |
| Subcatchment2Bp: PRDA-2Bp | Runoff Area=0.214 ac 0.00% Impervious Runoff Depth=5.74"<br>Tc=10.0 min CN=74/0 Runoff=0.94 cfs 0.102 af                       |
| Subcatchment2Ci: PRDA-2Ci | Runoff Area=1.824 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=10.68 cfs 1.316 af                    |
| Subcatchment2Cp: PRDA-2Cp | Runoff Area=1.399 ac 0.00% Impervious Runoff Depth=5.25"<br>Tc=10.0 min CN=70/0 Runoff=5.62 cfs 0.612 af                       |
| SubcatchmentBdg1: BLDG-1  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg2: BLDG-2  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| Subcatchment Bdg3: BLDG-3 | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| Subcatchment Bdg4: BLDG-4 | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg5: BLDG-5  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| Subcatchment Bdg6: BLDG-6 | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |

| <b>Post Developed Conditions</b><br>Prepared by Sciullo<br>HydroCAD® 10.00-21 s/n M10478 © 2018 Hydro | Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"Printed 4/8/2020DCAD Software Solutions LLCPage 61                    |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Pond 1B: Basin 1B                                                                                     | Peak Elev=7.73' Storage=3,496 cf Inflow=5.30 cfs 0.636 af                                                             |
| Pond 2C: Basin 2C                                                                                     | Outflow=5.24 cfs 0.573 af<br>Peak Elev=8.81' Storage=54,769 cf Inflow=20.62 cfs 2.450 af<br>Outflow=8.15 cfs 2.142 af |
| Link 1L: PT 1                                                                                         | Inflow=34.47 cfs  4.150 af<br>Primary=34.47 cfs  4.150 af                                                             |
| Link 2L: PT 2                                                                                         | Inflow=10.28 cfs 2.683 af<br>Primary=10.28 cfs 2.683 af                                                               |
| Link 4L: TTA                                                                                          | Inflow=40.88 cfs 6.833 af<br>Primary=40.88 cfs 6.833 af                                                               |
|                                                                                                       | Runoff Volume = 7.204 af Average Runoff Depth = 7.67"<br>7.96% Pervious = 3.151 ac 72.04% Impervious = 8.120 ac       |


#### Summary for Subcatchment 1Ai: PRDA-1Ai

Runoff = 16.45 cfs @ 12.15 hrs, Volume= 2.028 af, Depth= 8.66"

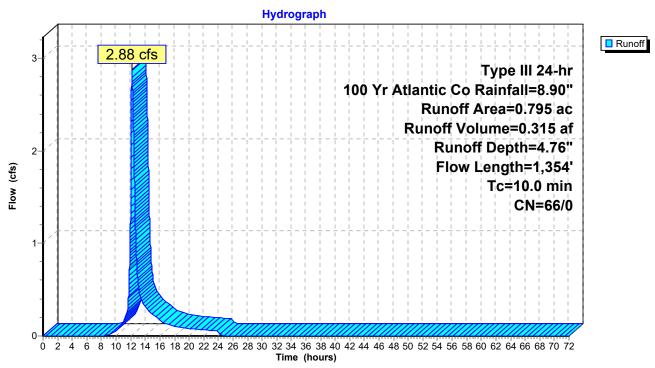
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area                          | (ac)   | CN Des  | cription    |             |                                               |
|-------------------------------|--------|---------|-------------|-------------|-----------------------------------------------|
| 1                             | .113   | 98 Pav  |             |             |                                               |
| 1.559 98 Paved parking, HSG D |        |         |             |             |                                               |
| 0.                            | .138   | 98 Unc  | onnected r  | oofs, HSG   | В                                             |
| 2                             | .810   | 98 Wei  | ghted Aver  | age         |                                               |
| 2                             | .810   | 98 100  | .00% Impe   | rvious Area | l                                             |
|                               |        |         |             |             |                                               |
| Тс                            | Length | Slope   | Velocity    | Capacity    | Description                                   |
| (min)                         | (feet) | (ft/ft) | (ft/sec)    | (cfs)       | ·                                             |
| 1.4                           | 100    | 0.0130  | 1.19        |             | Sheet Flow, PRDA-1.1                          |
|                               |        |         |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.4                           | 1,254  | 0.0030  | 3.26        | 5.75        | Pipe Channel, PRDA-1.2                        |
|                               |        |         |             |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|                               |        |         |             |             | n= 0.013                                      |
| 7.8                           | 1,354  | Total,  | Increased t | o minimum   | Tc = 10.0 min                                 |

Subcatchment 1Ai: PRDA-1Ai

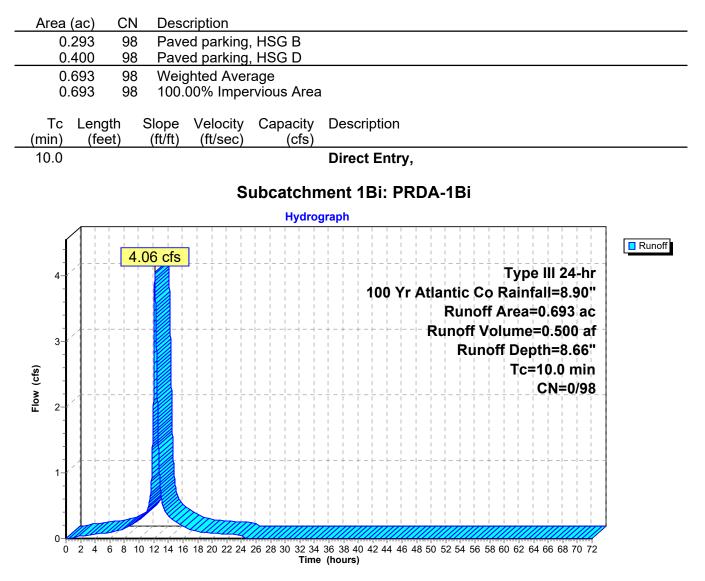


## Summary for Subcatchment 1Ap: PRDA-1Ap


Runoff = 2.88 cfs @ 12.16 hrs, Volume= 0.315 af, Depth= 4.76"

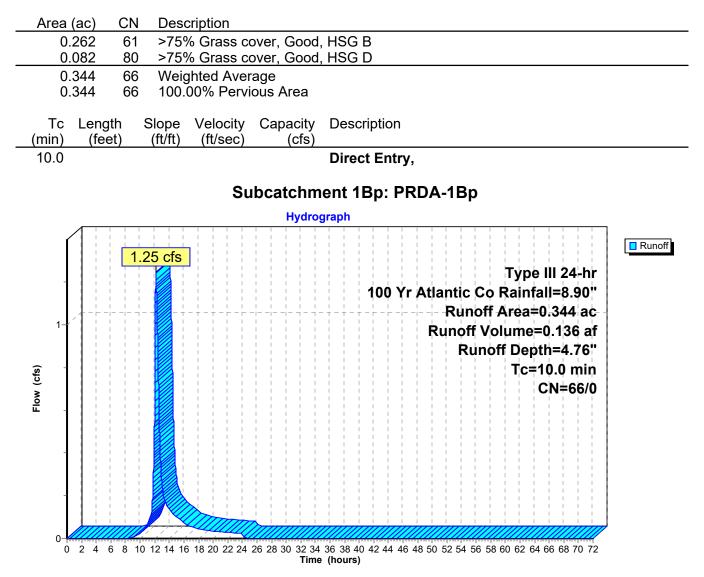
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| _ | Area        | (ac)            | CN       | Des             | cription                  |                   |                                                                                            |
|---|-------------|-----------------|----------|-----------------|---------------------------|-------------------|--------------------------------------------------------------------------------------------|
|   | 0.          | 574             | 61       |                 |                           | over, Good,       |                                                                                            |
| _ | 0.          | 221             | 80       | >759            | <u>% Grass co</u>         | ver, Good,        | HSG D                                                                                      |
|   | -           | 795<br>795      | 66<br>66 |                 | ghted Avera<br>00% Pervie |                   |                                                                                            |
|   | Tc<br>(min) | Lengtl<br>(feet |          | lope<br>(ft/ft) | Velocity<br>(ft/sec)      | Capacity<br>(cfs) | Description                                                                                |
|   | 1.4         | 10              | 0 0.0    | 0130            | 1.19                      |                   | Sheet Flow, PRDA-1.1<br>Smooth surfaces n= 0.011 P2= 3.36"                                 |
|   | 6.4         | 1,254           | 4 0.0    | 030             | 3.26                      | 5.75              | <b>Pipe Channel, PRDA-1.2</b><br>18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'<br>n= 0.013 |
|   | 7.8         | 1.354           | 4 To     | tal. I          | ncreased to               | o minimum         | Tc = 10.0 min                                                                              |


8 1,354 Total, Increased to minimum Tc = 10.0 min

## Subcatchment 1Ap: PRDA-1Ap




#### Summary for Subcatchment 1Bi: PRDA-1Bi

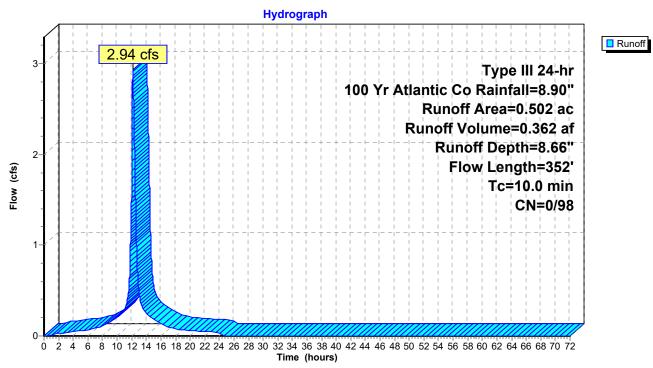
Runoff = 4.06 cfs @ 12.15 hrs, Volume= 0.500 af, Depth= 8.66"



#### Summary for Subcatchment 1Bp: PRDA-1Bp

Runoff = 1.25 cfs @ 12.16 hrs, Volume= 0.136 af, Depth= 4.76"




## Summary for Subcatchment 2Ai: PRDA-2Ai

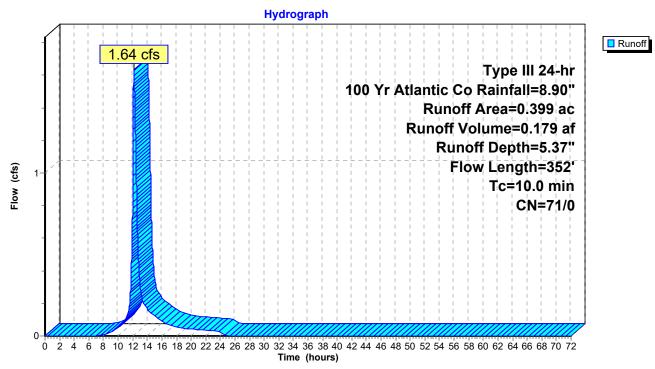
Runoff = 2.94 cfs @ 12.15 hrs, Volume= 0.362 af, Depth= 8.66"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area ( | ac) C                                             | N Dese  | cription    |             |                                               |  |
|--------|---------------------------------------------------|---------|-------------|-------------|-----------------------------------------------|--|
| 0.2    | 281 9                                             | 8 Pave  | ed parking, | HSG B       |                                               |  |
| 0.2    | 221 9                                             | 8 Pave  | ed parking, | HSG D       |                                               |  |
| 0.5    | 502 9                                             | 8 Weig  | ghted Aver  | age         |                                               |  |
| 0.5    | 502 9                                             | 98 100. | 00% Impe    | rvious Area |                                               |  |
|        |                                                   |         |             |             |                                               |  |
| Тс     | Length                                            | Slope   | Velocity    | Capacity    | Description                                   |  |
| (min)  | (feet)                                            | (ft/ft) | (ft/sec)    | (cfs)       |                                               |  |
| 1.2    | 89                                                | 0.0150  | 1.23        |             | Sheet Flow, PRDA-2.1                          |  |
|        |                                                   |         |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |
| 1.2    | 263                                               | 0.0050  | 3.72        | 4.57        | Pipe Channel, PRDA-2.1                        |  |
|        |                                                   |         |             |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |  |
|        |                                                   |         |             |             | n= 0.013                                      |  |
| 2.4    | 2.4 352 Total, Increased to minimum Tc = 10.0 min |         |             |             |                                               |  |

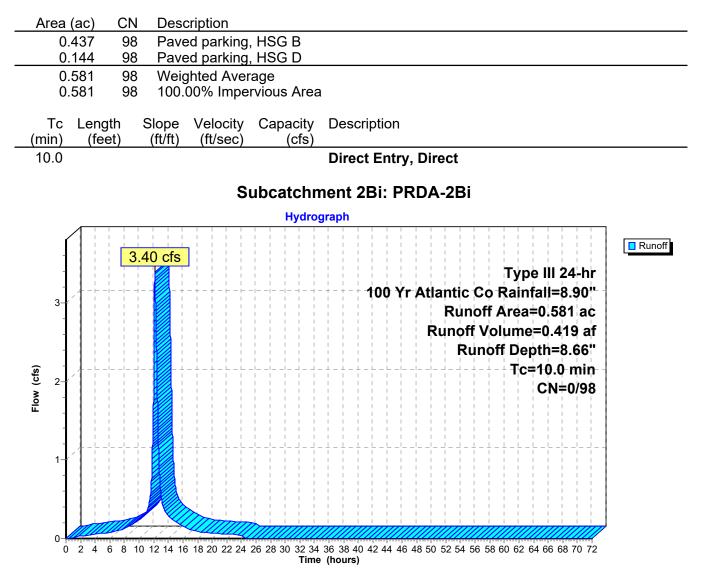
## Subcatchment 2Ai: PRDA-2Ai




## Summary for Subcatchment 2Ap: PRDA-2Ap

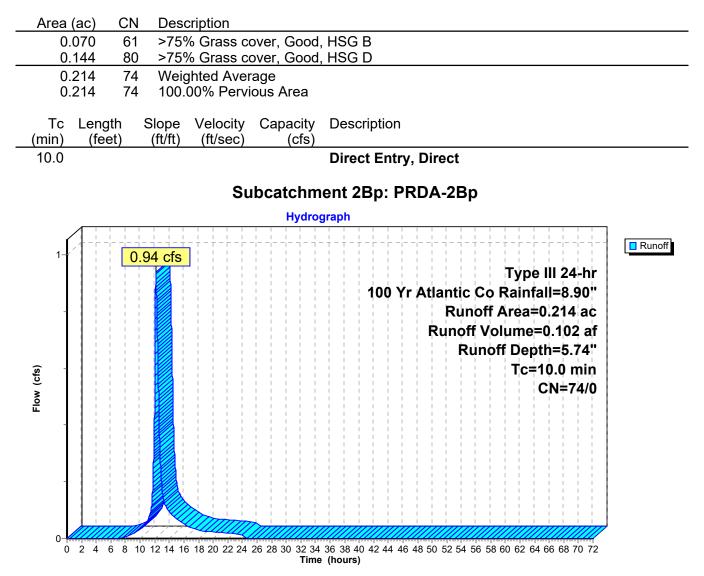
Runoff = 1.64 cfs @ 12.16 hrs, Volume= 0.179 af, Depth= 5.37"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"


| Area (       | (ac) C                                 | N Des    | cription   |             |                                               |  |
|--------------|----------------------------------------|----------|------------|-------------|-----------------------------------------------|--|
| 0.1          | 0.193 61 >75% Grass cover, Good, HSG B |          |            |             |                                               |  |
| 0.2          | 206 8                                  | 30 >75°  | % Grass co | over, Good, | , HSG D                                       |  |
| 0.3          | 399                                    | 71 Weig  | ghted Aver | age         |                                               |  |
| 0.3          | 399                                    | 71 100.  | 00% Pervi  | ous Area    |                                               |  |
|              |                                        |          |            |             |                                               |  |
| Tc           | Length                                 | Slope    | Velocity   | Capacity    | Description                                   |  |
| <u>(min)</u> | (feet)                                 | (ft/ft)  | (ft/sec)   | (cfs)       |                                               |  |
| 1.2          | 89                                     | 0.0150   | 1.23       |             | Sheet Flow, PRDA-2.1                          |  |
|              |                                        |          |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |
| 1.2          | 263                                    | 0.0050   | 3.72       | 4.57        | Pipe Channel, PRDA-2.1                        |  |
|              |                                        |          |            |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |  |
|              |                                        |          |            |             | n= 0.013                                      |  |
| 2.4          | 352                                    | Total, I | ncreased t | o minimum   | Tc = 10.0 min                                 |  |

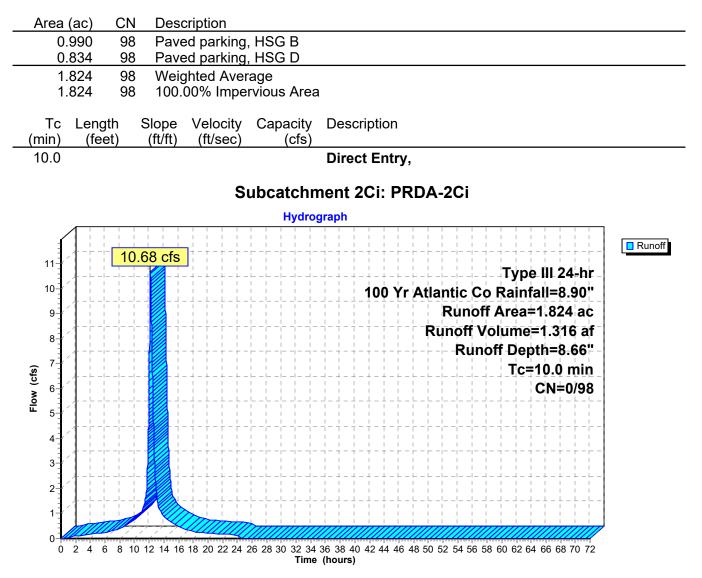
# Subcatchment 2Ap: PRDA-2Ap




#### Summary for Subcatchment 2Bi: PRDA-2Bi

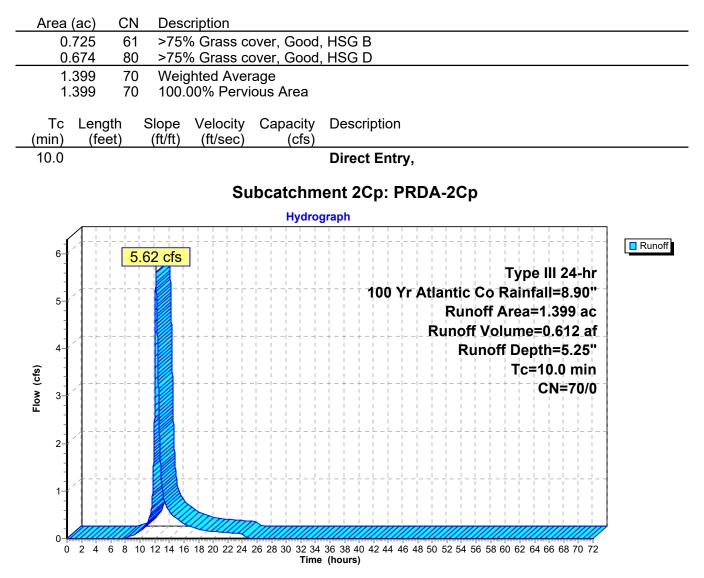
Runoff = 3.40 cfs @ 12.15 hrs, Volume= 0.419 af, Depth= 8.66"




#### Summary for Subcatchment 2Bp: PRDA-2Bp

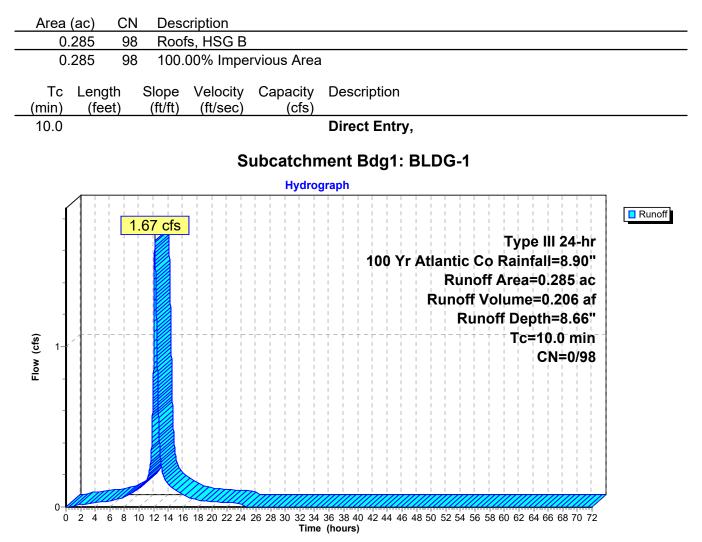
Runoff = 0.94 cfs @ 12.16 hrs, Volume= 0.102 af, Depth= 5.74"




#### Summary for Subcatchment 2Ci: PRDA-2Ci

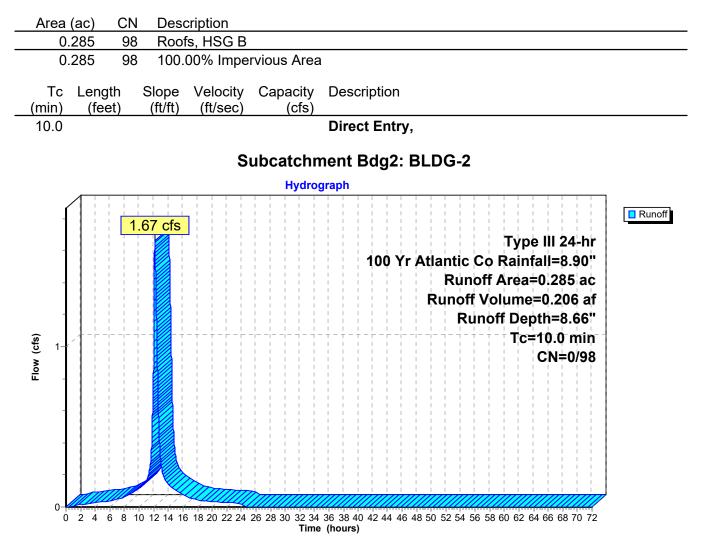
Runoff = 10.68 cfs @ 12.15 hrs, Volume= 1.316 af, Depth= 8.66"




#### Summary for Subcatchment 2Cp: PRDA-2Cp

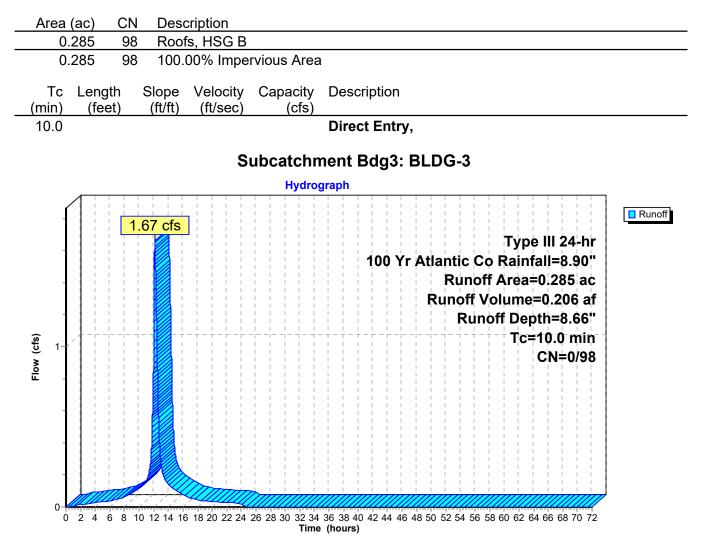
Runoff = 5.62 cfs @ 12.16 hrs, Volume= 0.612 af, Depth= 5.25"




## Summary for Subcatchment Bdg1: BLDG-1

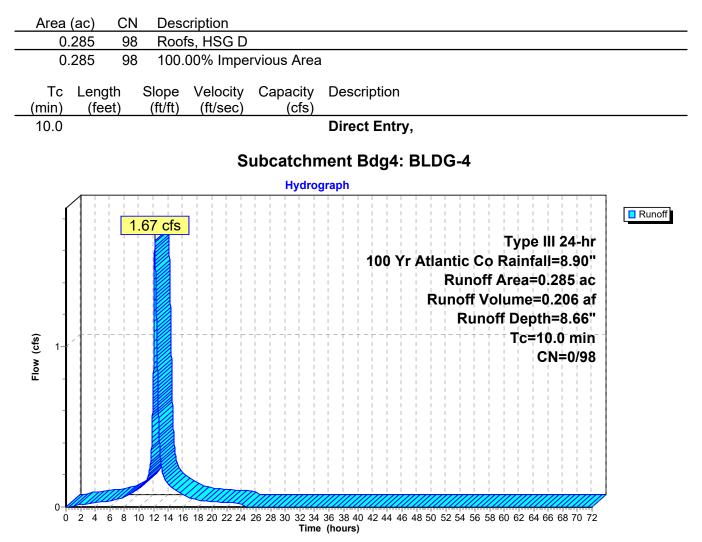
Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




## Summary for Subcatchment Bdg2: BLDG-2

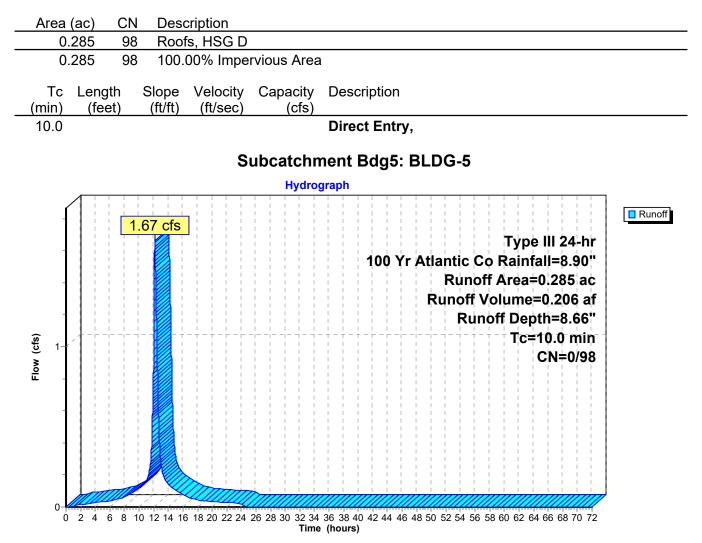
Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




## Summary for Subcatchment Bdg3: BLDG-3

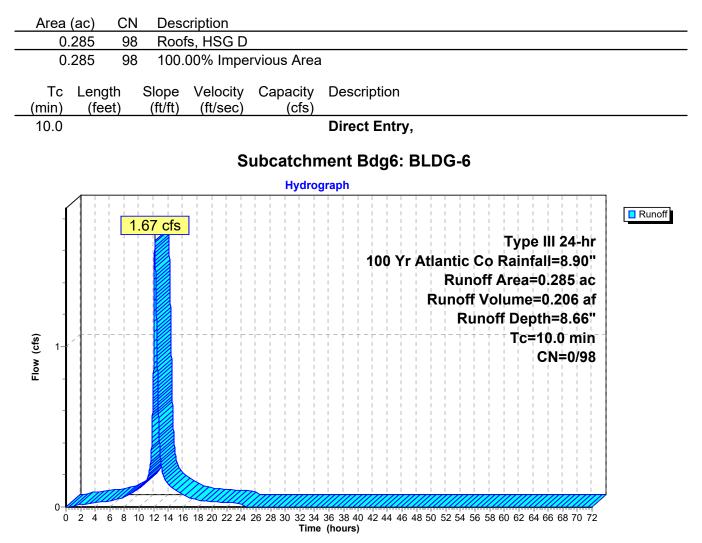
Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




### Summary for Subcatchment Bdg4: BLDG-4

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




### Summary for Subcatchment Bdg5: BLDG-5

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"



## Summary for Subcatchment Bdg6: BLDG-6

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"



## Summary for Pond 1B: Basin 1B

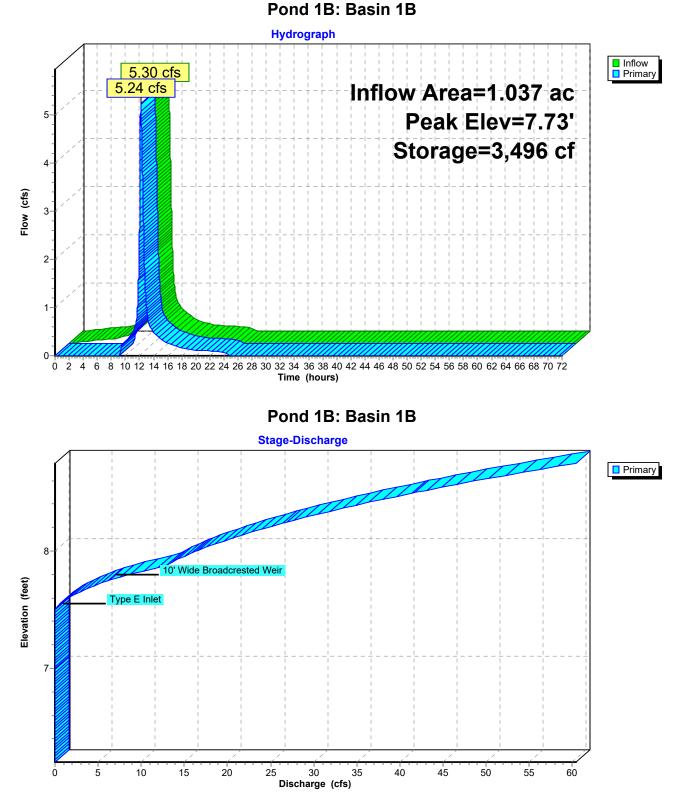
| Inflow Area = | 1.037 ac, 66.83% Impervious, Inflow D | Depth = 7.36" for 100 Yr Atlantic Co event |
|---------------|---------------------------------------|--------------------------------------------|
| Inflow =      | 5.30 cfs @ 12.16 hrs, Volume=         | 0.636 af                                   |
| Outflow =     | 5.24 cfs @ 12.19 hrs, Volume=         | 0.573 af, Atten= 1%, Lag= 1.8 min          |
| Primary =     | 5.24 cfs @ 12.19 hrs, Volume=         | 0.573 af                                   |

Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.73' @ 12.19 hrs Surf.Area= 3,441 sf Storage= 3,496 cf

Plug-Flow detention time= 97.0 min calculated for 0.573 af (90% of inflow) Center-of-Mass det. time= 46.7 min (815.3 - 768.7)

| Volume          | me Invert Avail.Storage Storage Description |           |                                                   |                                                    |                                   |  |
|-----------------|---------------------------------------------|-----------|---------------------------------------------------|----------------------------------------------------|-----------------------------------|--|
| #1              | 6.20                                        | )' 6,6    | 27 cf Propos                                      | Proposed Contours (Prismatic)Listed below (Recalc) |                                   |  |
|                 |                                             |           | 0                                                 |                                                    |                                   |  |
| Elevatio        |                                             | Surf.Area | Inc.Store                                         | Cum.Store                                          |                                   |  |
| (fee            | et)                                         | (sq-ft)   | (cubic-feet)                                      | (cubic-feet)                                       |                                   |  |
| 6.20 1,170      |                                             | 1,170     | 0                                                 | 0                                                  |                                   |  |
| 7.0             | )0                                          | 2,335     | 1,402                                             | 1,402                                              |                                   |  |
| 8.0             | )0                                          | 3,860     | 3,098                                             | 4,500                                              |                                   |  |
| 8.5             | 50                                          | 4,650     | 2,128                                             | 6,627                                              |                                   |  |
|                 |                                             |           |                                                   |                                                    |                                   |  |
| Device          | Routing                                     | Invert    | Outlet Device                                     | es                                                 |                                   |  |
| #1              | Primary                                     | 3.75'     | 15.0" Roun                                        | 15.0" Round 15" Culvert                            |                                   |  |
|                 | j.                                          |           | L= 48.0' RC                                       | P, sq.cut end pro                                  | jecting, Ke= 0.500                |  |
|                 |                                             |           |                                                   |                                                    | 6' S= 0.0081 '/' Cc= 0.900        |  |
|                 |                                             |           |                                                   |                                                    | ooth interior, Flow Area= 1.23 sf |  |
| #2 Device 1 7.5 |                                             | 7.50'     | <b>48.0" x 42.0" Horiz. Type E Inlet</b> C= 0.600 |                                                    |                                   |  |
|                 |                                             |           |                                                   | eir flow at low hea                                |                                   |  |
| #3 Primary      |                                             | 7.75'     |                                                   |                                                    |                                   |  |
|                 | ····· <b>j</b>                              |           |                                                   | 0.00 0.25 0.50 0                                   |                                   |  |
|                 |                                             |           |                                                   | 10.00 11.50 13.                                    |                                   |  |
|                 |                                             |           |                                                   | 10.00 11.00 10.                                    | 00 14.00 10.00                    |  |

Primary OutFlow Max=5.23 cfs @ 12.19 hrs HW=7.72' TW=0.00' (Dynamic Tailwater)


-1=15" Culvert (Passes 5.23 cfs of 10.74 cfs potential flow) —2=Type E Inlet (Weir Controls 5.23 cfs @ 1.55 fps)

-3=10' Wide Broadcrested Weir ( Controls 0.00 cfs)

#### Post Developed Conditions Prepared by Sciullo

HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC


P. Pasin 1P



### **Post Developed Conditions** Prepared by Sciullo

HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Pond 1B: Basin 1B



## Summary for Pond 2C: Basin 2C

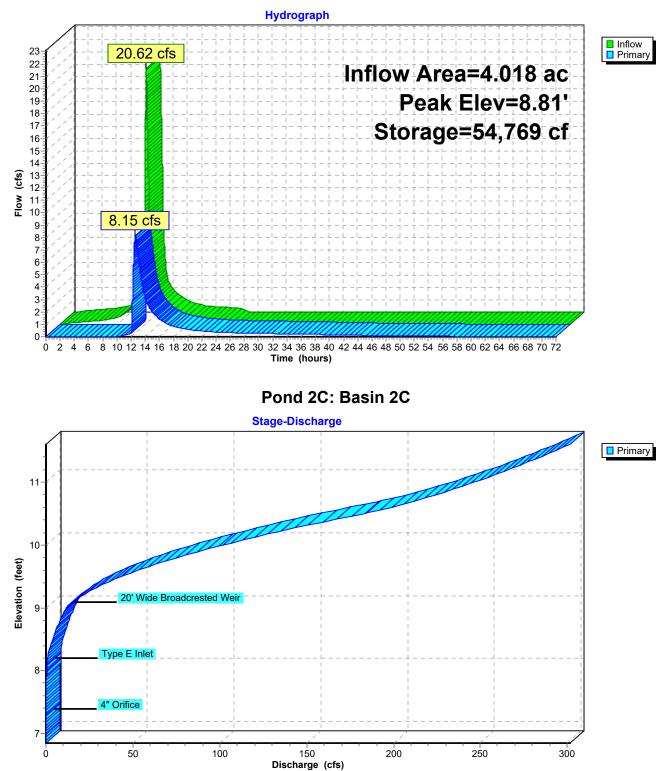
| Inflow Area = | 4.018 ac, 59.86% Impervious, I | nflow Depth = 7.32" for 100 Yr Atlantic Co event |
|---------------|--------------------------------|--------------------------------------------------|
| Inflow =      | 20.62 cfs @ 12.16 hrs, Volume= | 2.450 af                                         |
| Outflow =     | 8.15 cfs @ 12.63 hrs, Volume=  | 2.142 af, Atten= 60%, Lag= 28.6 min              |
| Primary =     | 8.15 cfs @ 12.63 hrs, Volume=  | 2.142 af                                         |

Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.81' @ 12.63 hrs Surf.Area= 31,514 sf Storage= 54,769 cf

Plug-Flow detention time= 477.6 min calculated for 2.142 af (87% of inflow) Center-of-Mass det. time= 418.6 min (1,191.4 - 772.8)

| Volume   | Inve                                                                                               | rt Avail.Sto                                                                                                                                                                 | rage Storage                          | Description                                                                         |            |  |
|----------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|------------|--|
| #1       | 6.85                                                                                               | 5' 94,94                                                                                                                                                                     | 44 cf Propos                          | ed Contours (Prismatic)Listed belo                                                  | w (Recalc) |  |
| Elevatio |                                                                                                    | Surf.Area<br>(sq-ft)                                                                                                                                                         | Inc.Store<br>(cubic-feet)             | Cum.Store<br>(cubic-feet)                                                           |            |  |
| 6.8      | 35                                                                                                 | 24,460                                                                                                                                                                       | 0                                     | 0                                                                                   |            |  |
| 7.0      |                                                                                                    | 24,990                                                                                                                                                                       | 3,709                                 | 3,709                                                                               |            |  |
|          | 8.00 28,545                                                                                        |                                                                                                                                                                              | 26,768                                | 30,476                                                                              |            |  |
| 9.0      |                                                                                                    | 32,215                                                                                                                                                                       | 30,380                                | 60,856                                                                              |            |  |
| 10.0     | 00                                                                                                 | 35,960                                                                                                                                                                       | 34,088                                | 94,944                                                                              |            |  |
| Device   | Routing                                                                                            | Invert                                                                                                                                                                       | Outlet Device                         | S                                                                                   |            |  |
| #1       | Primary                                                                                            | 3.00'                                                                                                                                                                        | 15.0" Round                           | 15.0" Round 15" Culvert                                                             |            |  |
|          |                                                                                                    | L= 34.0' CPP, square edge headwall, Ke= 0.500<br>Inlet / Outlet Invert= 3.00' / 1.94' S= 0.0312 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf |                                       |                                                                                     |            |  |
|          | #2 Device 1 7.30                                                                                   |                                                                                                                                                                              | <b>4.0" Vert. 4" Orifice</b> C= 0.600 |                                                                                     |            |  |
|          | #3 Device 1 8.10'                                                                                  |                                                                                                                                                                              |                                       |                                                                                     |            |  |
| #4       | Primary                                                                                            | 9.00'                                                                                                                                                                        | Head (feet) 0                         | adcrested Weir, Cv= 3.10 (C= 3.88)<br>.00 0.50 1.00 1.50<br>20.00 23.00 26.00 29.00 | )          |  |
| Drimory  | <b>Brimary OutFlow</b> Max = 9.15 of $(2.63 \text{ br}, H)/(-9.91)$ T//(-0.00) (Dynamic Tailwater) |                                                                                                                                                                              |                                       |                                                                                     |            |  |

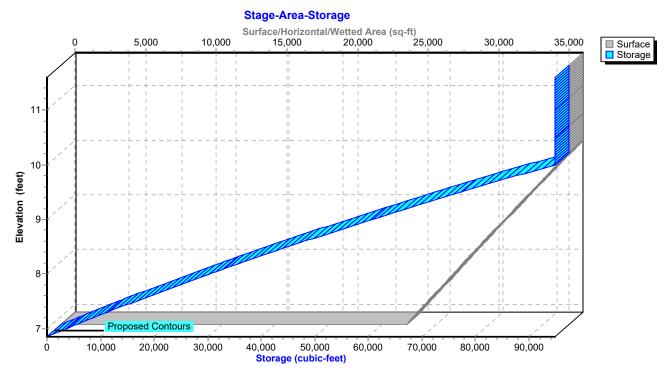
**Primary OutFlow** Max=8.15 cfs @ 12.63 hrs HW=8.81' TW=0.00' (Dynamic Tailwater)


-1=15" Culvert (Passes 8.15 cfs of 13.45 cfs potential flow)

**2=4" Orifice** (Orifice Controls 0.49 cfs @ 5.58 fps)

**-3=Type E Inlet** (Orifice Controls 7.66 cfs @ 2.70 fps)

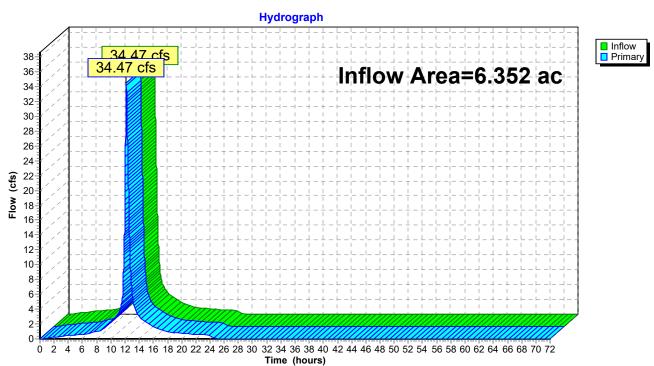
-4=20' Wide Broadcrested Weir (Controls 0.00 cfs)


## Pond 2C: Basin 2C



### Post Developed Conditions Prepared by Sciullo

HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

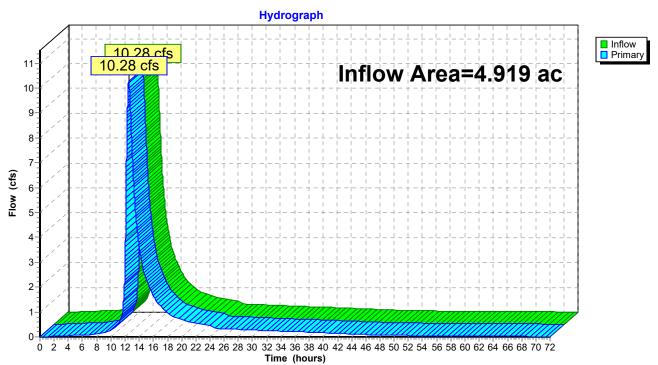

## Pond 2C: Basin 2C



## Summary for Link 1L: PT 1

| Inflow Area | a = | 6.352 ac, 82.07% Impervious, Inflow Depth = 7.84" for 100 Yr Atlantic Co event |
|-------------|-----|--------------------------------------------------------------------------------|
| Inflow      | =   | 34.47 cfs @ 12.16 hrs, Volume=     4.150 af                                    |
| Primary     | =   | 34.47 cfs @ 12.17 hrs, Volume= 4.150 af, Atten= 0%, Lag= 0.6 min               |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs



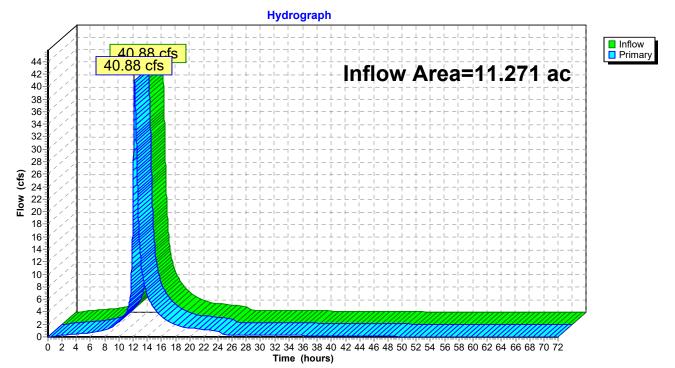

Link 1L: PT 1

## Summary for Link 2L: PT 2

| Inflow Area | a = | 4.919 ac, 59.10% Impervious, Inflow Depth > 6.54" for 100 Yr Atlantic Co event |
|-------------|-----|--------------------------------------------------------------------------------|
| Inflow      | =   | 10.28 cfs @  12.52 hrs, Volume=            2.683 af                            |
| Primary     | =   | 10.28 cfs @ 12.53 hrs, Volume= 2.683 af, Atten= 0%, Lag= 0.6 min               |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs




### Link 2L: PT 2

## Summary for Link 4L: TTA

| Inflow Area | a = | 11.271 ac, 72.04% Impervious, Inflow Depth > 7.27" for 100 Yr Atlantic Co event |
|-------------|-----|---------------------------------------------------------------------------------|
| Inflow      | =   | 40.88 cfs @  12.19 hrs, Volume=            6.833 af                             |
| Primary     | =   | 40.88 cfs @ 12.20 hrs, Volume= 6.833 af, Atten= 0%, Lag= 0.6 min                |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

#### Link 4L: TTA

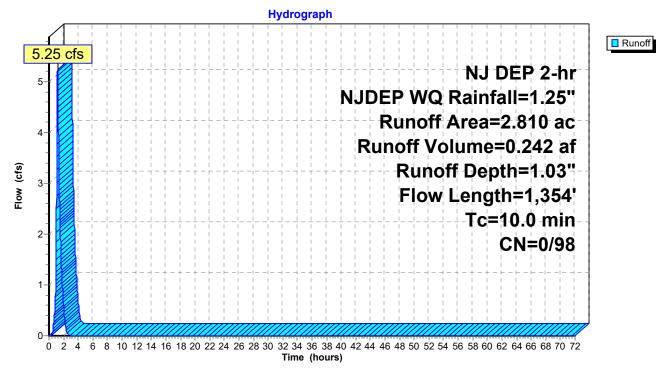


Post Developed ConditionsNJ DEP 2-hrNJDEP WQ Rainfall=1.25"Prepared by SciulloPrinted 4/8/2020HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLCPage 87

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Sim-Route method - Pond routing by Sim-Route method w/Net Flows

| Subcatchment1Ai: PRDA-1Ai | Runoff Area=2.810 ac 100.00% Impervious Runoff Depth=1.03"<br>Flow Length=1,354' Tc=10.0 min CN=0/98 Runoff=5.25 cfs 0.242 af |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment1Ap: PRDA-1Ap | Runoff Area=0.795 ac 0.00% Impervious Runoff Depth=0.01"<br>Flow Length=1,354' Tc=10.0 min CN=66/0 Runoff=0.01 cfs 0.001 af   |
| Subcatchment1Bi: PRDA-1Bi | Runoff Area=0.693 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=1.29 cfs 0.060 af                    |
| Subcatchment1Bp: PRDA-1Bp | Runoff Area=0.344 ac 0.00% Impervious Runoff Depth=0.01"<br>Tc=10.0 min CN=66/0 Runoff=0.01 cfs 0.000 af                      |
| Subcatchment2Ai: PRDA-2Ai | Runoff Area=0.502 ac 100.00% Impervious Runoff Depth=1.03"<br>Flow Length=352' Tc=10.0 min CN=0/98 Runoff=0.94 cfs 0.043 af   |
| Subcatchment2Ap: PRDA-2Ap | Runoff Area=0.399 ac 0.00% Impervious Runoff Depth=0.04"<br>Flow Length=352' Tc=10.0 min CN=71/0 Runoff=0.02 cfs 0.001 af     |
| Subcatchment2Bi: PRDA-2Bi | Runoff Area=0.581 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=1.08 cfs 0.050 af                    |
| Subcatchment2Bp: PRDA-2Bp | Runoff Area=0.214 ac 0.00% Impervious Runoff Depth=0.07"<br>Tc=10.0 min CN=74/0 Runoff=0.02 cfs 0.001 af                      |
| Subcatchment2Ci: PRDA-2Ci | Runoff Area=1.824 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=3.41 cfs 0.157 af                    |
| Subcatchment2Cp: PRDA-2Cp | Runoff Area=1.399 ac 0.00% Impervious Runoff Depth=0.03"<br>Tc=10.0 min CN=70/0 Runoff=0.06 cfs 0.004 af                      |
| SubcatchmentBdg1: BLDG-1  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.025 af                    |
| Subcatchment Bdg2: BLDG-2 | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.025 af                    |
| Subcatchment Bdg3: BLDG-3 | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.025 af                    |
| SubcatchmentBdg4: BLDG-4  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.025 af                    |
| SubcatchmentBdg5: BLDG-5  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.025 af                    |
| SubcatchmentBdg6: BLDG-6  | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=1.03"<br>Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.025 af                    |

| Post Developed Conditions<br>Prepared by Sciullo<br>HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCA | NJ DEP 2-hr NJDEP WQ Rainfall=1.25"<br>Printed 4/8/2020<br>AD Software Solutions LLC Page 88                 |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Pond 1B: Basin 1B                                                                                | Peak Elev=7.45' Storage=2,614 cf Inflow=1.29 cfs 0.060 af<br>Outflow=0.00 cfs 0.000 af                       |
| Pond 2C: Basin 2C                                                                                | Peak Elev=7.22' Storage=9,256 cf Inflow=4.51 cfs 0.213 af<br>Outflow=0.00 cfs 0.000 af                       |
| Link 1L: PT 1                                                                                    | Inflow=8.44 cfs 0.390 af<br>Primary=8.44 cfs 0.390 af                                                        |
| Link 2L: PT 2                                                                                    | Inflow=0.94 cfs 0.045 af<br>Primary=0.94 cfs 0.045 af                                                        |
| Link 4L: TTA                                                                                     | Inflow=9.38 cfs 0.435 af<br>Primary=9.38 cfs 0.435 af                                                        |
|                                                                                                  | Runoff Volume = 0.707 af Average Runoff Depth = 0.75"<br>6% Pervious = 3.151 ac 72.04% Impervious = 8.120 ac |


#### Summary for Subcatchment 1Ai: PRDA-1Ai

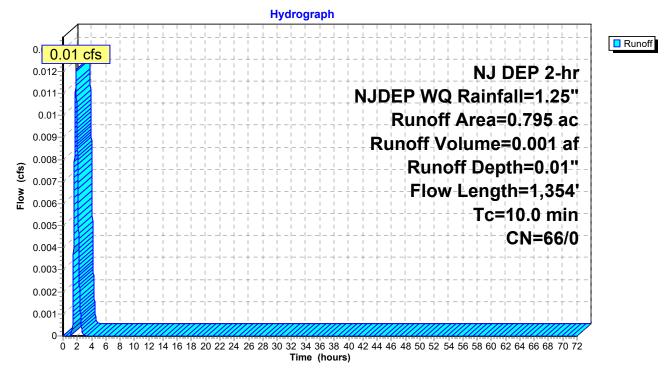
Runoff = 5.25 cfs @ 1.17 hrs, Volume= 0.242 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

| Area  | (ac) (                        | CN Des  | scription   |             |                                               |  |
|-------|-------------------------------|---------|-------------|-------------|-----------------------------------------------|--|
| 1.    | 1.113 98 Paved parking, HSG B |         |             |             |                                               |  |
| 1.    | 559                           | 98 Pav  | ed parking  | , HSG D     |                                               |  |
| 0.    | .138                          | 98 Und  | connected r | oofs, HSG   | В                                             |  |
| 2.    | .810                          | 98 We   | ighted Ave  | rage        |                                               |  |
| 2.    | .810                          | 98 100  |             | rvious Area | 1                                             |  |
|       |                               |         |             |             |                                               |  |
| Тс    | Length                        | Slope   | Velocity    | Capacity    | Description                                   |  |
| (min) | (feet)                        | (ft/ft) | (ft/sec)    | (cfs)       |                                               |  |
| 1.4   | 100                           | 0.0130  | 1.19        |             | Sheet Flow, PRDA-1.1                          |  |
|       |                               |         |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |
| 6.4   | 1,254                         | 0.0030  | 3.26        | 5.75        | Pipe Channel, PRDA-1.2                        |  |
|       |                               |         |             |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |
|       |                               |         |             |             | n= 0.013                                      |  |
| 7.8   | 1,354                         | Total,  | Increased t | to minimum  | Tc = 10.0 min                                 |  |

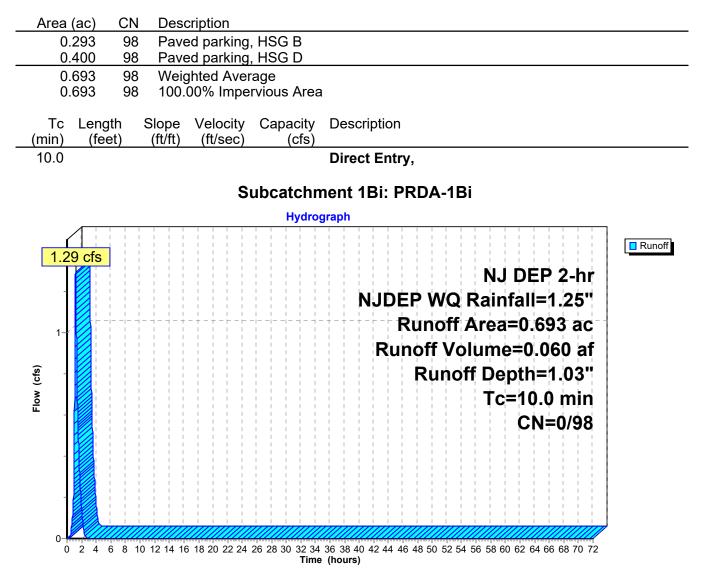
## Subcatchment 1Ai: PRDA-1Ai




## Summary for Subcatchment 1Ap: PRDA-1Ap

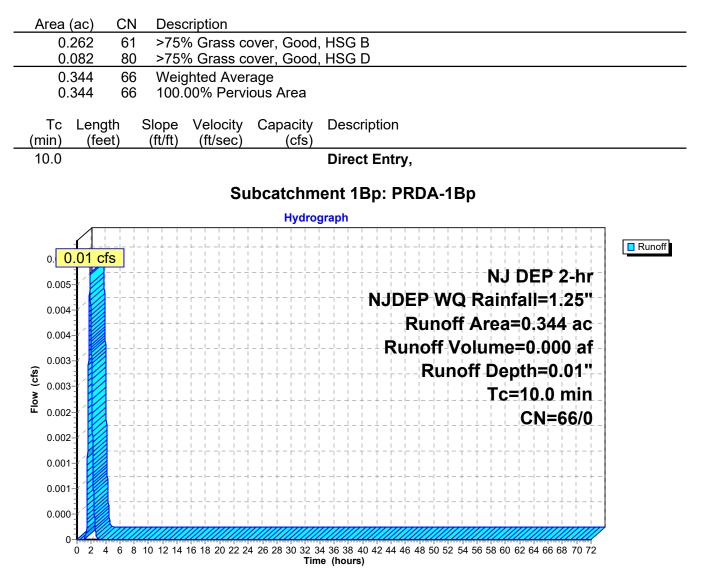
Runoff = 0.01 cfs @ 1.82 hrs, Volume= 0.001 af, Depth= 0.01"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"


| Area                      | (ac) ( | CN Des  | cription    |             |                                               |
|---------------------------|--------|---------|-------------|-------------|-----------------------------------------------|
| 0.                        | 574    | 61 >75  | % Grass co  | over, Good, | , HSG B                                       |
| 0.                        | 221    | 80 >75  | % Grass co  | over, Good, | , HSG D                                       |
| 0.795 66 Weighted Average |        |         |             |             |                                               |
| 0.                        | 795    | 66 100  | .00% Pervi  | ous Area    |                                               |
|                           |        |         |             |             |                                               |
| Тс                        | Length | Slope   |             | Capacity    | Description                                   |
| <u>(min)</u>              | (feet) | (ft/ft) | (ft/sec)    | (cfs)       |                                               |
| 1.4                       | 100    | 0.0130  | 1.19        |             | Sheet Flow, PRDA-1.1                          |
|                           |        |         |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 6.4                       | 1,254  | 0.0030  | 3.26        | 5.75        | Pipe Channel, PRDA-1.2                        |
|                           |        |         |             |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |
|                           |        |         |             |             | n= 0.013                                      |
| 7.8                       | 1,354  | Total,  | Increased t | o minimum   | Tc = 10.0 min                                 |

## Subcatchment 1Ap: PRDA-1Ap




#### Summary for Subcatchment 1Bi: PRDA-1Bi

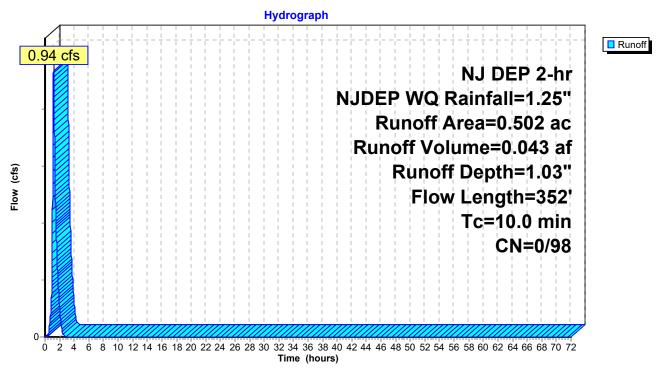
Runoff = 1.29 cfs @ 1.17 hrs, Volume= 0.060 af, Depth= 1.03"



#### Summary for Subcatchment 1Bp: PRDA-1Bp

Runoff = 0.01 cfs @ 1.82 hrs, Volume= 0.000 af, Depth= 0.01"




#### Summary for Subcatchment 2Ai: PRDA-2Ai

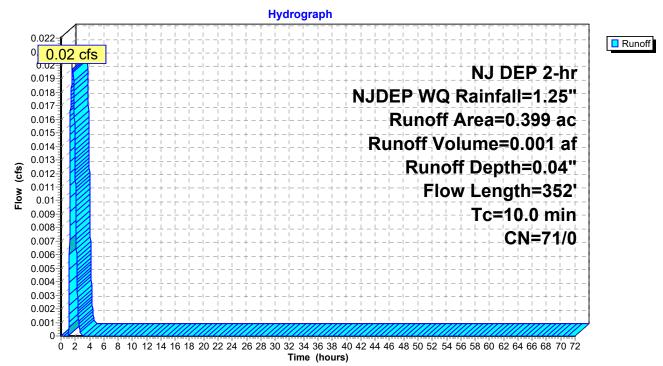
Runoff = 0.94 cfs @ 1.17 hrs, Volume= 0.043 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

| Area (ac       | ) C    | N Desc    | cription    |             |                                               |
|----------------|--------|-----------|-------------|-------------|-----------------------------------------------|
| 0.28           | 19     | 8 Pave    | ed parking, | , HSG B     |                                               |
| 0.22           | 19     | 8 Pave    | ed parking, | , HSG D     |                                               |
| 0.502          | 29     | 8 Weig    | ghted Aver  | age         |                                               |
| 0.502          | 29     | 8 100.    | 00% Impe    | rvious Area |                                               |
|                |        |           |             |             |                                               |
| Tc Le          | ength  | Slope     | Velocity    | Capacity    | Description                                   |
| <u>(min)</u> ( | (feet) | (ft/ft)   | (ft/sec)    | (cfs)       |                                               |
| 1.2            | 89     | 0.0150    | 1.23        |             | Sheet Flow, PRDA-2.1                          |
|                |        |           |             |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 1.2            | 263    | 0.0050    | 3.72        | 4.57        | Pipe Channel, PRDA-2.1                        |
|                |        |           |             |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |
|                |        |           |             |             | n= 0.013                                      |
| 2.4            | 352    | Total, li | ncreased t  | o minimum   | Tc = 10.0 min                                 |

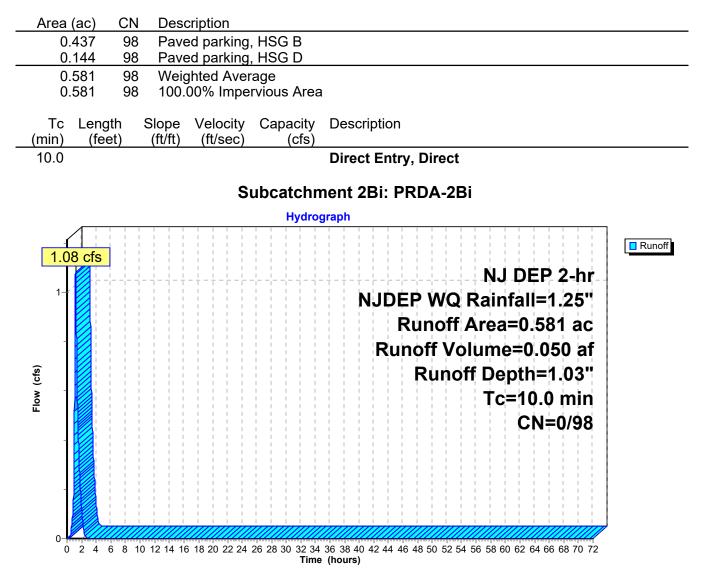
#### Subcatchment 2Ai: PRDA-2Ai




#### Summary for Subcatchment 2Ap: PRDA-2Ap

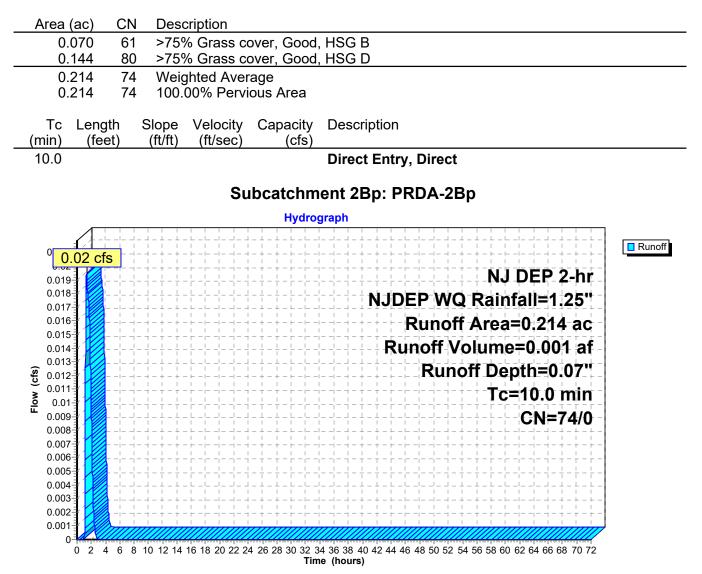
Runoff = 0.02 cfs @ 1.60 hrs, Volume= 0.001 af, Depth= 0.04"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"


| <br>Area  | (ac)   | CN    | Desc    | cription          |             |                                               |
|-----------|--------|-------|---------|-------------------|-------------|-----------------------------------------------|
| 0.        | 193    | 61    | >75%    | % Grass co        | over, Good, | HSG B                                         |
| <br>0.    | 206    | 80    | >75%    | <u>% Grass co</u> | over, Good, | HSG D                                         |
| 0.        | 399    | 71    | Weig    | phted Aver        | age         |                                               |
| 0.        | 399    | 71    | 100.    | 00% Pervi         | ous Area    |                                               |
|           |        |       |         |                   |             |                                               |
| Тс        | Length |       | lope    | Velocity          | Capacity    | Description                                   |
| <br>(min) | (feet) | ) (   | (ft/ft) | (ft/sec)          | (cfs)       |                                               |
| 1.2       | 89     | 9 0.0 | 0150    | 1.23              |             | Sheet Flow, PRDA-2.1                          |
|           |        |       |         |                   |             | Smooth surfaces n= 0.011 P2= 3.36"            |
| 1.2       | 263    | 3 0.0 | 0050    | 3.72              | 4.57        | Pipe Channel, PRDA-2.1                        |
|           |        |       |         |                   |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |
|           |        |       |         |                   |             | n= 0.013                                      |
| <br>2.4   | 352    | 2 To  | tal, Ir | ncreased t        | o minimum   | Tc = 10.0 min                                 |

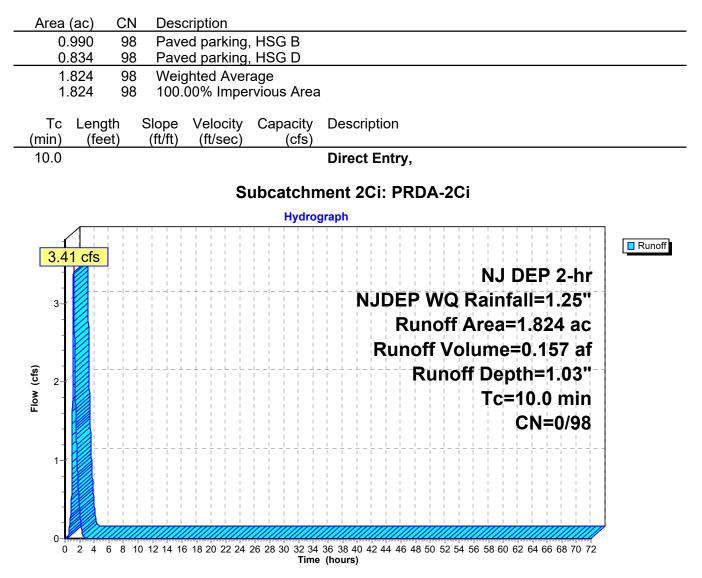
## Subcatchment 2Ap: PRDA-2Ap




#### Summary for Subcatchment 2Bi: PRDA-2Bi

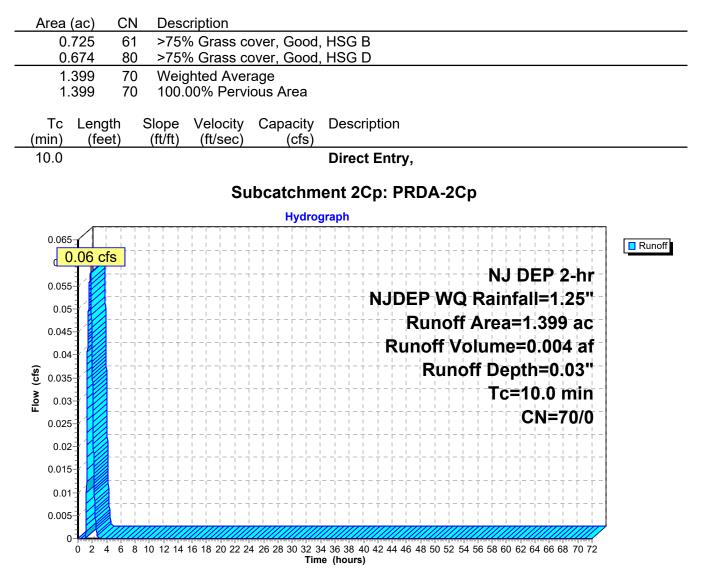
Runoff = 1.08 cfs @ 1.17 hrs, Volume= 0.050 af, Depth= 1.03"




#### Summary for Subcatchment 2Bp: PRDA-2Bp

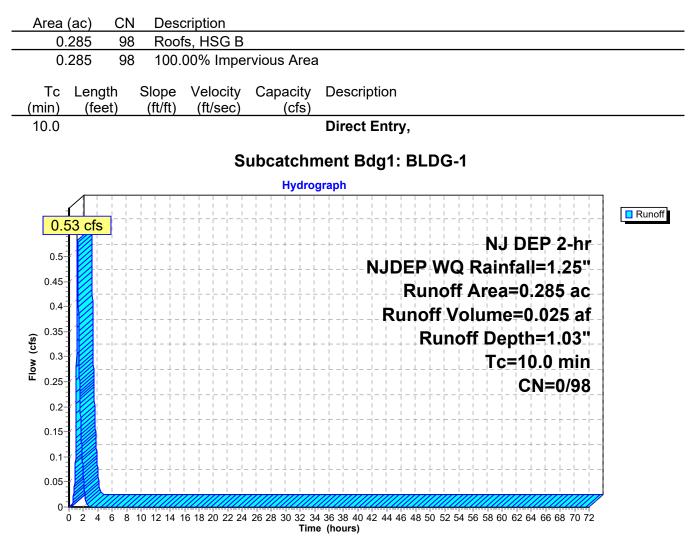
Runoff = 0.02 cfs @ 1.33 hrs, Volume= 0.001 af, Depth= 0.07"




#### Summary for Subcatchment 2Ci: PRDA-2Ci

Runoff = 3.41 cfs @ 1.17 hrs, Volume= 0.157 af, Depth= 1.03"




#### Summary for Subcatchment 2Cp: PRDA-2Cp

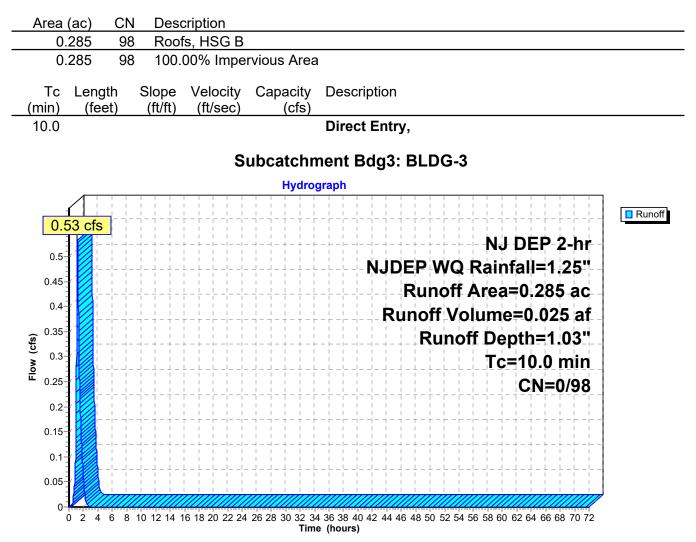
Runoff = 0.06 cfs @ 1.78 hrs, Volume= 0.004 af, Depth= 0.03"



## Summary for Subcatchment Bdg1: BLDG-1

Runoff = 0.53 cfs @ 1.17 hrs, Volume= 0.025 af, Depth= 1.03"




## Summary for Subcatchment Bdg2: BLDG-2

Runoff = 0.53 cfs @ 1.17 hrs, Volume= 0.025 af, Depth= 1.03"

|                                                         | .285 98 |         | fs, HSG B |                                   |                                                                                                                                          |
|---------------------------------------------------------|---------|---------|-----------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0.                                                      | .285 98 | 3 100.  | 00% Impe  | rvious Area                       |                                                                                                                                          |
| Тс                                                      | Length  | Slope   | Velocity  | Capacity                          | Description                                                                                                                              |
| <u>min)</u><br>10.0                                     | (feet)  | (ft/ft) | (ft/sec)  | (cfs)                             | Direct Entry,                                                                                                                            |
|                                                         |         |         | S         | ubcatchn                          | nent Bdg2: BLDG-2                                                                                                                        |
|                                                         |         |         |           | Hydrog                            | graph                                                                                                                                    |
| 0.5-<br>0.45-<br>0.4-<br>0.35-<br>0.3-<br>0.3-<br>0.25- |         |         |           |                                   | NJ DEP 2-hr<br>NJDEP WQ Rainfall=1.25"<br>Runoff Area=0.285 ac<br>Runoff Volume=0.025 af<br>Runoff Depth=1.03"<br>Tc=10.0 min<br>CN=0/98 |
| 0.2-                                                    |         | · +     |           | · + - + - + - + - + - + - + - + - |                                                                                                                                          |
| 0.15-                                                   |         |         |           |                                   |                                                                                                                                          |
| 0.1-                                                    |         |         |           |                                   |                                                                                                                                          |
| 0.05-                                                   |         |         |           |                                   |                                                                                                                                          |

## Summary for Subcatchment Bdg3: BLDG-3

Runoff = 0.53 cfs @ 1.17 hrs, Volume= 0.025 af, Depth= 1.03"



### Summary for Subcatchment Bdg4: BLDG-4

Runoff = 0.53 cfs @ 1.17 hrs, Volume= 0.025 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

|                       | 285 98 |                                         | fs, HSG D                         |                                       |                         |       |
|-----------------------|--------|-----------------------------------------|-----------------------------------|---------------------------------------|-------------------------|-------|
| 0.                    | 285 98 | 3 100.                                  | 00% Impe                          | rvious Area                           | 3                       |       |
| Тс                    | Length | Slope                                   | Velocity                          | Capacity                              | Description             |       |
| ( <u>min)</u><br>10.0 | (feet) | (ft/ft)                                 | (ft/sec)                          | (cfs)                                 | Direct Entry,           |       |
| 10.0                  |        |                                         |                                   |                                       | Direct Linky,           |       |
|                       |        |                                         | S                                 | ubcatchn                              | nent Bdg4: BLDG-4       |       |
|                       |        |                                         |                                   | Hydrog                                | graph                   |       |
|                       |        |                                         |                                   |                                       |                         | Runof |
| 0.5                   | 53 cfs |                                         |                                   |                                       |                         |       |
| 0.5                   |        |                                         |                                   |                                       | NUDED WO Deinfeligt 25" | . –   |
| 0.45                  |        |                                         |                                   |                                       | NJDEP WQ Rainfall=1.25" | · _   |
| 0.4-                  |        |                                         |                                   |                                       | Runoff Area=0.285 ac    |       |
| <b>0</b> .35          |        |                                         |                                   | · + - + - + - + - + - + - + - + -     | Runoff Volume=0.025 af  | · –   |
| Llow (cfs)            |        |                                         |                                   |                                       | Runoff Depth=1.03"      | · _   |
| 80.25-                |        |                                         |                                   | ·                                     | Tc=10.0 min             | · _   |
|                       |        |                                         |                                   |                                       |                         |       |
| 0.2                   |        | 1 + - + -                               | <br>           <br>+ - + - +      | · · · · · · · · · · · · · · · · · · · |                         |       |
| 0.15-                 |        |                                         |                                   |                                       |                         |       |
| 0.1-                  |        |                                         |                                   |                                       |                         |       |
| 0.05                  |        |                                         | 1 1 1 1 1<br>1 1 1 1 1<br>1 1 1 1 |                                       |                         |       |
| 0-                    |        | /////////////////////////////////////// |                                   |                                       |                         |       |

### Summary for Subcatchment Bdg5: BLDG-5

Runoff = 0.53 cfs @ 1.17 hrs, Volume= 0.025 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

|                     | <u>285 98</u> |                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>s, HSG D</u>                                                                  | · •                                                                                   |                         |      |
|---------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------|------|
| 0.                  | 285 98        | 3 100.                                                                                                                                                                                                                                                                                                                                                                                                                      | 00% Impe                                                                         | rvious Area                                                                           |                         |      |
| Τc                  | Length        | Slope                                                                                                                                                                                                                                                                                                                                                                                                                       | Velocity                                                                         | Capacity                                                                              | Description             |      |
| <u>min)</u><br>10.0 | (feet)        | (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                     | (ft/sec)                                                                         | (cfs)                                                                                 | Direct Entry,           |      |
| 10.0                |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       | blicet Entry,           |      |
|                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                | ubcatchn                                                                              | nent Bdg5: BLDG-5       |      |
|                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | Hydrog                                                                                | graph                   |      |
|                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       |                         | Runc |
| 0.5                 | 53 cfs        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       | NJ DEP 2-hr             |      |
| 0.5                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       | NJDEP WQ Rainfall=1.25" |      |
| 0.45                |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       | Runoff Area=0.285 ac    |      |
| 0.4                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u><br>1 1 1 1 1 1<br>1 1 1 1 1 |                                                                                       | Runoff Volume=0.025 at  |      |
| 0.35                |               | 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 - | + - + - +                                                                        | · -11 - + - + - + - + - + - + - + - +                                                 | Runoff Depth=1.03"      |      |
| 0.30<br>0.3         |               |                                                                                                                                                                                                                                                                                                                                                                                                                             | + - + - + -   -<br>           <br>                                               |                                                                                       | Tc=10.0 min             |      |
| 0.25                |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       | CN=0/98                 |      |
| 0.2                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | $-\frac{1}{1} = -\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$ |                         |      |
| 0.15-               |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       |                         |      |
| 0.1-                |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       |                         |      |
| 0.05                |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       |                         |      |
| 0.03                |               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                       |                         |      |

### Summary for Subcatchment Bdg6: BLDG-6

Runoff = 0.53 cfs @ 1.17 hrs, Volume= 0.025 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

|                                                             | 285 98           |         | fs, HSG D |             |                                                                                                                                          |
|-------------------------------------------------------------|------------------|---------|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0.                                                          | 285 98           | 3 100.  | 00% Impe  | rvious Area |                                                                                                                                          |
| Tc                                                          | Length           | Slope   | Velocity  | Capacity    | Description                                                                                                                              |
| <u>min)</u><br>10.0                                         | (feet)           | (ft/ft) | (ft/sec)  | (cfs)       | Direct Entry,                                                                                                                            |
|                                                             |                  |         | S         | ubcatchn    | nent Bdg6: BLDG-6                                                                                                                        |
|                                                             |                  |         |           | Hydrog      | graph                                                                                                                                    |
| 0.5<br>0.45<br>0.45<br>0.45<br>0.35<br>0.35<br>0.35<br>0.25 | <b>3 cfs</b><br> |         |           |             | NJ DEP 2-hr<br>NJDEP WQ Rainfall=1.25"<br>Runoff Area=0.285 ac<br>Runoff Volume=0.025 af<br>Runoff Depth=1.03"<br>Tc=10.0 min<br>CN=0/98 |
| 0.15                                                        |                  |         |           |             |                                                                                                                                          |
| 0.1                                                         |                  |         | + - + - + |             |                                                                                                                                          |
| 0.05                                                        |                  |         |           |             |                                                                                                                                          |
| 0-                                                          |                  |         |           |             | 4 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72                                                                               |

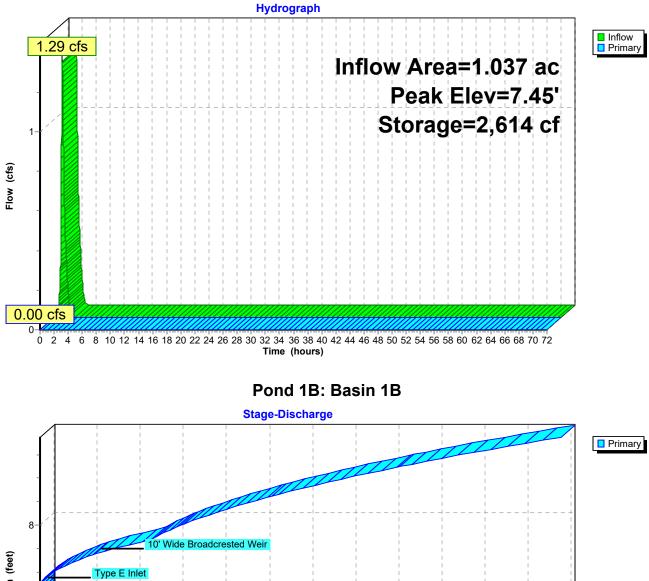
### Summary for Pond 1B: Basin 1B

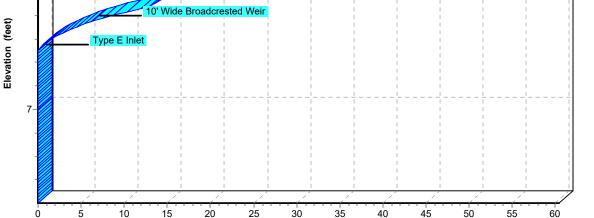
| Inflow Area = | 1.037 ac, 66.83% Impervious, I | Inflow Depth = 0.69" for NJDEP WQ event |
|---------------|--------------------------------|-----------------------------------------|
| Inflow =      | 1.29 cfs @ 1.17 hrs, Volume=   | = 0.060 af                              |
| Outflow =     | 0.00 cfs @ 0.00 hrs, Volume=   | = 0.000 af, Atten= 100%, Lag= 0.0 min   |
| Primary =     | 0.00 cfs @ 0.00 hrs, Volume=   | = 0.000 af                              |

Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.45' @ 3.10 hrs Surf.Area= 3,025 sf Storage= 2,614 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

| Volume       | Invert             | : Avail.Sto     | rage Storage                  | Description                                                                            |                                                                                         |  |
|--------------|--------------------|-----------------|-------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| #1           | 6.20               | 6,62            | 27 cf Propose                 | ed Contours (Pi                                                                        | rismatic)Listed below (Recalc)                                                          |  |
| Elevatio     | on S               | urf.Area        | Inc.Store                     | Cum.Store                                                                              |                                                                                         |  |
| (fee         | et)                | (sq-ft)         | (cubic-feet)                  | (cubic-feet)                                                                           |                                                                                         |  |
| 6.2          | 20                 | 1,170           | 0                             | 0                                                                                      |                                                                                         |  |
| 7.0          | 00                 | 2,335           | 1,402                         | 1,402                                                                                  |                                                                                         |  |
| 8.0          | 00                 | 3,860           | 3,098                         | 4,500                                                                                  |                                                                                         |  |
| 8.5          | 50                 | 4,650           | 2,128                         | 6,627                                                                                  |                                                                                         |  |
| Device<br>#1 | Routing<br>Primary | Invert<br>3.75' | Outlet Devices<br>15.0" Round |                                                                                        |                                                                                         |  |
|              |                    |                 | Inlet / Outlet Ir             | nvert= 3.75' / 3.3                                                                     | ojecting, Ke= 0.500<br>36' S= 0.0081 '/' Cc= 0.900<br>poth interior, Flow Area= 1.23 sf |  |
| #2           | Device 1           | 7.50'           |                               | <b>48.0" x 42.0" Horiz. Type E Inlet</b> C= 0.600<br>Limited to weir flow at low heads |                                                                                         |  |
| #3           | Primary            | 7.75'           | Head (feet) 0                 | .00 0.25 0.50                                                                          | <b>, Cv= 3.10 (C= 3.88)</b><br>0.75                                                     |  |


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=6.20' TW=0.00' (Dynamic Tailwater)

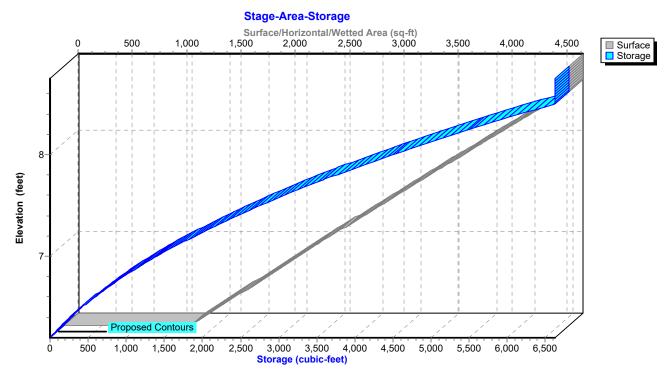

-1=15" Culvert (Passes 0.00 cfs of 7.67 cfs potential flow) —2=Type E Inlet ( Controls 0.00 cfs)

-3=10' Wide Broadcrested Weir ( Controls 0.00 cfs)

# Post Developed ConditionsNJ DEP 2-hrNoPrepared by SciulloHydroCAD® 10.00-21s/n M10478© 2018 HydroCAD Software Solutions LLC

### Pond 1B: Basin 1B






Discharge (cfs)

### **Post Developed Conditions**

Prepared by Sciullo HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Pond 1B: Basin 1B



### Summary for Pond 2C: Basin 2C

| Inflow Area | = | 4.018 ac, 59 | 9.86% Impervious, I | Inflow Depth = 0.63  | 3" for NJDEP WQ event     |
|-------------|---|--------------|---------------------|----------------------|---------------------------|
| Inflow =    | = | 4.51 cfs @   | 1.17 hrs, Volume=   | = 0.213 af           |                           |
| Outflow =   | = | 0.00 cfs @   | 0.00 hrs, Volume=   | = 0.000 af, <i>I</i> | Atten= 100%, Lag= 0.0 min |
| Primary =   | = | 0.00 cfs @   | 0.00 hrs, Volume=   | = 0.000 af           |                           |

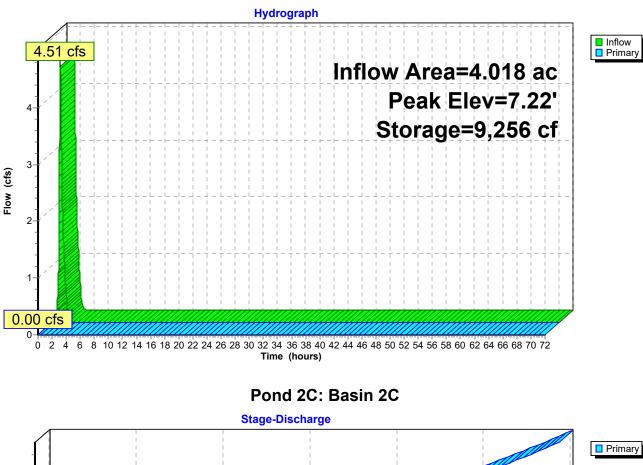
Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.22' @ 3.10 hrs Surf.Area= 25,767 sf Storage= 9,256 cf

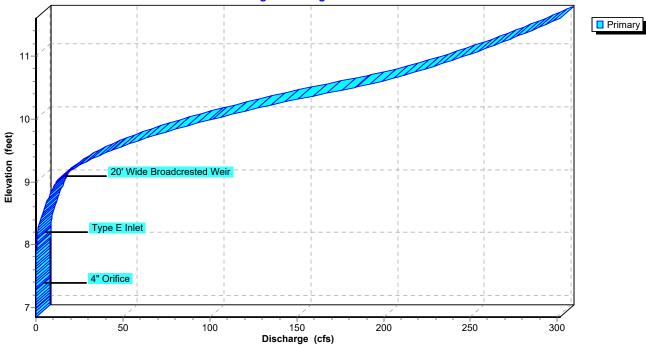
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

| Volume   | Inve     | rt Avail.Sto | orage Storage  | Description                      |                                   |
|----------|----------|--------------|----------------|----------------------------------|-----------------------------------|
| #1       | 6.8      | 5' 94,9      | 44 cf Propose  | ed Contours (P                   | rismatic)Listed below (Recalc)    |
| Elevatio | on       | Surf.Area    | Inc.Store      | Cum.Store                        |                                   |
| (fee     | et)      | (sq-ft)      | (cubic-feet)   | (cubic-feet)                     |                                   |
| 6.8      | 35       | 24,460       | 0              | 0                                |                                   |
| 7.0      | 00       | 24,990       | 3,709          | 3,709                            |                                   |
| 8.0      |          | 28,545       | 26,768         | 30,476                           |                                   |
| 9.0      |          | 32,215       | 30,380         | 60,856                           |                                   |
| 10.0     | 00       | 35,960       | 34,088         | 94,944                           |                                   |
| Device   | Routing  | Invert       | Outlet Devices | S                                |                                   |
| #1       | Primary  | 3.00'        | 15.0" Round    | 15" Culvert                      |                                   |
|          |          |              |                |                                  | headwall, Ke= 0.500               |
|          |          |              |                |                                  | 94' S= 0.0312 '/' Cc= 0.900       |
| #2       | Device 1 | 7.30'        |                | rugated PE, sm<br>Orifice C= 0.6 | ooth interior, Flow Area= 1.23 sf |
| #2<br>#3 | Device 1 | 8.10         |                |                                  | e E Inlet C= 0.600                |
| #4       | Primary  | 9.00'        |                |                                  | r, Cv= 3.10 (C= 3.88)             |
|          | ,        |              |                | .00 0.50 1.00                    |                                   |
|          |          |              | Width (feet) 2 | 20.00 23.00 26                   | .00 29.00                         |
|          |          |              |                |                                  |                                   |

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=6.85' TW=0.00' (Dynamic Tailwater)

-1=15" Culvert (Passes 0.00 cfs of 10.61 cfs potential flow)

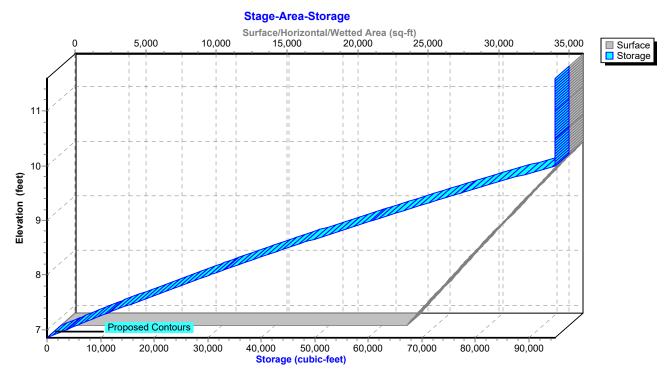

**2=4" Orifice** (Controls 0.00 cfs)


**-3=Type E Inlet** (Controls 0.00 cfs)

-4=20' Wide Broadcrested Weir (Controls 0.00 cfs)

#### **Post Developed Conditions** NJ DEP 2-hr NJDEP WQ Rainfall=1.25" Prepared by Sciullo HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Pond 2C: Basin 2C

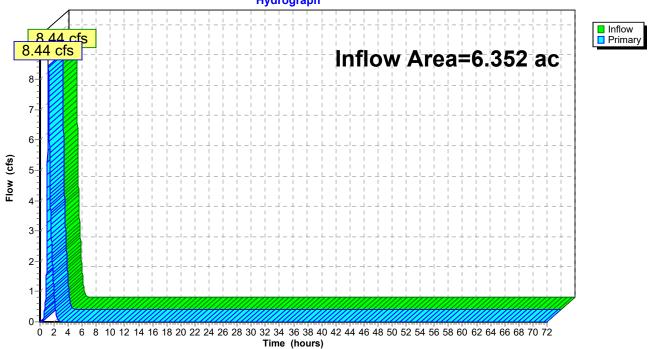





### **Post Developed Conditions**

Prepared by Sciullo HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

### Pond 2C: Basin 2C

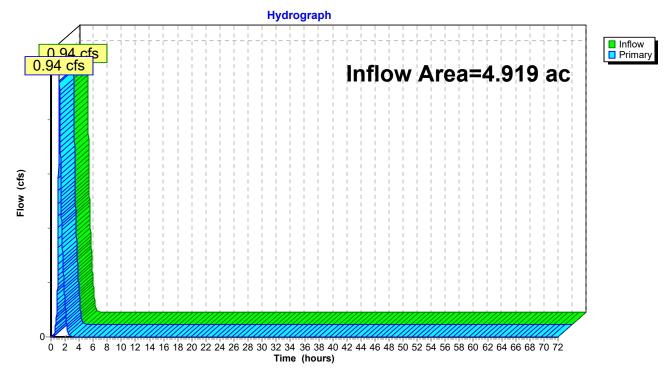



### Summary for Link 1L: PT 1

| Inflow Area | a = | 6.352 ac, 82 | 2.07% Impervious, | Inflow Depth = | 0.74"    | for NJDEP WQ event   |
|-------------|-----|--------------|-------------------|----------------|----------|----------------------|
| Inflow      | =   | 8.44 cfs @   | 1.17 hrs, Volume  | e= 0.390       | af       |                      |
| Primary     | =   | 8.44 cfs @   | 1.18 hrs, Volume  | e= 0.390       | af, Atte | en= 0%, Lag= 0.6 min |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

### Link 1L: PT 1 Hydrograph

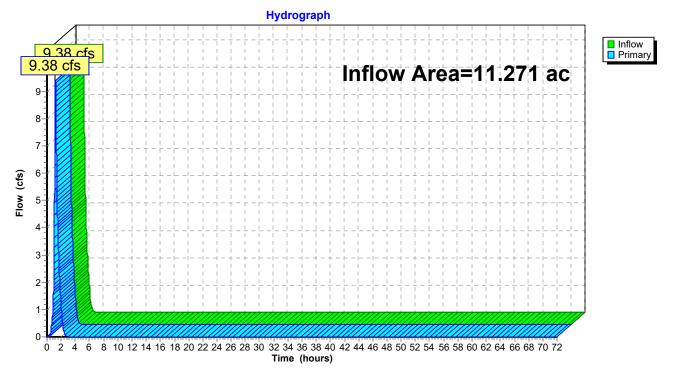



### Summary for Link 2L: PT 2

| Inflow Are | a = | 4.919 ac, 59 | 9.10% Impervious, Infl | ow Depth = $0.11$ " | for NJDEP WQ event   |
|------------|-----|--------------|------------------------|---------------------|----------------------|
| Inflow     | =   | 0.94 cfs @   | 1.17 hrs, Volume=      | 0.045 af            |                      |
| Primary    | =   | 0.94 cfs @   | 1.18 hrs, Volume=      | 0.045 af, Att       | en= 0%, Lag= 0.6 min |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

### Link 2L: PT 2




### Summary for Link 4L: TTA

| Inflow Area | a = | 11.271 ac, 72 | 2.04% Impervious, | Inflow Depth = | 0.46"    | for NJDEP WQ event   |
|-------------|-----|---------------|-------------------|----------------|----------|----------------------|
| Inflow      | =   | 9.38 cfs @    | 1.18 hrs, Volume  | e= 0.435       | af       |                      |
| Primary     | =   | 9.38 cfs @    | 1.19 hrs, Volume  | e= 0.435       | af, Atte | en= 0%, Lag= 0.6 min |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

### Link 4L: TTA



## <u>Appendix E</u>

INFILTRATION CALCULATIONS

Spyglass at Lakes Bay

#### INFILTRATION CALCULATIONS

#### Equations and Terms

| Q                  | = | KiA                                                          |
|--------------------|---|--------------------------------------------------------------|
| Q                  | = | infiltration flow rate                                       |
| K                  | = | hydraulic conductivity of soil (ft/hr)                       |
| i                  | = | hydraulic gradient = $D_{AVG}$ / d                           |
| А                  | = | infiltration area                                            |
| D                  | = | depth from ESHWT to bottom of infiltration area (ft)         |
| d <sub>STORM</sub> | = | depth from infiltration area bottom to storm event elevation |
| $D_{AVG}$          | = | average distance from water surface to ESHWT                 |
| V                  | = | basin volume during storm event                              |
| Т                  | = | time to infiltrate basin (hr) = V / Q                        |
| ESHWT              | = | Estimated Seasonal High Water Table                          |

#### Basin 1B

1,167 sf equals basin bottom area at elevation 6.20

TP-1 SHW @ 4.18 K5 sand >20 in hr

| Permeability of Underlying Soils                          | =  | 20.00   | in/hr |       |
|-----------------------------------------------------------|----|---------|-------|-------|
| Design permeability rate = $0.5 \times K_{\text{TEST}}$ = | 10 | in/hr = | 0.83  | ft/hr |

| Storm<br>frequency | D (ft) | d <sub>STORM</sub> (ft) | D <sub>AVG</sub> (ft) | i (unitless) | A (sf) | Q (cf/hr) | V (cf) | T (hr) |
|--------------------|--------|-------------------------|-----------------------|--------------|--------|-----------|--------|--------|
| 2 - year           | 2.02   | 1.30                    | 2.67                  | 1.32         | 1,167  | 1285      | 2,760  | 2.1    |
| 10 - year          | 2.02   | 1.30                    | 2.67                  | 1.32         | 1,167  | 1285      | 2,760  | 2.1    |
| 100 - year         | 2.02   | 1.30                    | 2.67                  | 1.32         | 1,167  | 1285      | 2,760  | 2.1    |

All times are less than 72 hours

#### Basin 2B

475 sf equals basin bottom area at elevation 6.85

TP-4

SHW @ 4.70 K5 sand >20 in hr

Permeability of Underlying Soils = 20.00 in/hr

Design permeability rate =  $0.5 \times K_{\text{TEST}} = 10$  in/hr = 0.83 ft/hr

| Storm<br>frequency | D (ft) | d <sub>STORM</sub> (ft) | D <sub>AVG</sub> (ft) | i (unitless) | A (sf) | Q (cf/hr) | V (cf) | T (hr) |
|--------------------|--------|-------------------------|-----------------------|--------------|--------|-----------|--------|--------|
| 2 - year           | 2.15   | 0.45                    | 2.38                  | 1.10         | 475    | 437       | 249    | 0.6    |
| 10 - year          | 2.15   | 0.45                    | 2.38                  | 1.10         | 475    | 437       | 249    | 0.6    |
| 100 - year         | 2.15   | 0.45                    | 2.38                  | 1.10         | 475    | 437       | 249    | 0.6    |

All times are less than 72 hours

#### Basin 2C

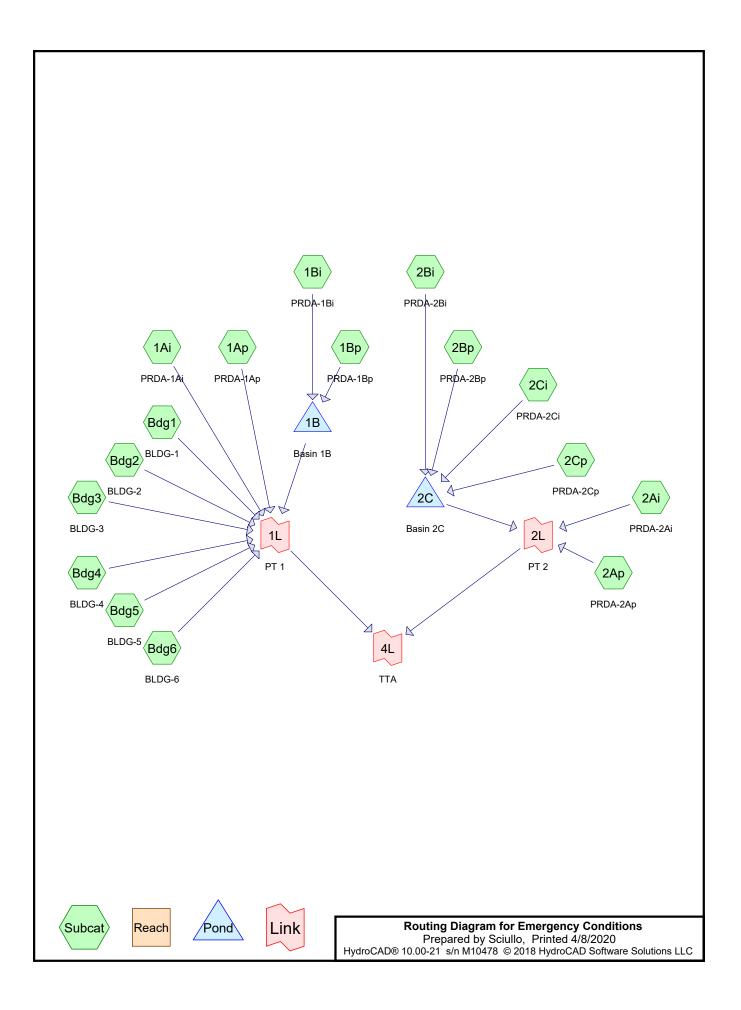
24,460 sf equals basin bottom area at elevation 6.85

| TP-4 | SH |
|------|----|
|      |    |

IW @ 4.70 K5 sand >20 in hr

Permeability of Underlying Soils

Design permeability rate =  $0.5 \times K_{\text{TEST}} = 10$  in/hr = 0.83 ft/hr


| Storm<br>frequency | D (ft) | d <sub>STORM</sub> (ft) | D <sub>AVG</sub> (ft) | i (unitless) | A (sf) | Q (cf/hr) | V (cf) | T (hr) |
|--------------------|--------|-------------------------|-----------------------|--------------|--------|-----------|--------|--------|
| 2 - year           | 2.15   | 0.45                    | 2.38                  | 1.10         | 24,460 | 22516     | 11,366 | 0.5    |
| 10 - year          | 2.15   | 0.45                    | 2.38                  | 1.10         | 24,460 | 22516     | 11,366 | 0.5    |
| 100 - year         | 2.15   | 0.45                    | 2.38                  | 1.10         | 24,460 | 22516     | 11,366 | 0.5    |

All times are less than 72 hours

20.00 in/hr =

# APPENDIX F

EMERGENCY CONDITIONS CALCULATIONS



### Area Listing (all nodes)

| Are    | a CN | Description                                             |  |
|--------|------|---------------------------------------------------------|--|
| (acres | ;)   | (subcatchment-numbers)                                  |  |
| 1.82   | 4 61 | >75% Grass cover, Good, HSG B (1Ap, 1Bp, 2Ap, 2Bp, 2Cp) |  |
| 1.32   | 7 80 | >75% Grass cover, Good, HSG D (1Ap, 1Bp, 2Ap, 2Bp, 2Cp) |  |
| 3.11   | 4 98 | Paved parking, HSG B (1Ai, 1Bi, 2Ai, 2Bi, 2Ci)          |  |
| 3.15   | 8 98 | Paved parking, HSG D (1Ai, 1Bi, 2Ai, 2Bi, 2Ci)          |  |
| 0.85   | 5 98 | Roofs, HSG B (Bdg1, Bdg2, Bdg3)                         |  |
| 0.85   | 5 98 | Roofs, HSG D (Bdg4, Bdg5, Bdg6)                         |  |
| 0.13   | 8 98 | Unconnected roofs, HSG B (1Ai)                          |  |
| 11.27  | 1 90 | TOTAL AREA                                              |  |

### Soil Listing (all nodes)

| Area    | Soil  | Subcatchment                                                       |
|---------|-------|--------------------------------------------------------------------|
| (acres) | Group | Numbers                                                            |
| 0.000   | HSG A |                                                                    |
| 5.931   | HSG B | 1Ai, 1Ap, 1Bi, 1Bp, 2Ai, 2Ap, 2Bi, 2Bp, 2Ci, 2Cp, Bdg1, Bdg2, Bdg3 |
| 0.000   | HSG C |                                                                    |
| 5.340   | HSG D | 1Ai, 1Ap, 1Bi, 1Bp, 2Ai, 2Ap, 2Bi, 2Bp, 2Ci, 2Cp, Bdg4, Bdg5, Bdg6 |
| 0.000   | Other |                                                                    |
| 11.271  |       | TOTAL AREA                                                         |

Emergency Conditions Prepared by Sciullo HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Printed 4/8/2020 Page 4

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other<br>(acres) | Total<br>(acres) | Ground<br>Cover        | Subcatchment<br>Numbers |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|-------------------------|
| <br>0.000        | 1.824            | 0.000            | 1.327            | 0.000            | 3.151            | >75% Grass cover, Good | 1Ap,                    |
|                  |                  |                  |                  |                  |                  |                        | 1Bp,                    |
|                  |                  |                  |                  |                  |                  |                        | 2Ap,                    |
|                  |                  |                  |                  |                  |                  |                        | 2Bp, 2Cp                |
| 0.000            | 3.114            | 0.000            | 3.158            | 0.000            | 6.272            | Paved parking          | 1Ai, 1Bi,               |
|                  |                  |                  |                  |                  |                  |                        | 2Ai, 2Bi,               |
|                  |                  |                  |                  |                  |                  |                        | 2Ci                     |
| 0.000            | 0.855            | 0.000            | 0.855            | 0.000            | 1.710            | Roofs                  | Bdg1,                   |
|                  |                  |                  |                  |                  |                  |                        | Bdg2,                   |
|                  |                  |                  |                  |                  |                  |                        | Bdg3,                   |
|                  |                  |                  |                  |                  |                  |                        | Bdg4,                   |
|                  |                  |                  |                  |                  |                  |                        | Bdg5,                   |
|                  |                  |                  |                  |                  |                  |                        | Bdg6                    |
| 0.000            | 0.138            | 0.000            | 0.000            | 0.000            | 0.138            | Unconnected roofs      | 1Ai                     |
| 0.000            | 5.931            | 0.000            | 5.340            | 0.000            | 11.271           | TOTAL AREA             |                         |

Ground Covers (all nodes)

| Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width<br>(inches) | Height<br>(inches) | Inside-Fill<br>(inches) |
|-------|----------------|---------------------|----------------------|------------------|------------------|-------|------------------------|--------------------|-------------------------|
| 1     | 1Ai            | 0.00                | 0.00                 | 1,254.0          | 0.0030           | 0.013 | 18.0                   | 0.0                | 0.0                     |
| 2     | 1Ap            | 0.00                | 0.00                 | 1,254.0          | 0.0030           | 0.013 | 18.0                   | 0.0                | 0.0                     |
| 3     | 2Ai            | 0.00                | 0.00                 | 263.0            | 0.0050           | 0.013 | 15.0                   | 0.0                | 0.0                     |
| 4     | 2Ap            | 0.00                | 0.00                 | 263.0            | 0.0050           | 0.013 | 15.0                   | 0.0                | 0.0                     |

### Pipe Listing (all nodes)

| Emergency Conditions                             | Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90" |
|--------------------------------------------------|--------------------------------------------------|
| Prepared by Sciullo                              | Printed 4/8/2020                                 |
| HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Sc | ftware Solutions LLC Page 6                      |

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv. Reach routing by Sim-Route method - Pond routing by Sim-Route method w/Net Flows

| Subcatchment1Ai: PRDA-1Ai  | Runoff Area=2.810 ac 100.00% Impervious Runoff Depth=8.66"<br>Flow Length=1,354' Tc=10.0 min CN=0/98 Runoff=16.45 cfs 2.028 af |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 1Ap: PRDA-1Ap | Runoff Area=0.795 ac 0.00% Impervious Runoff Depth=4.76"<br>Flow Length=1,354' Tc=10.0 min CN=66/0 Runoff=2.88 cfs 0.315 af    |
| Subcatchment1Bi: PRDA-1Bi  | Runoff Area=0.693 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=4.06 cfs 0.500 af                     |
| Subcatchment1Bp: PRDA-1Bp  | Runoff Area=0.344 ac 0.00% Impervious Runoff Depth=4.76"<br>Tc=10.0 min CN=66/0 Runoff=1.25 cfs 0.136 af                       |
| Subcatchment2Ai: PRDA-2Ai  | Runoff Area=0.502 ac 100.00% Impervious Runoff Depth=8.66"<br>Flow Length=352' Tc=10.0 min CN=0/98 Runoff=2.94 cfs 0.362 af    |
| Subcatchment2Ap: PRDA-2Ap  | Runoff Area=0.399 ac 0.00% Impervious Runoff Depth=5.37"<br>Flow Length=352' Tc=10.0 min CN=71/0 Runoff=1.64 cfs 0.179 af      |
| Subcatchment2Bi: PRDA-2Bi  | Runoff Area=0.581 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=3.40 cfs 0.419 af                     |
| Subcatchment2Bp: PRDA-2Bp  | Runoff Area=0.214 ac 0.00% Impervious Runoff Depth=5.74"<br>Tc=10.0 min CN=74/0 Runoff=0.94 cfs 0.102 af                       |
| Subcatchment2Ci: PRDA-2Ci  | Runoff Area=1.824 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=10.68 cfs 1.316 af                    |
| Subcatchment2Cp: PRDA-2Cp  | Runoff Area=1.399 ac 0.00% Impervious Runoff Depth=5.25"<br>Tc=10.0 min CN=70/0 Runoff=5.62 cfs 0.612 af                       |
| SubcatchmentBdg1: BLDG-1   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg2: BLDG-2   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg3: BLDG-3   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg4: BLDG-4   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg5: BLDG-5   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |
| SubcatchmentBdg6: BLDG-6   | Runoff Area=0.285 ac 100.00% Impervious Runoff Depth=8.66"<br>Tc=10.0 min CN=0/98 Runoff=1.67 cfs 0.206 af                     |

| Emergency Conditions Prepared by Sciullo   | Type III 24-hr 100 Yr Atlantic Co Rai<br>Printe                                            | i <b>nfall=8.90"</b><br>d 4/8/2020 |
|--------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|
| HydroCAD® 10.00-21 s/n M10478 © 2018 Hydro | oCAD Software Solutions LLC                                                                | Page 7                             |
| Pond 1B: Basin 1B                          | Peak Elev=8.00' Storage=4,507 cf Inflow=5.30                                               | cfs 0.636 af                       |
|                                            | Outflow=5.20                                                                               | cfs 0.636 af                       |
| Pond 2C: Basin 2C                          | Peak Elev=9.36' Storage=72,658 cf Inflow=20.62                                             | cfs 2.450 af                       |
|                                            | Outflow=17.38                                                                              | cfs 2.450 af                       |
| Link 1L: PT 1                              | Inflow=34.38                                                                               | cfs 4.213 af                       |
|                                            | Primary=34.38                                                                              | cfs 4.213 af                       |
| Link 2L: PT 2                              | Inflow=21.28                                                                               | cfs 2.990 af                       |
|                                            | Primary=21.28                                                                              | cfs 2.990 af                       |
| Link 4L: TTA                               | Inflow=53.80                                                                               | cfs 7.204 af                       |
|                                            | Primary=53.80                                                                              | cfs 7.204 af                       |
|                                            | c Runoff Volume = 7.204 af Average Runoff I<br>7.96% Pervious = 3.151 ac  72.04% Imperviou |                                    |

### Summary for Subcatchment 1Ai: PRDA-1Ai

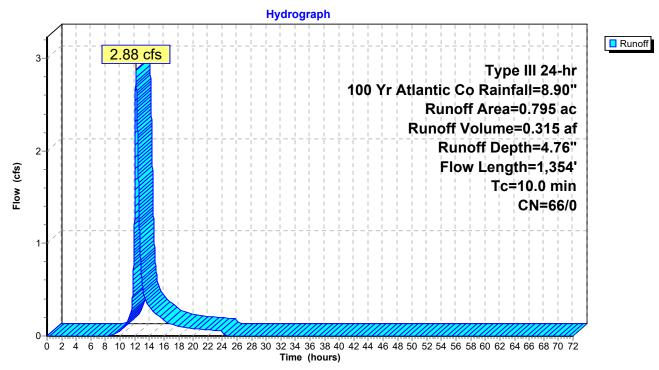
Runoff = 16.45 cfs @ 12.15 hrs, Volume= 2.028 af, Depth= 8.66"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area  | (ac) ( | CN Des  | scription              |             |                                               |  |  |  |  |
|-------|--------|---------|------------------------|-------------|-----------------------------------------------|--|--|--|--|
| 1.    | 113    | 98 Pav  | 8 Paved parking, HSG B |             |                                               |  |  |  |  |
| 1.    | 559    | 98 Pav  | ed parking             | , HSG D     |                                               |  |  |  |  |
| 0.    | .138   | 98 Und  | connected r            | oofs, HSG   | В                                             |  |  |  |  |
| 2.    | .810   | 98 We   | ighted Ave             | rage        |                                               |  |  |  |  |
| 2.    | .810   | 98 100  |                        | rvious Area | 1                                             |  |  |  |  |
|       |        |         |                        |             |                                               |  |  |  |  |
| Тс    | Length | Slope   | Velocity               | Capacity    | Description                                   |  |  |  |  |
| (min) | (feet) | (ft/ft) | (ft/sec)               | (cfs)       |                                               |  |  |  |  |
| 1.4   | 100    | 0.0130  | 1.19                   |             | Sheet Flow, PRDA-1.1                          |  |  |  |  |
|       |        |         |                        |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |  |  |  |
| 6.4   | 1,254  | 0.0030  | 3.26                   | 5.75        | Pipe Channel, PRDA-1.2                        |  |  |  |  |
|       |        |         |                        |             | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |  |  |  |
|       |        |         |                        |             | n= 0.013                                      |  |  |  |  |
| 7.8   | 1,354  | Total,  | Increased t            | to minimum  | Tc = 10.0 min                                 |  |  |  |  |

Subcatchment 1Ai: PRDA-1Ai

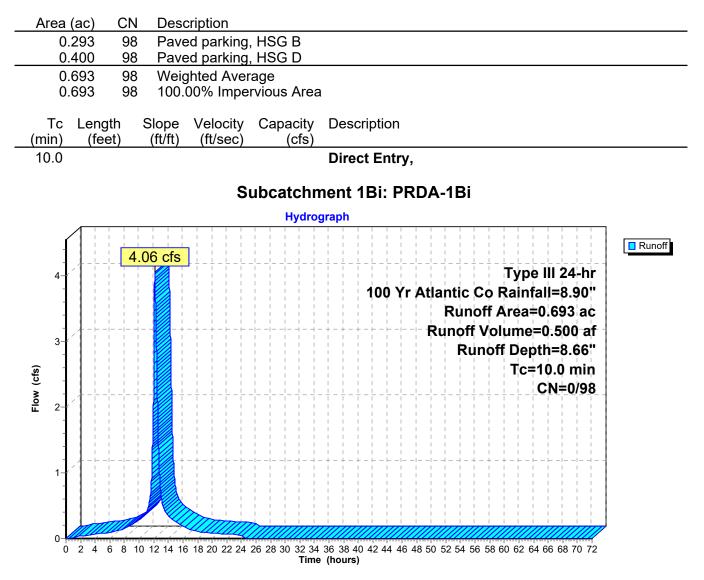



### Summary for Subcatchment 1Ap: PRDA-1Ap

Runoff = 2.88 cfs @ 12.16 hrs, Volume= 0.315 af, Depth= 4.76"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

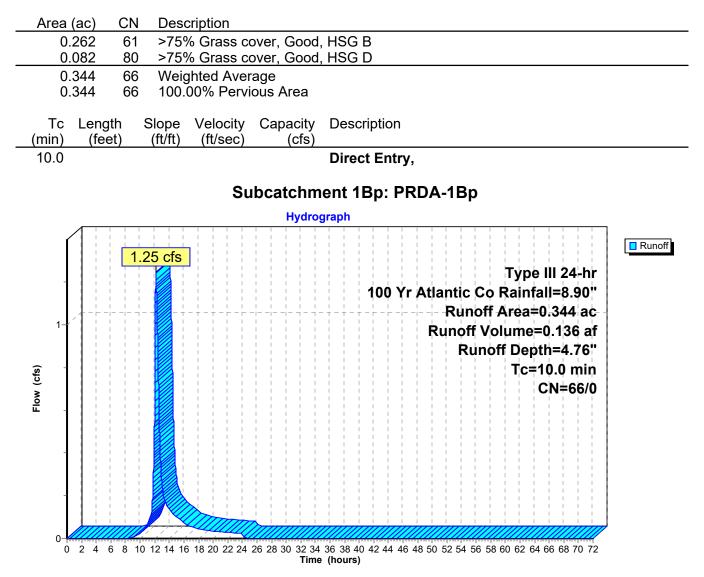
| Area (                    | (ac) C                         | N Des                                     | cription                      |          |                                               |  |  |  |
|---------------------------|--------------------------------|-------------------------------------------|-------------------------------|----------|-----------------------------------------------|--|--|--|
| 0.574 61                  |                                | 61 >75                                    | >75% Grass cover, Good, HSG B |          |                                               |  |  |  |
| 0.2                       | 0.221 80                       |                                           | >75% Grass cover, Good, HSG D |          |                                               |  |  |  |
| 0.795 66 Weighted Average |                                |                                           |                               |          |                                               |  |  |  |
| 0.1                       | 0.795 66 100.00% Pervious Area |                                           |                               |          |                                               |  |  |  |
|                           |                                |                                           |                               |          |                                               |  |  |  |
| Tc                        | Length                         | Slope                                     | Velocity                      | Capacity | Description                                   |  |  |  |
| (min)                     | (feet)                         | (ft/ft)                                   | (ft/sec)                      | (cfs)    |                                               |  |  |  |
| 1.4                       | 100                            | 0.0130                                    | 1.19                          |          | Sheet Flow, PRDA-1.1                          |  |  |  |
|                           |                                |                                           |                               |          | Smooth surfaces n= 0.011 P2= 3.36"            |  |  |  |
| 6.4                       | 1,254                          | 0.0030                                    | 3.26                          | 5.75     | Pipe Channel, PRDA-1.2                        |  |  |  |
|                           |                                |                                           |                               |          | 18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38' |  |  |  |
|                           |                                |                                           |                               |          | n= 0.013                                      |  |  |  |
| 7.8                       | 1,354                          | Total, Increased to minimum Tc = 10.0 min |                               |          |                                               |  |  |  |


### Subcatchment 1Ap: PRDA-1Ap



### Summary for Subcatchment 1Bi: PRDA-1Bi

Runoff = 4.06 cfs @ 12.15 hrs, Volume= 0.500 af, Depth= 8.66"


Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

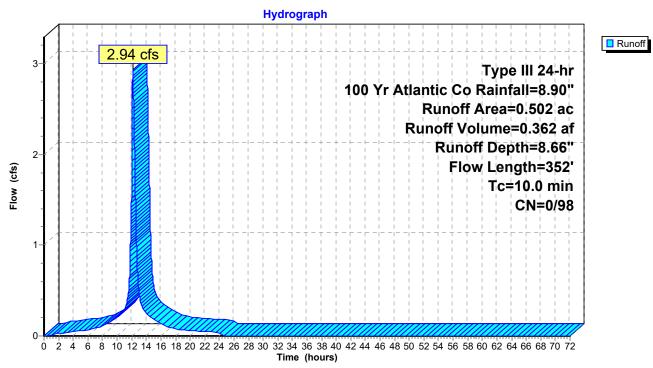


### Summary for Subcatchment 1Bp: PRDA-1Bp

Runoff = 1.25 cfs @ 12.16 hrs, Volume= 0.136 af, Depth= 4.76"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"




### Summary for Subcatchment 2Ai: PRDA-2Ai

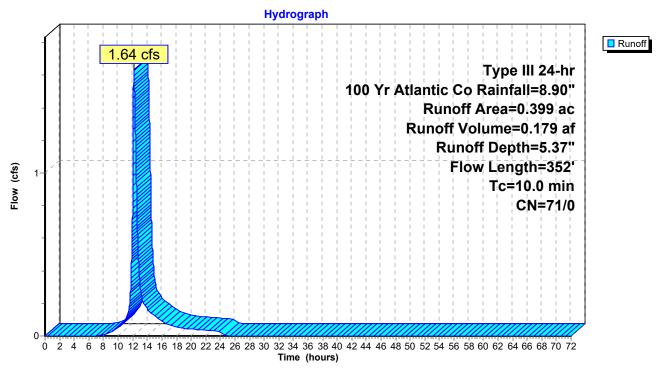
Runoff = 2.94 cfs @ 12.15 hrs, Volume= 0.362 af, Depth= 8.66"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

| Area (a                       | ac) C                            | N Desc                                    | cription    |          |                                               |  |  |
|-------------------------------|----------------------------------|-------------------------------------------|-------------|----------|-----------------------------------------------|--|--|
| 0.281 98 Paved parking, HSG B |                                  |                                           |             |          |                                               |  |  |
| 0.221 98 Paved parking, HSG D |                                  |                                           | ed parking, | HSG D    |                                               |  |  |
| 0.5                           | 0.502 98 Weighted Average        |                                           |             |          |                                               |  |  |
| 0.5                           | 0.502 98 100.00% Impervious Area |                                           |             |          |                                               |  |  |
|                               |                                  |                                           |             |          |                                               |  |  |
| Tc I                          | Length                           | Slope                                     | Velocity    | Capacity | Description                                   |  |  |
| (min)                         | (feet)                           | (ft/ft)                                   | (ft/sec)    | (cfs)    |                                               |  |  |
| 1.2                           | 89                               | 0.0150                                    | 1.23        |          | Sheet Flow, PRDA-2.1                          |  |  |
|                               |                                  |                                           |             |          | Smooth surfaces n= 0.011 P2= 3.36"            |  |  |
| 1.2                           | 263                              | 0.0050                                    | 3.72        | 4.57     | Pipe Channel, PRDA-2.1                        |  |  |
|                               |                                  |                                           |             |          | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |  |  |
|                               |                                  |                                           |             |          | n= 0.013                                      |  |  |
| 2.4                           | 352                              | Total, Increased to minimum Tc = 10.0 min |             |          |                                               |  |  |

### Subcatchment 2Ai: PRDA-2Ai

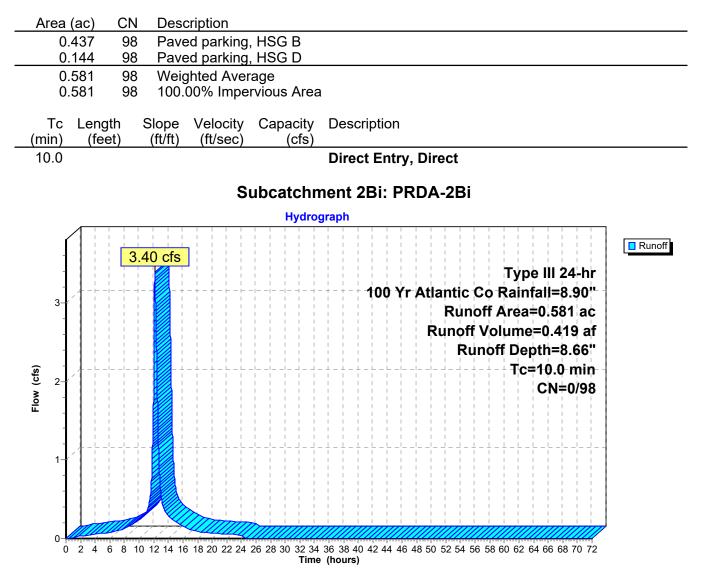



### Summary for Subcatchment 2Ap: PRDA-2Ap

Runoff = 1.64 cfs @ 12.16 hrs, Volume= 0.179 af, Depth= 5.37"

Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

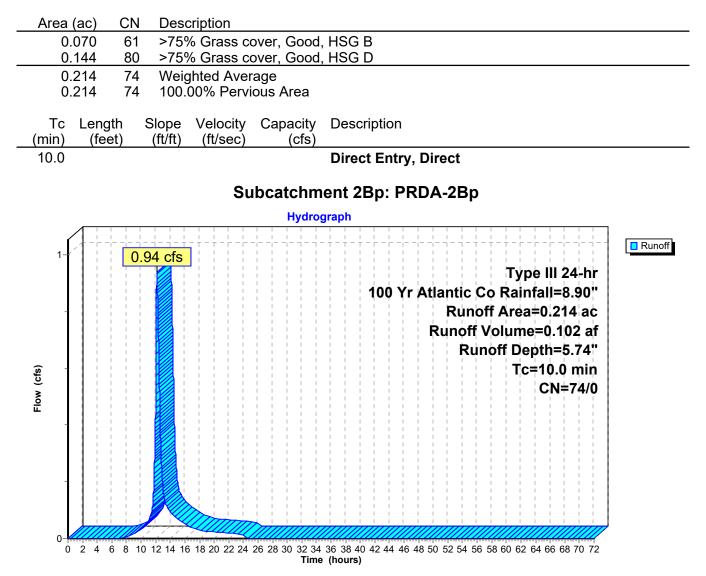
| Area (       | (ac) C                         | N Des                                     | cription   |             |                                               |  |  |
|--------------|--------------------------------|-------------------------------------------|------------|-------------|-----------------------------------------------|--|--|
| 0.1          | 193                            | 61 >75                                    | % Grass co | over, Good, | , HSG B                                       |  |  |
| 0.2          | 206                            | 30 >75°                                   | % Grass co | over, Good, | , HSG D                                       |  |  |
| 0.3          | 0.399 71 Weighted Average      |                                           |            |             |                                               |  |  |
| 0.3          | 0.399 71 100.00% Pervious Area |                                           |            |             |                                               |  |  |
|              |                                |                                           |            |             |                                               |  |  |
| Тс           | Length                         | Slope                                     | Velocity   | Capacity    | Description                                   |  |  |
| <u>(min)</u> | (feet)                         | (ft/ft)                                   | (ft/sec)   | (cfs)       |                                               |  |  |
| 1.2          | 89                             | 0.0150                                    | 1.23       |             | Sheet Flow, PRDA-2.1                          |  |  |
|              |                                |                                           |            |             | Smooth surfaces n= 0.011 P2= 3.36"            |  |  |
| 1.2          | 263                            | 0.0050                                    | 3.72       | 4.57        | Pipe Channel, PRDA-2.1                        |  |  |
|              |                                |                                           |            |             | 15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31' |  |  |
|              |                                |                                           |            |             | n= 0.013                                      |  |  |
| 2.4          | 352                            | Total, Increased to minimum Tc = 10.0 min |            |             |                                               |  |  |


### Subcatchment 2Ap: PRDA-2Ap



### Summary for Subcatchment 2Bi: PRDA-2Bi

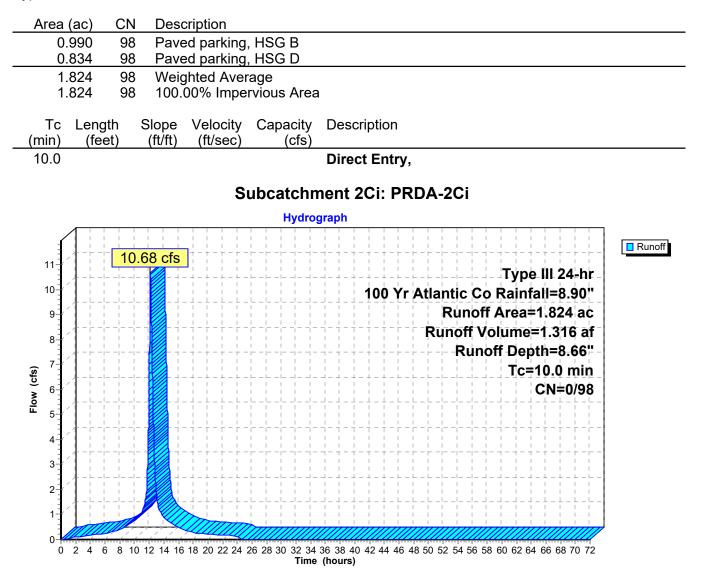
Runoff = 3.40 cfs @ 12.15 hrs, Volume= 0.419 af, Depth= 8.66"


Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"



### Summary for Subcatchment 2Bp: PRDA-2Bp

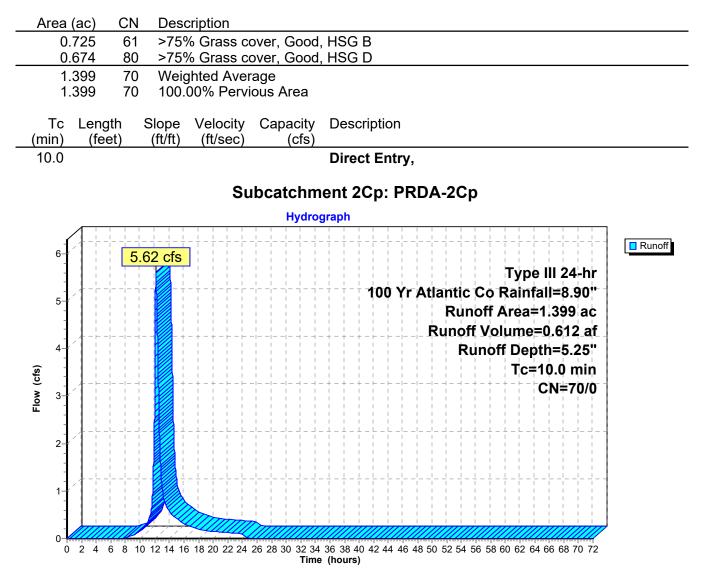
Runoff = 0.94 cfs @ 12.16 hrs, Volume= 0.102 af, Depth= 5.74"


Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"



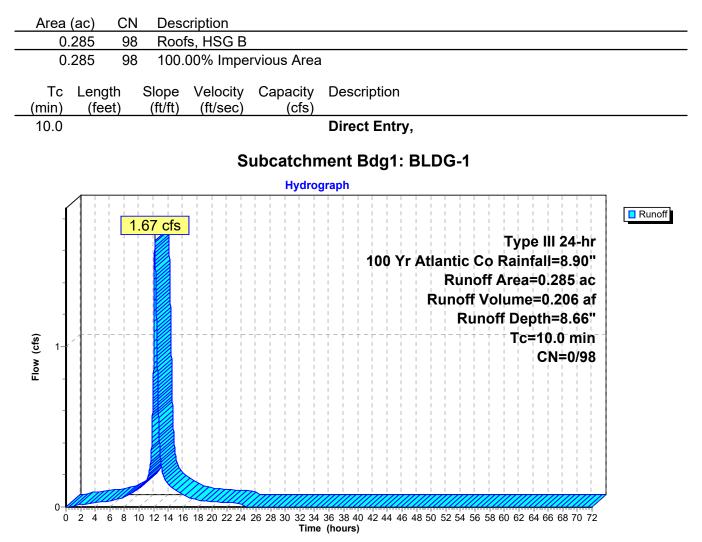
### Summary for Subcatchment 2Ci: PRDA-2Ci

Runoff = 10.68 cfs @ 12.15 hrs, Volume= 1.316 af, Depth= 8.66"


Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"

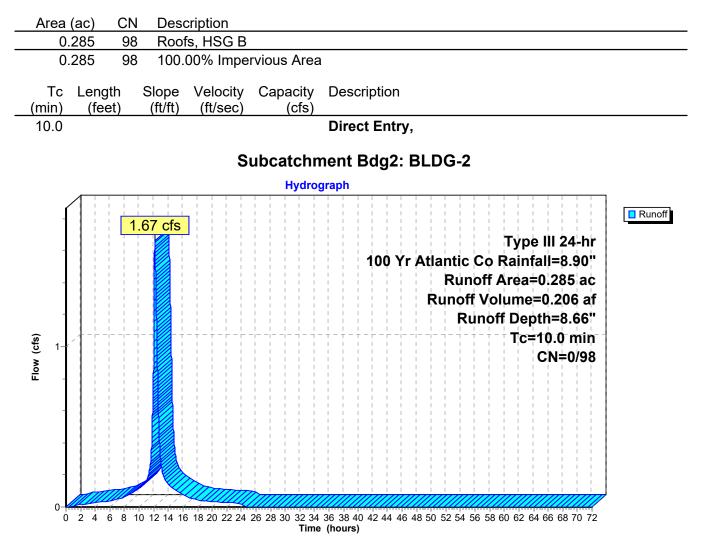


### Summary for Subcatchment 2Cp: PRDA-2Cp


Runoff = 5.62 cfs @ 12.16 hrs, Volume= 0.612 af, Depth= 5.25"

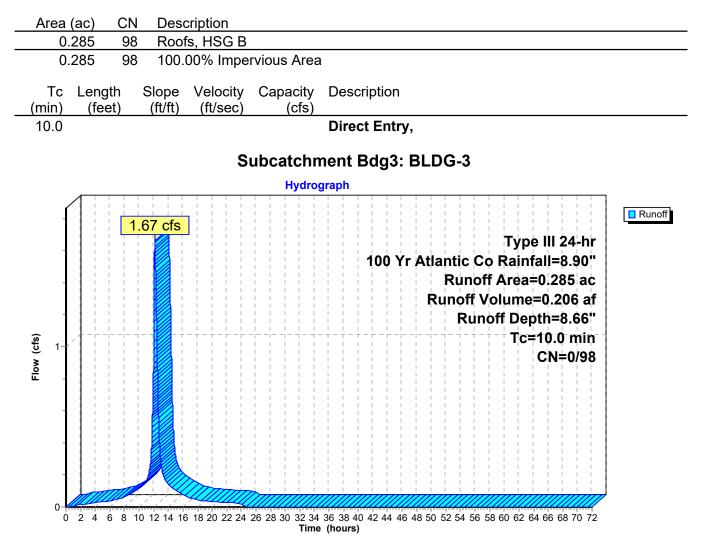
Runoff by SCS TR-20 method, UH=Delmarva, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Atlantic Co Rainfall=8.90"




#### Summary for Subcatchment Bdg1: BLDG-1

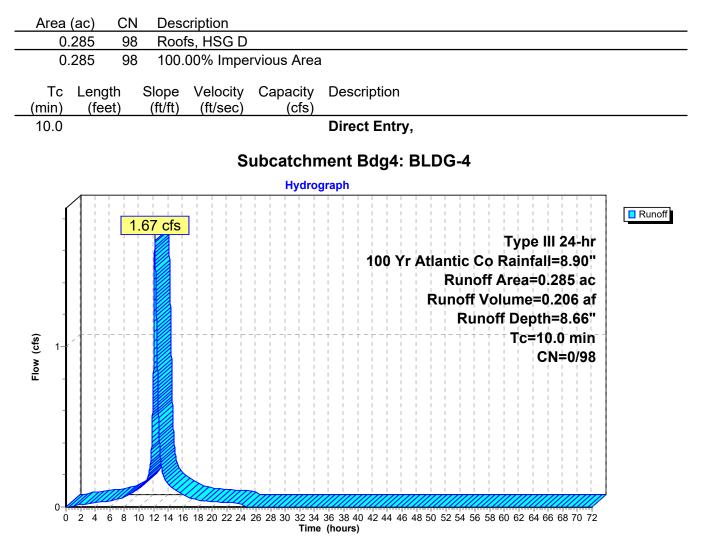
Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




#### Summary for Subcatchment Bdg2: BLDG-2

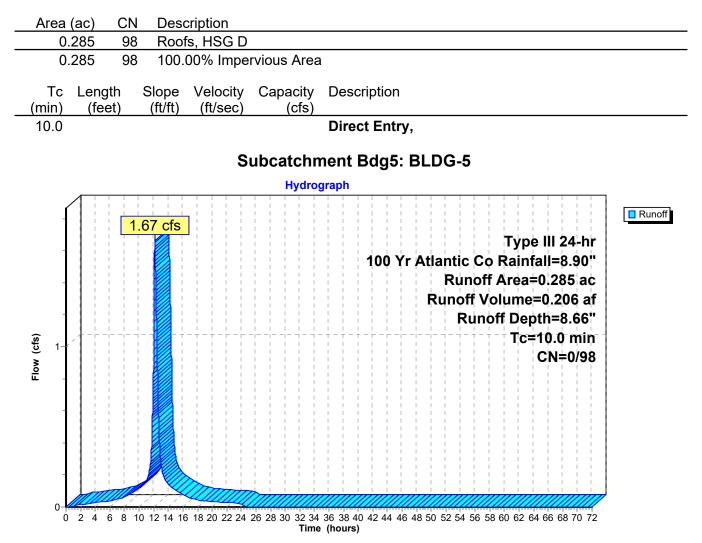
Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




#### Summary for Subcatchment Bdg3: BLDG-3

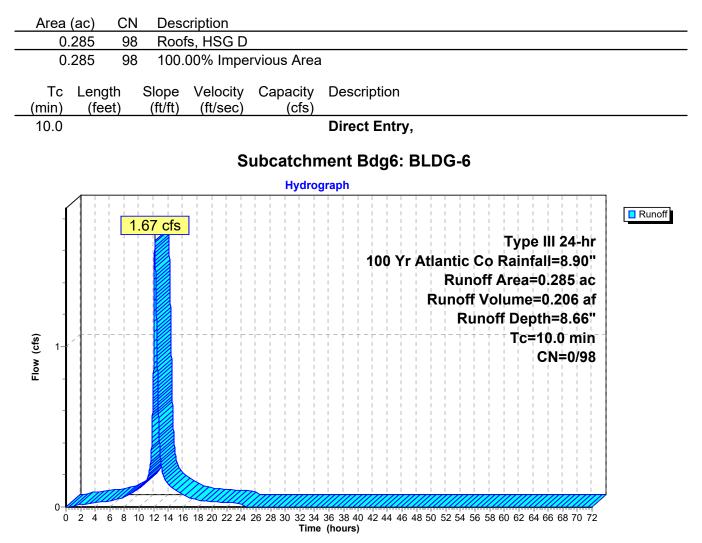
Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




#### Summary for Subcatchment Bdg4: BLDG-4

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"




#### Summary for Subcatchment Bdg5: BLDG-5

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"



#### Summary for Subcatchment Bdg6: BLDG-6

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.206 af, Depth= 8.66"



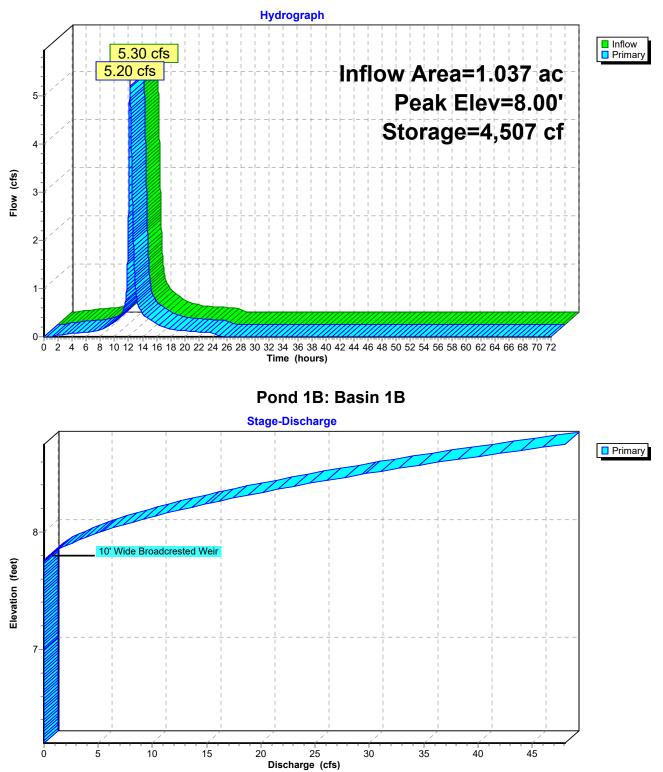
### Summary for Pond 1B: Basin 1B

[58] Hint: Peaked 0.25' above defined flood level

| Inflow Area = | = | 1.037 ac, 66.83% Impervious, Inflow Depth = 7.36" for 100 Yr Atlantic Co event |
|---------------|---|--------------------------------------------------------------------------------|
| Inflow =      | : | 5.30 cfs @ 12.16 hrs, Volume= 0.636 af                                         |
| Outflow =     | = | 5.20 cfs @ 12.19 hrs, Volume= 0.636 af, Atten= 2%, Lag= 2.2 min                |
| Primary =     | : | 5.20 cfs @ 12.19 hrs, Volume= 0.636 af                                         |
|               |   |                                                                                |

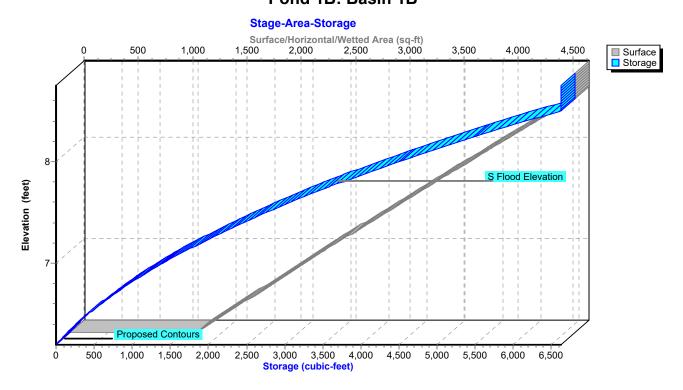
Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Starting Elev= 7.75' Surf.Area= 3,479 sf Storage= 3,582 cf Peak Elev= 8.00' @ 12.19 hrs Surf.Area= 3,863 sf Storage= 4,507 cf (925 cf above start) Flood Elev= 7.75' Surf.Area= 3,479 sf Storage= 3,582 cf

Plug-Flow detention time= 116.0 min calculated for 0.554 af (87% of inflow) Center-of-Mass det. time= 6.1 min (774.8 - 768.7)


| Volume           | ١n      | vert Avail.          | Storage  | Storage D         | Description               |                                |
|------------------|---------|----------------------|----------|-------------------|---------------------------|--------------------------------|
| #1               | 6.      | .20'                 | 6,627 cf | Proposed          | d Contours (P             | rismatic)Listed below (Recalc) |
| Elevatio<br>(fee | et)     | Surf.Area<br>(sq-ft) |          | :Store<br>c-feet) | Cum.Store<br>(cubic-feet) |                                |
| 6.2              | -       | 1,170                |          | 0                 | 0                         |                                |
| 7.0              | 00      | 2,335                |          | 1,402             | 1,402                     |                                |
| 8.0              |         | 3,860                |          | 3,098             | 4,500                     |                                |
| 8.5              | 50      | 4,650                |          | 2,128             | 6,627                     |                                |
| Device           | Routing |                      |          | et Devices        |                           |                                |
| #1               | Primary | · 7.7                |          |                   |                           | r, Cv= 3.10 (C= 3.88)          |
|                  |         |                      |          |                   | 0 0.25 0.50               |                                |
|                  |         |                      | Widt     | th (feet) 10      | 0.00 11.50 13             | .00 14.50 16.00                |

Primary OutFlow Max=5.20 cfs @ 12.19 hrs HW=8.00' TW=0.00' (Dynamic Tailwater) 1=10' Wide Broadcrested Weir (Weir Controls 5.20 cfs @ 1.92 fps)

#### Emergency Conditions Prepared by Sciullo


HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Pond 1B: Basin 1B



# **Emergency Conditions** Prepared by Sciullo

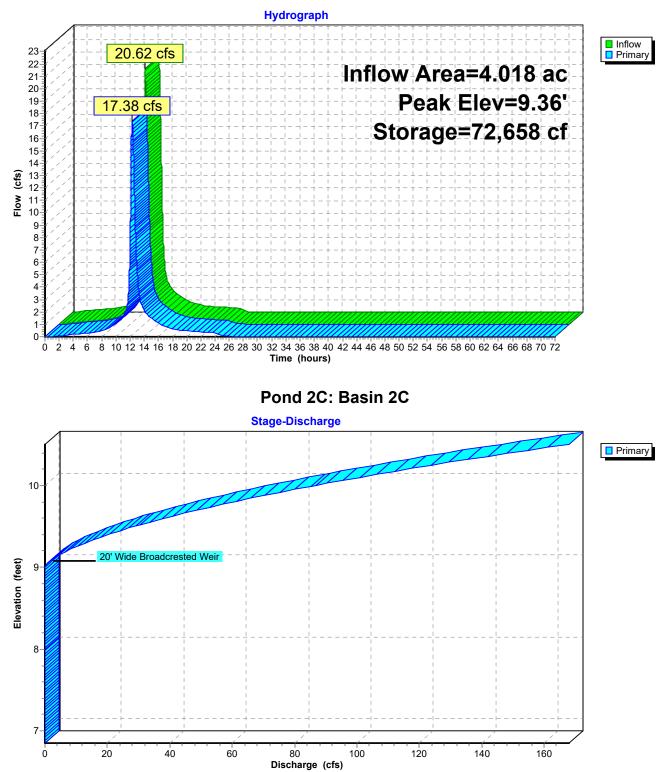
Pond 1B: Basin 1B



### Summary for Pond 2C: Basin 2C

[58] Hint: Peaked 0.36' above defined flood level

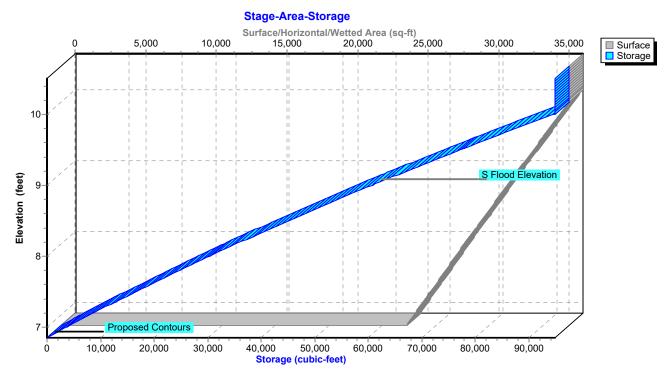
| Inflow Area = | 4.018 ac, 59.86% Impervious, Inflow D | Depth = 7.32" for 100 Yr Atlantic Co event |
|---------------|---------------------------------------|--------------------------------------------|
| Inflow =      | 20.62 cfs @ 12.16 hrs, Volume=        | 2.450 af                                   |
| Outflow =     | 17.38 cfs @_ 12.30 hrs, Volume=       | 2.450 af, Atten= 16%, Lag= 8.7 min         |
| Primary =     | 17.38 cfs @ 12.30 hrs, Volume=        | 2.450 af                                   |


Routing by Sim-Route method w/Net Flows, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Starting Elev= 9.00' Surf.Area= 32,215 sf Storage= 60,856 cf Peak Elev= 9.36' @ 12.30 hrs Surf.Area= 33,559 sf Storage= 72,658 cf (11,802 cf above start) Flood Elev= 9.00' Surf.Area= 32,215 sf Storage= 60,856 cf

Plug-Flow detention time= 330.6 min calculated for 1.052 af (43% of inflow) Center-of-Mass det. time= 22.9 min (795.7 - 772.8)

| Volume                         | In                 | vert Av                                  | ail.Storage            | Storage D                                  | Description                                           |                                |
|--------------------------------|--------------------|------------------------------------------|------------------------|--------------------------------------------|-------------------------------------------------------|--------------------------------|
| #1                             | 6                  | .85'                                     | 94,944 cf              | Proposed                                   | d Contours (P                                         | rismatic)Listed below (Recalc) |
| Elevatio<br>(fee<br>6.8<br>7.0 | et)<br>35<br>00    | Surf.Area<br>(sq-ft)<br>24,460<br>24,990 | (cut                   | nc.Store<br><u>bic-feet)</u><br>0<br>3,709 | Cum.Store<br>(cubic-feet)<br>0<br>3,709               |                                |
| 8.0                            |                    | 28,545                                   |                        | 26,768                                     | 30,476                                                |                                |
| 9.0                            |                    | 32,215                                   |                        | 30,380                                     | 60,856                                                |                                |
| 10.0                           | 00                 | 35,960                                   | 1                      | 34,088                                     | 94,944                                                |                                |
| Device<br>#1                   | Routing<br>Primary | /                                        | 9.00' <b>20'</b><br>He | ad (feet) 0.0                              | <b>dcrested Weir</b><br>00 0.50 1.00<br>0.00 23.00 26 |                                |

Primary OutFlow Max=17.38 cfs @ 12.30 hrs HW=9.36' TW=0.00' (Dynamic Tailwater) ←1=20' Wide Broadcrested Weir (Weir Controls 17.38 cfs @ 2.30 fps)

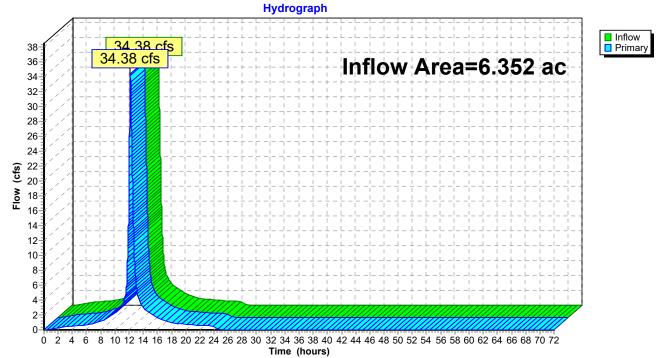

### Pond 2C: Basin 2C



### **Emergency Conditions** Prepared by Sciullo

HydroCAD® 10.00-21 s/n M10478 © 2018 HydroCAD Software Solutions LLC

Pond 2C: Basin 2C

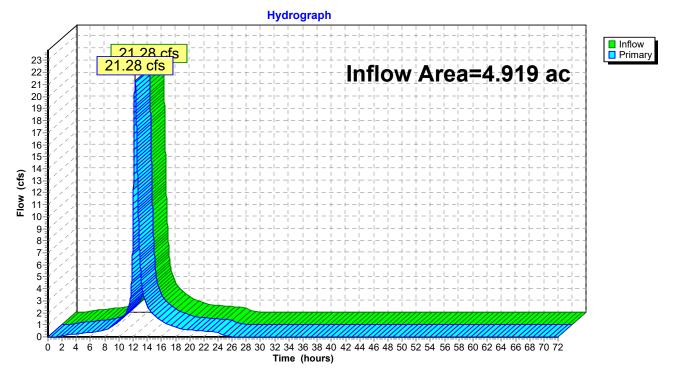



### Summary for Link 1L: PT 1

| Inflow Are | a = | 6.352 ac, 82.07% Impervious, Inflow Depth = 7.96" for 100 Yr Atlantic Co event |
|------------|-----|--------------------------------------------------------------------------------|
| Inflow     | =   | 34.38 cfs @ 12.16 hrs, Volume=                                                 |
| Primary    | =   | 34.38 cfs @ 12.17 hrs, Volume= 4.213 af, Atten= 0%, Lag= 0.6 min               |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

# Link 1L: PT 1

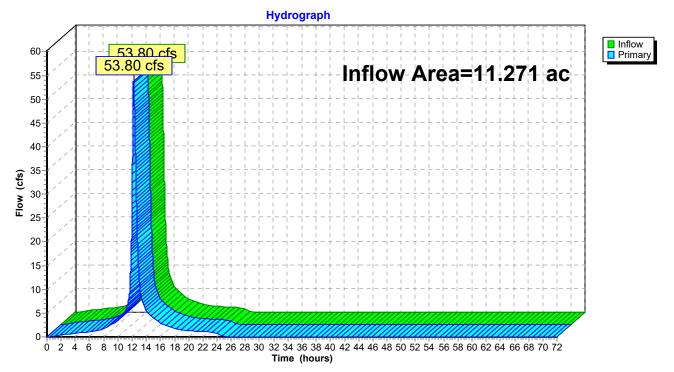



### Summary for Link 2L: PT 2

| Inflow Are | a = | 4.919 ac, 59.10% Impervious, Inflow Depth = 7.30" for 100 Yr Atlantic Co event |
|------------|-----|--------------------------------------------------------------------------------|
| Inflow     | =   | 21.28 cfs @ 12.28 hrs, Volume= 2.990 af                                        |
| Primary    | =   | 21.28 cfs @ 12.29 hrs, Volume= 2.990 af, Atten= 0%, Lag= 0.6 min               |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

#### Link 2L: PT 2




### Summary for Link 4L: TTA

| Inflow Area | a = | 11.271 ac, 72.04% Impervious, Inflow Depth = 7.67" for 100 Yr Atlantic Co event |
|-------------|-----|---------------------------------------------------------------------------------|
| Inflow      | =   | 53.80 cfs @ 12.20 hrs, Volume= 7.204 af                                         |
| Primary     | =   | 53.80 cfs @ 12.21 hrs, Volume= 7.204 af, Atten= 0%, Lag= 0.6 min                |

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

#### Link 4L: TTA



# APPENDIX G

STORM SEWER CALCULATIONS





| •                          | SCA 001.01<br>Pleasantville<br>Proposed                                                   |                                                                                                        | By<br>Date<br>Revised                                                                                      | DFW<br>4/9/2020                                      |
|----------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| INLET-1                    | Area                                                                                      | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                              | HSG B HSG D                                          |
| Impervious<br>0.25 Ac Resi | SF AC<br>12915 0.296<br>79060 1.815<br>91975 2.111                                        | SFAC129150.296790601.815919752.111                                                                     | SF         AC           0         0.000 <u>0</u> 0.000           0         0.000           0         0.000 | CCACCA0.990.2940.990.0000.550.9980.800.0001.2920.000 |
| INLET-2                    | Area                                                                                      | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                              | HSG B HSG D                                          |
| Impervious<br>0.25 Ac Resi | SF AC<br>5375 0.123<br><u>31510 0.723</u><br>36885 0.847                                  | SF         AC           5375         0.123           31510         0.723           36885         0.847 | SF         AC           0         0.000           0         0.000           0         0.000                | CCACCA0.990.1220.990.0000.550.3980.800.0000.5200.000 |
| INLET-3                    | Area                                                                                      | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                              | HSG B HSG D                                          |
| Impervious<br>Open Space   | SF AC<br>16020 0.368<br><u>14880 0.342</u><br>30900 0.709                                 | AF         AC           6365         0.146 <u>5910</u> 0.136           12275         0.282             | SF         AC           9655         0.222 <u>8970</u> 0.206           18625         0.428                 | CCACCA0.990.1450.990.2190.250.0340.650.1340.1790.353 |
| INLET-4                    | Area                                                                                      | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                              | HSG B HSG D                                          |
| Impervious<br>0.25 Ac Resi | SF AC<br>5925 0.136<br>24550 0.564<br>30475 0.700                                         | SF         AC           4340         0.100           18340         0.421           22680         0.521 | SF AC<br>1585 0.036<br><u>6210 0.143</u><br>7795 0.179                                                     | CCACCA0.990.0990.990.0360.550.2320.800.1140.3300.150 |
| INLET-5                    | Area                                                                                      | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                              | HSG B HSG D                                          |
| Impervious<br>Open Space   | SF         AC           4505         0.103 <u>3560</u> 0.082           8065         0.185 | SF         AC           4505         0.103 <u>3560</u> 0.082           8065         0.185              | SF         AC           0         0.000           0         0.000           0         0.000                | CCACCA0.990.1020.990.0000.250.0200.650.0000.1230.000 |



| •                        | SCA 001.01<br>Pleasantville<br>Proposed                                                                |                                                                                                        | By<br>Date<br>Revised                                                                                                 | DFW<br>4/9/2020                                  |                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| INLET-6                  | Area                                                                                                   | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC26300.06019300.04445600.105                                                                        | SFAC26300.06019300.04445600.105                                                                        | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | C CA<br>0.99 0.060<br>0.25 <u>0.011</u><br>0.071 |                                                  |
| INLET-7                  | Area                                                                                                   | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC84900.19573350.168158250.363                                                                       | SFAC84900.19573350.168158250.363                                                                       | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | C CA<br>0.99 0.193<br>0.25 <u>0.042</u><br>0.235 |                                                  |
| INLET-7A                 | Area                                                                                                   | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SF         AC           12955         0.297           4660         0.107           17615         0.404 | SF         AC           12955         0.297           4660         0.107           17615         0.404 | SF         AC           0         0.000           0         0.000           0         0.000                           | C CA<br>0.99 0.294<br>0.25 <u>0.027</u><br>0.321 | C CA<br>0.99 0.000<br>0.65 <u>0.000</u><br>0.000 |
| INLET-8                  | Area                                                                                                   | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SF         AC           5840         0.134           0         0.000           5840         0.134      | SF AC<br>5840 0.134<br><u>0 0.000</u><br>5840 0.134                                                    | SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                                                         | C CA<br>0.99 0.133<br>0.25 <u>0.000</u><br>0.133 |                                                  |
| INLET-8A                 | Area                                                                                                   | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SF         AC           9330         0.214           5345         0.123           14675         0.337  | SF AC<br>9330 0.214<br><u>5345 0.123</u><br>14675 0.337                                                | SF         AC           0         0.000           0         0.000           0         0.000                           |                                                  | C CA<br>0.99 0.000<br>0.65 <u>0.000</u><br>0.000 |
| INLET-8B                 | Area                                                                                                   | HSG B<br>Area                                                                                          | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SF         AC           6805         0.156           165         0.004           6970         0.160    | SF AC<br>6805 0.156<br><u>165 0.004</u><br>6970 0.160                                                  | SF         AC           0         0.000           0         0.000           0         0.000                           | C CA<br>0.99 0.155<br>0.25 <u>0.001</u><br>0.156 | C CA<br>0.99 0.000<br>0.65 <u>0.000</u><br>0.000 |



| •                        | SCA 001.01<br>Pleasantville<br>Proposed                                        |                                                                                                                    | By<br>Date<br>Revised                                                          | DFW<br>4/9/2020                                                                          |
|--------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| INLET-9                  |                                                                                | HSG B                                                                                                              | HSG D                                                                          | HSG B HSG D                                                                              |
| Impervious<br>Open Space | Area<br>SF AC<br>3465 0.080<br><u>1695 0.039</u><br>5160 0.118                 | Area<br>SF AC<br>2820 0.065<br><u>1630 0.037</u><br>4450 0.102                                                     | Area<br>SF AC<br>645 0.015<br><u>65 0.001</u><br>710 0.016                     | CCACCA0.990.0640.990.0150.250.0090.650.0010.0730.016                                     |
| INLET-10                 | 0                                                                              | HSG B                                                                                                              | HSG D                                                                          | HSG B HSG D                                                                              |
| Impervious<br>Open Space | Area<br>SF AC<br>12070 0.277<br><u>1115 0.026</u><br>13185 0.303               | Area           SF         AC           400         0.009           0         0.000           400         0.009     | Area<br>SF AC<br>11670 0.268<br><u>1115 0.026</u><br>12785 0.294               | CCACCA0.990.0090.990.2650.250.0000.650.0170.0090.282                                     |
| INLET-10A                | <b>A</b>                                                                       | HSG B                                                                                                              | HSG D                                                                          | HSG B HSG D                                                                              |
| Impervious<br>Open Space | AreaSFAC11100.02522450.05233550.077                                            | Area           SF         AC           1110         0.025           345         0.008           1455         0.033 | Area<br>SF AC<br>0 0.000<br><u>1900</u> <u>0.044</u><br>1900 0.044             | C CA C CA<br>0.99 0.025 0.99 0.000<br>0.25 <u>0.002</u> 0.65 <u>0.028</u><br>0.027 0.028 |
| INLET-11                 |                                                                                | HSG B                                                                                                              | HSG D                                                                          | HSG B HSG D                                                                              |
|                          | Area<br>SF AC                                                                  | Area<br>SF AC                                                                                                      | Area<br>SF AC                                                                  | C CA C CA                                                                                |
| Impervious<br>Open Space | 31745         0.729           1450         0.033           33195         0.762 | 0 0.000<br><u>0 0.000</u><br>0 0.000                                                                               | 31745         0.729           1450         0.033           33195         0.762 | 0.99 0.000 0.99 0.721<br>0.25 <u>0.000</u> 0.65 <u>0.022</u><br>0.000 0.743              |
| INLET-11A                | <b>A</b>                                                                       | HSG B                                                                                                              | HSG D                                                                          | HSG B HSG D                                                                              |
| Impervious<br>Open Space | Area<br>SF AC<br>9290 0.213<br><u>1330 0.031</u><br>10620 0.244                | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                                              | Area<br>SF AC<br>9290 0.213<br><u>1330 0.031</u><br>10620 0.244                | CCACCA0.990.0000.990.2110.250.0000.650.0200.0000.231                                     |
| INLET-12                 | A #                                                                            | HSG B                                                                                                              | HSG D                                                                          | HSG B HSG D                                                                              |
| Impervious<br>Open Space | Area<br>SF AC<br>2965 0.068<br><u>3330 0.076</u><br>6295 0.145                 | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                                              | Area<br>SF AC<br>2965 0.068<br><u>3330 0.076</u><br>6295 0.145                 | CCACCA0.990.0000.990.0670.250.0000.650.0500.0000.117                                     |



| Location:                | SCA 001.01<br>Pleasantville<br>Proposed                  |                                                                                                                       | By<br>Date<br>Revised                                    | DFW<br>4/9/2020                                  |                                                  |
|--------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| INLET-13                 | Area                                                     | HSG B<br>Area                                                                                                         | HSG D<br>Area                                            | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SF AC<br>14650 0.336<br><u>3760 0.086</u><br>18410 0.423 | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | SF AC<br>14650 0.336<br><u>3760 0.086</u><br>18410 0.423 | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 | C CA<br>0.99 0.333<br>0.65 <u>0.056</u><br>0.389 |
| INLET-13A                | Area                                                     | HSG B<br>Area                                                                                                         | HSG D<br>Area                                            | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC25750.05946500.10772250.166                          | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | SFAC25750.05946500.10772250.166                          | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 | C CA<br>0.99 0.059<br>0.65 <u>0.069</u><br>0.128 |
| INLET-14                 | Area                                                     | HSG B<br>Area                                                                                                         | HSG D<br>Area                                            | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC15550.03615550.03631100.071                          | SF         AC           0         0.000           0         0.000           0         0.000                           | SFAC15550.03615550.03631100.071                          | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 | C CA<br>0.99 0.035<br>0.65 <u>0.023</u><br>0.059 |
| INLET-14A                | Area                                                     | HSG B<br>Area                                                                                                         | HSG D<br>Area                                            | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC31650.073350200.804381850.877                        | SF         AC           0         0.000           0         0.000           0         0.000                           | SFAC31650.073350200.804381850.877                        | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 | C CA<br>0.99 0.072<br>0.65 <u>0.523</u><br>0.594 |
| INLET-15                 | Area                                                     | HSG B<br>Area                                                                                                         | HSG D<br>Area                                            | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC100250.2309300.021109550.251                         | SF         AC           0         0.000           0         0.000           0         0.000                           | SFAC100250.2309300.021109550.251                         | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 | C CA<br>0.99 0.228<br>0.65 <u>0.014</u><br>0.242 |
| INLET-16                 | Area                                                     | HSG B<br>Area                                                                                                         | HSG D<br>Area                                            | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC158150.36349800.114207950.477                        | SFAC81000.18626450.061107450.247                                                                                      | SFAC77150.17723350.054100500.231                         | C CA<br>0.99 0.184<br>0.25 <u>0.015</u><br>0.199 | C CA<br>0.99 0.175<br>0.65 <u>0.035</u><br>0.210 |



| Location:                | SCA 001.01<br>Pleasantville<br>Proposed           |                                                                                                                       | By<br>Date<br>Revised                                                                                                 | DFW<br>4/9/2020                                                                                                                                                                               |  |
|--------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| INLET-17                 | Area                                              | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B HSG D                                                                                                                                                                                   |  |
| Impervious<br>Open Space | SFAC237300.54531400.072268700.617                 | SFAC237300.54531400.072268700.617                                                                                     | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | C         CA         C         CA           0.99         0.539         0.99         0.000           0.25         0.018         0.65         0.000           0.557         0.000               |  |
| INLET-18                 | Area                                              | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B HSG D                                                                                                                                                                                   |  |
| Impervious<br>Open Space | SFAC256150.58898300.226354450.814                 | SFAC108900.25045700.105154600.355                                                                                     | SFAC147250.33852600.121199850.459                                                                                     | CCACCA0.990.2480.990.3350.250.0260.650.0780.2740.413                                                                                                                                          |  |
| INLET-19                 | Area                                              | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B HSG D                                                                                                                                                                                   |  |
| Impervious<br>Open Space | SFAC88900.20422600.052111500.256                  | SFAC84950.19522600.052107550.247                                                                                      | SF         AC           395         0.009           0         0.000           395         0.009                       | CCACCA0.990.1930.990.0090.250.0130.650.0000.2060.009                                                                                                                                          |  |
| INLET-19A                | Area                                              | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B HSG D                                                                                                                                                                                   |  |
| Impervious<br>Open Space | SFAC115250.26529250.067144500.332                 | SFAC110900.25522550.052133450.306                                                                                     | SF AC<br>435 0.010<br><u>670 0.015</u><br>1105 0.025                                                                  | C         CA         C         CA           0.99         0.252         0.99         0.010           0.25         0.013         0.65         0.010           0.265         0.020               |  |
| INLET-20                 | Area                                              | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B HSG D                                                                                                                                                                                   |  |
| Impervious<br>Open Space | SFAC88850.20422600.052111450.256                  | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | SFAC88850.20422600.052111450.256                                                                                      | C         CA         C         CA           0.99         0.000         0.99         0.202           0.25         0.000         0.65         0.034           0.000         0.236               |  |
| INLET-20A                | Area                                              | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B HSG D                                                                                                                                                                                   |  |
| Impervious<br>Open Space | SF AC<br>11535 0.265<br>2905 0.067<br>14440 0.331 | SF         AC           0         0.000           0         0.000           0         0.000                           | SF         AC           11535         0.265           2905         0.067           14440         0.331                | C         CA         C         CA           0.99         0.000         0.99         0.262           0.25         0.000         0.65         0.043           0.000         0.000         0.306 |  |



|                          | SCA 001.01<br>Pleasantville<br>Proposed                                                               |                                                                                                                       | By<br>Date<br>Revised                                                                                                 | DFW<br>4/9/2020                                  |                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| INLET-21                 | Area                                                                                                  | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SF         AC           8240         0.189           2970         0.068           11210         0.257 | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | SF         AC           8240         0.189           2970         0.068           11210         0.257                 | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 |                                                  |
| INLET-22                 | Area                                                                                                  | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC79150.18229750.068108900.250                                                                      | SFAC66500.15327800.06494300.216                                                                                       | SFAC12650.0291950.00414600.034                                                                                        | C CA<br>0.99 0.151<br>0.25 <u>0.016</u><br>0.167 | C CA<br>0.99 0.029<br>0.65 <u>0.003</u><br>0.032 |
| INLET-23                 | Area                                                                                                  | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC68050.1566800.01674850.172                                                                        | SFAC59750.1376550.01566300.152                                                                                        | SFAC8300.019250.0018550.020                                                                                           | C CA<br>0.99 0.136<br>0.25 <u>0.004</u><br>0.140 |                                                  |
| INLET-23A                | Area                                                                                                  | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC72200.1664550.01076750.176                                                                        | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | SFAC72200.1664550.01076750.176                                                                                        | C CA<br>0.99 0.000<br>0.25 <u>0.000</u><br>0.000 |                                                  |
| RD-1                     | Area                                                                                                  | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC61650.14200.00061650.142                                                                          | SFAC61650.14200.00061650.142                                                                                          | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | C CA<br>0.99 0.140<br>0.25 <u>0.000</u><br>0.140 | C CA<br>0.99 0.000<br>0.65 <u>0.000</u><br>0.000 |
| RD-2                     | Area                                                                                                  | HSG B<br>Area                                                                                                         | HSG D<br>Area                                                                                                         | HSG B                                            | HSG D                                            |
| Impervious<br>Open Space | SFAC62650.14400.00062650.144                                                                          | SFAC62650.14400.00062650.144                                                                                          | SF         AC           0         0.000           0         0.000           0         0.000           0         0.000 | C CA<br>0.99 0.142<br>0.25 <u>0.000</u><br>0.142 |                                                  |



| •                        | SCA 001.01<br>Pleasantville<br>Proposed                                                           |                                                                                                   | By<br>Date<br>Revised                                                                             | DFW<br>4/9/2020                                                             |
|--------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| RD-3                     | Area<br>SF AC                                                                                     | HSG B<br>Area<br>SF AC                                                                            | HSG D<br>Area<br>SF AC                                                                            | C CA C CA                                                                   |
| Impervious<br>Open Space | 6265         0.144           0         0.000           6265         0.144                         | 6265         0.144           0         0.000           6265         0.144                         | 0 0.000<br><u>0 0.000</u><br>0 0.000                                                              | 0.99 0.142 0.99 0.000<br>0.25 <u>0.000</u> 0.65 <u>0.000</u><br>0.142 0.000 |
| RD-4                     | Area                                                                                              | HSG B<br>Area                                                                                     | HSG D<br>Area                                                                                     | HSG B HSG D                                                                 |
| Impervious<br>Open Space | SFAC61650.14200.00061650.142                                                                      | SFAC61650.14200.00061650.142                                                                      | SF         AC           0         0.000           0         0.000           0         0.000       | CCACCA0.990.1400.990.0000.250.0000.650.0000.1400.000                        |
| RD-5                     | Area                                                                                              | HSG B<br>Area                                                                                     | HSG D<br>Area                                                                                     | HSG B HSG D                                                                 |
| Impervious<br>Open Space | SF         AC           6165         0.142           0         0.000           6165         0.142 | SF         AC           6165         0.142           0         0.000           6165         0.142 | SF         AC           0         0.000 <u>0</u> <u>0.000</u> 0         0.000                     | CCACCA0.990.1400.990.0000.250.0000.650.0000.1400.000                        |
| RD-6                     | Area                                                                                              | HSG B<br>Area                                                                                     | HSG D<br>Area                                                                                     | HSG B HSG D                                                                 |
| Impervious<br>Open Space | SF         AC           6265         0.144           0         0.000           6265         0.144 | SF         AC           6265         0.144           0         0.000           6265         0.144 | SF         AC           0         0.000 <u>0</u> <u>0.000</u> 0         0.000                     | CCACCA0.990.1420.990.0000.250.0000.650.0000.1420.000                        |
| RD-7                     | Area                                                                                              | HSG B<br>Area                                                                                     | HSG D<br>Area                                                                                     | HSG B HSG D                                                                 |
| Impervious<br>Open Space | SF         AC           6165         0.142           0         0.000           6165         0.142 | SF         AC           0         0.000           0         0.000           0         0.000       | SF         AC           6165         0.142           0         0.000           6165         0.142 | CCACCA0.990.0000.990.1400.250.0000.650.0000.0000.140                        |
| RD-8                     | Area                                                                                              | HSG B<br>Area                                                                                     | HSG D<br>Area                                                                                     | HSG B HSG D                                                                 |
| Impervious<br>Open Space | SF         AC           6265         0.144           0         0.000           6265         0.144 | SF         AC           0         0.000           0         0.000           0         0.000       | SF         AC           6265         0.144           0         0.000           6265         0.144 | CCACCA0.990.0000.990.1420.250.0000.650.0000.0000.142                        |



| •                        | SCA 001.01<br>Pleasantville<br>Proposed                            |                                                                                                  | By<br>Date<br>Revised                                                                                            | DFW<br>4/9/2020                                      |       |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------|
| RD-9                     |                                                                    | HSG B                                                                                            | HSG D                                                                                                            | HSG B                                                | HSG D |
| Impervious<br>Open Space | Area<br>SF AC<br>6265 0.144<br><u>0 0.000</u><br>6265 0.144        | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                            | Area<br>SF AC<br>6265 0.144<br><u>0 0.000</u><br>6265 0.144                                                      | C CA<br>0.99 0.000 0<br>0.25 <u>0.000</u> 0<br>0.000 |       |
| RD-10                    |                                                                    | HSG B                                                                                            | HSG D                                                                                                            | HSG B                                                | HSG D |
| Impervious<br>Open Space | Area<br>SF AC<br>6165 0.142<br><u>0 0.000</u><br>6165 0.142        | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                            | Area<br>SF AC<br>6165 0.142<br><u>0 0.000</u><br>6165 0.142                                                      | C CA<br>0.99 0.000 0<br>0.25 <u>0.000</u> 0<br>0.000 |       |
| RD-11                    | A × 0 0                                                            | HSG B                                                                                            | HSG D                                                                                                            | HSG B                                                | HSG D |
| Impervious<br>Open Space | Area<br>SF AC<br>6165 0.142<br><u>0 0.000</u><br>6165 0.142        | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                            | Area<br>SF AC<br>6165 0.142<br><u>0 0.000</u><br>6165 0.142                                                      | C CA<br>0.99 0.000 0<br>0.25 <u>0.000</u> 0<br>0.000 |       |
| RD-12                    | Area                                                               | HSG B                                                                                            | HSG D                                                                                                            | HSG B                                                | HSG D |
| Impervious<br>Open Space | Area<br>SF AC<br>6265 0.144<br><u>0 0.000</u><br>6265 0.144        | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                            | Area<br>SF AC<br>6265 0.144<br><u>0 0.000</u><br>6265 0.144                                                      | C CA<br>0.99 0.000 0<br>0.25 <u>0.000</u> 0<br>0.000 |       |
| B-1B                     | Aree                                                               | HSG B                                                                                            | HSG D                                                                                                            | HSG B                                                | HSG D |
| Impervious<br>Open Space | Area<br>SF AC<br>0 0.000<br><u>7690 0.177</u><br>7690 0.177        | Area<br>SF AC<br>0 0.000<br><u>7690 0.177</u><br>7690 0.177                                      | Area<br>SF AC<br>0 0.000<br><u>0 0.000</u><br>0 0.000                                                            | C CA<br>0.99 0.000 0<br>0.25 <u>0.044</u> 0<br>0.044 |       |
| B-2B                     | Area                                                               | HSG B<br>Area                                                                                    | HSG D<br>Area                                                                                                    | HSG B                                                | HSG D |
| Impervious<br>Open Space | Area<br>SF AC<br>0 0.000<br><u>2990</u> <u>0.069</u><br>2990 0.069 | Area           SF         AC           0         0.000 <u>750</u> <u>0.017</u> 750         0.017 | Area           SF         AC           0         0.000           2240         0.051           2240         0.051 | C CA<br>0.99 0.000 0<br>0.25 <u>0.004</u> 0<br>0.004 |       |



| Project:<br>Location:<br>Condition: | Pleasa                  | ntville                     |                         |                             |                         | By<br>Date<br>Revised       | DFW<br>4/9/20     | 020                         |    |                             |
|-------------------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------|-----------------------------|----|-----------------------------|
| B-2C                                | Ar                      | ea                          | HSC<br>Are              |                             | HSC<br>Are              |                             | HS                | GΒ                          | HS | G D                         |
| Impervious<br>Open Space            | SF<br>0<br><u>39750</u> | AC<br>0.000<br><u>0.913</u> | SF<br>0<br><u>20170</u> | AC<br>0.000<br><u>0.463</u> | SF<br>0<br><u>19580</u> | AC<br>0.000<br><u>0.449</u> | C<br>0.99<br>0.25 | CA<br>0.000<br><u>0.116</u> |    | CA<br>0.000<br><u>0.292</u> |
|                                     | 39750                   | 0.913                       | 20170                   | 0.463                       | 19580                   | 0.449                       |                   | 0.116                       |    | 0.292                       |

Appendix G

STORM SEWER CALCULATIONS

4/9/2020

Date: Date:

SCA 003.01 DFW D

Project: Computed By: Revised By:

1 Of 1 HDPEP RCP 0.010 0.013 -

Sheet Pipe Material: "n" Factor:

| orm           | rt Elev.<br>Lower<br>End<br>2.33 | 2.33   | 0.25   | 1.14<br>0.50        | 0.07<br>-0.44<br>-0.50       | 2.09<br>0.75<br>0.70<br>1.64         | 3.39    | 3.50<br>2.36         | 1.31   | 2.47   | 1.13   | 2.59<br>1.97        | 0.63<br>-0.88    |
|---------------|----------------------------------|--------|--------|---------------------|------------------------------|--------------------------------------|---------|----------------------|--------|--------|--------|---------------------|------------------|
| 25 Year Storm | Invert<br>Upper<br>End<br>2.50   | 2.35   | 2.08   | 3.00<br>0.79        | 0.25<br>-0.43<br>-0.44       | 3.10<br>1.34<br>0.75<br>1.80         | 3.60    | 3.75<br>3.25         | 1.64   | 3.50   | 1.31   | 3.81<br>2.59        | 0.87<br>0.63     |
| 25            | d Elev.<br>Lower<br>End<br>5.44  | 5.44   | 4.33   | 3.64<br>4.33        | 3.89<br>5.00<br>2.50         | 4.64<br>5.40<br>7.25<br>7.25         | 7.25    | 7.50<br>7.25         | 8.06   | 8.06   | 8.12   | 7.55<br>8.12        | 9.40<br>6.00     |
|               | Ground<br>Upper<br>End<br>5.00   | 5.48   | 5.44   | 6.85<br>3.64        | 4.33<br>4.33<br>5.00         | 4.80<br>5.40<br>5.28                 | 5.95    | 6.20<br>7.50         | 7.25   | 6.09   | 8.06   | 6.31<br>7.55        | 8.12<br>9.40     |
|               | Pipe<br>Cap.<br>CFS<br>5.96      | 3.03   | 8.73   | 15.11<br>7.83       | 14.59<br>13.00<br>13.00      | 10.08<br>13.92<br>5.73<br>12.95      | 3.42    | 5.37<br>20.23        | 9.99   | 9.27   | 12.39  | 9.23<br>9.23        | 15.84<br>16.47   |
|               | Flow<br>Time<br>min.<br>0.07     | 0.06   | 0.89   | 0.05<br>0.05        | 0.02<br>0.02<br>0.06         | 0.14<br>1.00<br>1.21<br>0.34         | 0.45    | 0.14<br>0.03         | 0.87   | 0.11   | 0.25   | 0.13<br>0.07        | 0.16<br>0.91     |
|               | Pipe<br>Length<br>ft<br>20       | 6      | 265    | 82                  | 9<br>10<br>10                | 70<br>266<br>85                      | 75      | 36<br>24             | 166    | 50     | 59     | 30 Q0               | 49<br>285        |
|               | FPS<br>4.85                      | 2.47   | 4.94   | 12.31<br>6.38       | 8.26<br>4.14<br>4.14         | 8.21<br>4.43<br>1.82<br>4.12         | 2.79    | 4.37<br>11.45        | 3.18   | 7.56   | 3.94   | 7.52<br>7.52        | 5.04<br>5.24     |
|               | Pipe<br>Dia.                     | 15     | 18     | <u>1</u> 5          | 24 18<br>24 18               | 24 74<br>24 74                       | 15      | 10<br>18<br>19       | 24     | 15     | 24     | 15<br>15            | 54 25            |
|               | Slope<br>ft/ft<br>0.0085         | 0.0022 | 0.0069 | 0.0547<br>0.0147    | 0.0193<br>0.0033<br>0.0033   | 0.0144<br>0.0022<br>0.0004<br>0.0019 | 0.0028  | 0.0069<br>0.0371     | 0.0020 | 0.0206 | 0.0030 | 0.0204<br>0.0204    | 0.0049<br>0.0053 |
|               | 0<br>CFS<br>3.62                 | 2.37   | 5.04   | 3.73<br>7.08        | 9.50<br>10.68<br>10.65       | 0.77<br>1.21<br>2.53<br>4.11         | 1.53    | 3.59<br>4.57         | 10.46  | 0.56   | 10.51  | 0.35<br>2.17        | 12.12<br>12.02   |
|               | –<br>in/hr<br>2.80               | 4.55   | 2.78   | 6.30                | 2.46<br>2.45<br>2.45         | 6.30<br>6.25<br>5.90<br>5.48         | 6.30    | 6.30                 | 5.36   | 6.30   | 5.05   | 6.30<br>6.25        | 4.97<br>4.91     |
|               | Tc<br>min<br>20.00               | 15.00  | 20.07  | 10.00               | 20.96<br>20.98<br>21.00      | 10.00<br>10.14<br>11.14<br>12.35     | 10.00   | 10.00                | 12.69  | 10.00  | 13.56  | 10.00<br>10.13      | 13.81<br>13.97   |
|               | Total<br>Area<br>C * A<br>1.29   | 0.52   | 1.81   |                     | 2.34<br>2.82<br>82<br>82     | 0.12<br>0.19<br>0.75<br>0.75         | 0.24    | 0.16                 | 1.28   | 0.09   | 1.37   | 0.06<br>0.35        | 1.72<br>1.72     |
|               | Equiv.<br>Area<br>C * A<br>1.29  | 0.52   | :      | 0.53                | <br>0.48<br>                 | 0.12<br>0.07<br>0.24<br>0.32         | 0.24    | <br>0.16             | 0.13   | 0.09   | ł      | 0.06<br>0.29        | : :              |
|               | 0.61<br>0.61                     | 0.61   | 1      |                     | <br>                         | 0.66<br>0.68<br>0.65<br>0.79         | 0.72    |                      | 0.99   | 0.75   | 1      | 0.72<br>0.96        |                  |
|               | Inc.<br>Area<br>Ac<br>2.11       | 0.85   | 1      | 0.71                | 0.70                         | 0.19<br>0.10<br>0.36<br>0.40         | 0.34    | 0.16                 | 0.13   | 0.12   | 1      | 0.08<br>0.30        | 11               |
|               | To<br>MH-1                       | MH-1   | MH-2   | INLT-3<br>MH-2      | INLT-4<br>TRT ST-2<br>HDWL-1 | INLT-6<br>INLT-7<br>INLT-7<br>INLT-8 | INLT-8  | INLT-8B<br>INLT-8    | MH-3   | MH-3   | MH-4   | INLT-10<br>MH-4     | MH-5<br>MH-6     |
|               | From<br>INLT-1                   | INLT-2 | MH-1   | OTLT ST-2<br>INLT-3 | MH-2<br>INLT-4<br>TRT ST-2   | ALT-7A<br>INLT-5<br>INLT-7<br>INLT-5 | INLT-8A | OTLT ST-1<br>INLT-8B | INLT-8 | INLT-9 | MH-3   | INLT-10A<br>INLT-10 | MH-4<br>MH-5     |
|               | Location<br>P-1                  | P-2    | Р-3    | P-4<br>-5           | с<br>6<br>7<br>8<br>7        | P-9<br>P-11<br>P-12                  | P-13    | P-14<br>P-15         | P-16   | P-17   | P-18   | P-19<br>P-20        | P-21<br>P-22     |



STORM SEWER CALCULATIONS

4/9/2020

Date: Date:

SCA 003.01 DFW [

Project: Computed By: Revised By:

-

1 Of 1 HDPEP RCP 0.010 0.013 Sheet Pipe Material: "n" Factor:

25 Year Storm

| E             | Invert Elev.<br>per Lower<br>nd End | 5.98<br>5.13     | 5.13   | 4.27<br>3.17     | 5.87<br>3.50     | 2.70    | 2.70     | 0.83    | 3.18     | 0.35    | 6.28<br>5.43     | 5.43   | 4.85   | 5.18<br>4.42     | 4.75   | 3.82   |
|---------------|-------------------------------------|------------------|--------|------------------|------------------|---------|----------|---------|----------|---------|------------------|--------|--------|------------------|--------|--------|
| zo Year Storm | Inver<br>Upper<br>End               | 7.93<br>5.98     | 8.20   | 4.80<br>4.27     | 7.83<br>5.87     | 2.92    | 2.84     | 1.27    | 3.23     | 0.83    | 8.23<br>6.28     | 8.53   | 5.10   | 8.33<br>4.85     | 7.13   | 4.42   |
| 2             | d Elev.<br>Lower<br>End             | 10.50<br>10.50   | 10.75  | 10.50<br>10.75   | 10.50<br>10.75   | 5.44    | 5.44     | 5.74    | 5.74     | 6.08    | 10.50<br>10.50   | 10.50  | 10.50  | 10.50<br>10.30   | 10.30  | 10.30  |
|               | Ground<br>Upper I<br>End            | 10.50<br>10.50   | 10.90  | 10.50<br>10.75   | 10.50<br>10.50   | 10.75   | 5.28     | 5.44    | 5.74     | 5.74    | 10.50<br>10.50   | 10.50  | 10.50  | 10.50<br>10.50   | 10.50  | 10.30  |
|               | Pipe<br>Cap.<br>CFS                 | 1.57<br>1.57     | 1.97   | 3.28<br>3.47     | 1.57<br>2.62     | 5.08    | 4.52     | 12.47   | 2.66     | 13.00   | 1.57<br>1.57     | 1.98   | 3.28   | 2.00<br>3.31     | 1.74   | 3.49   |
|               | Flow<br>Time<br>min.                | 0.72<br>0.31     | 0.58   | 0.42<br>0.74     | 0.73<br>0.19     | 0.24    | 0.13     | 0.61    | 0.22     | 0.58    | 0.72<br>0.31     | 0.57   | 0.20   | 0.57<br>0.34     | 0.65   | 0.40   |
|               | Pipe<br>Length<br>ft                | 195<br>85        | 195    | 106<br>196       | 196<br>85        | 60      | 58       | 145     | 8        | 144     | 195<br>85        | 195    | 50     | 195<br>85        | 195    | 106    |
|               | FPS<br>FPS                          | 4.50<br>4.50     | 5.65   | 4.17<br>4.41     | 4.50<br>7.52     | 4.14    | 3.68     | 3.97    | 2.17     | 4.14    | 4.50<br>4.50     | 5.67   | 4.17   | 5.72<br>4.21     | 4.97   | 4.44   |
|               | Pipe<br>Dia.                        | ∞ ∞              | ∞      | <u>0</u> 0       | ∞ ∞              | 15      | 15       | 24      | 15       | 24      | ∞ ∞              | ø      | 12     | ∞ [2             | ø      | 12     |
|               | Slope<br>ft/ft                      | 0.0100<br>0.0100 | 0.0157 | 0.0050<br>0.0056 | 0.0100<br>0.0279 | 0.0037  | 0.0049   | 0.0030  | 0.0017   | 0.0033  | 0.0100<br>0.0100 | 0.0159 | 0.0050 | 0.0162<br>0.0051 | 0.0122 | 0.0057 |
|               | CFS                                 | 0.90<br>0.86     | 0.88   | 1.68<br>2.46     | 0.90<br>0.86     | 3.14    | 3.75     | 6.65    | 0.81     | 9.10    | 0.88<br>0.85     | 06.0   | 1.68   | 0.84<br>2.41     | 0.88   | 3.14   |
|               | l<br>in/hr                          | 6.30<br>6.05     | 6.30   | 5.94<br>5.79     | 6.30<br>6.05     | 5.53    | 6.30     | 5.45    | 6.30     | 5.24    | 6.30<br>6.05     | 6.30   | 5.94   | 5.87<br>5.67     | 6.30   | 5.55   |
|               | Tc<br>min                           | 10.00<br>10.72   | 10.00  | 11.04<br>11.46   | 10.00<br>10.73   | 12.20   | 10.00    | 12.44   | 10.00    | 13.02   | 10.00<br>10.72   | 10.00  | 11.04  | 11.24<br>11.80   | 10.00  | 12.14  |
|               | Total<br>Area<br>C * A              | 0.14<br>0.14     | 0.14   | 0.28<br>0.42     | 0.14<br>0.14     | 0.57    | 0.59     | 1.22    | 0.13     | 1.74    | 0.14<br>0.14     | 0.14   | 0.28   | 0.14<br>0.42     | 0.14   | 0.57   |
|               | Equiv.<br>Area<br>C * A             | 0.14             | 0.14   | 0.14             | 0.14<br>         | :       | 0.59     | 0.06    | 0.13     | 0.39    | 0.14             | 0.14   | :      | 0.14             | 0.14   | ł      |
|               | с                                   | 0.99             | 0.99   | <br>             |                  | 1       | 0.68     | 0.82    | 0.77     | 0.92    |                  | 0.99   | 1      |                  | 0.99   | 1      |
|               | Inc.<br>Area<br>Ac                  | 0.14             | 0.14   | 0.14             | 0.14             | 1       | 0.88     | 0.07    | 0.17     | 0.42    | 0.14             | 0.14   | 1      | 0.14             | 0.14   | 1      |
|               | Ч                                   | ן- 11<br>פ-נ     | 9-L    | J-21<br>J-22     | J-24<br>J-22     | INLT-14 | INLT-14  | INLT-13 | INLT-13  | INLT-12 | J-7<br>J-5       | J-5    | J-3    | ل<br>1-3<br>1-1  | 1-L    | J-13   |
|               | From                                | J-12<br>J-11     | J-10   | J-9<br>J-21      | J-23<br>J-24     | J-22    | INLT-14A | INLT-14 | INLT-13A | INLT-13 | 8-ل<br>1-8       | J-6    | J-5    | 4-ر<br>د.ر       | J-2    | 1-L    |
|               | Location                            | RD-6<br>P-23     | RD-5   | P-24<br>RD-11    | RD-12<br>P-25    | P-26    | P-27     | P-28    | P-29     | P-30    | RD-4<br>P-31     | RD-3   | P-32   | RD-2<br>P-33     | RD-1   | P-34   |
|               |                                     |                  |        |                  |                  |         |          |         |          |         |                  |        |        |                  |        |        |

Appendix G

-

| SCIULLO<br>ENGINEERING<br>SERVICES, LLC | TORM SEWER CALCULATIONS |
|-----------------------------------------|-------------------------|
| S                                       | <b>STORM SEV</b>        |
|                                         |                         |

4/9/2020 Date: Date: SCA 003.01 DFW D Project: Computed By: Revised By:

1 Of 1 HDPEP RCP 0.010 0.013 Sheet Pipe Material: "n" Factor:

25 Year Storm

| E             | Invert Elev.<br>pper Lower<br>nd End<br>57 2.66      | 6.02<br>5.17     | 5.17   | 4.59   | 4.92   | 2.91   | 1.60    | -0.88<br>-0.98<br>-1.09     | 0.74     | -1.26   | 6.85    | 6.85    | 6.85    | 6.85    |  |
|---------------|------------------------------------------------------|------------------|--------|--------|--------|--------|---------|-----------------------------|----------|---------|---------|---------|---------|---------|--|
| 25 Year Storm | Inver<br>Upper<br>End<br>3.57                        | 7.98<br>6.02     | 7.68   | 4.84   | 7.68   | 4.59   | 2.66    | 0.35<br>-0.88<br>-0.98      | 2.81     | -1.09   | 7.01    | 7.01    | 7.01    | 7.25    |  |
| 2<br>1        | Ground Elev.<br>Jpper Lower<br>End End<br>0.30 10.30 | 10.50<br>10.50   | 10.50  | 10.50  | 10.50  | 10.50  | 6.08    | 5.99<br>5.98<br>1.69        | 5.98     | 4.32    | 9.10    | 9.10    | 9.10    | 9.10    |  |
|               | Ground<br>Upper<br>End<br>10.30                      | 10.75<br>10.50   | 10.50  | 10.50  | 10.50  | 10.50  | 10.50   | 6.08<br>5.99<br>5.98        | 5.71     | 6.85    | 9.26    | 9.26    | 9.26    | 9.75    |  |
|               | Pipe<br>Cap.<br>CFS<br>5.70                          | 1.57<br>1.57     | 1.78   | 3.28   | 1.87   | 6.52   | 10.88   | 20.73<br>21.93<br>21.93     | 18.95    | 21.93   | 4.79    | 4.79    | 4.79    | 5.25    |  |
|               | Flow<br>Time<br>min.<br>0.70                         | 0.73<br>0.31     | 0.64   | 0.20   | 0.61   | 0.17   | 0.12    | 0.37<br>0.03<br>0.03        | 0.03     | 0.04    | 0.12    | 0.12    | 0.12    | 0.24    |  |
|               | Pipe<br>Length<br>ft<br>196                          | 196<br>85        | 196    | 50     | 196    | 85     | 83      | 147<br>11 11                | 24       | 18      | 8       | ଷ୍ଠ     | 8       | 61      |  |
|               | FPS<br>4.65                                          | 4.50<br>4.50     | 5.09   | 4.17   | 5.34   | 8.30   | 8.87    | 6.60<br>6.98<br>6.98        | 15.45    | 6.98    | 3.90    | 3.90    | 3.90    | 4.28    |  |
|               | Pipe<br>Dia.<br>15                                   | ∞ ∞              | ∞      | 12     | Ø      | 12     | 15      | 24 24<br>24 25              | 15       | 24      | 15      | 15      | 15      | 15      |  |
|               | Slope<br>ft/ft<br>0.0046                             | 0.0100<br>0.0100 | 0.0128 | 0.0050 | 0.0141 | 0.0198 | 0.0168  | 0.0084<br>0.0094<br>0.0094  | 0.0861   | 0.0094  | 0.0055  | 0.0055  | 0.0055  | 0.0066  |  |
|               | Q<br>CFS<br>3.81                                     | 0.88<br>0.85     | 0.89   | 1.70   | 0.89   | 2.52   | 5.83    | 6.37<br>18.36<br>17.18      | 1.46     | 21.61   | 1.52    | 2.58    | 3.51    | 4.33    |  |
|               | –<br>in/hr<br>5.41                                   | 6.30<br>6.05     | 6.30   | 6.05   | 6.30   | 5.98   | 5.17    | 5.12<br>4.99<br>4.59        | 6.30     | 4.58    | 6.30    | 6.30    | 6.30    | 6.30    |  |
|               | Tc<br>min<br>12.54                                   | 10.00<br>10.73   | 10.00  | 10.73  | 10.00  | 10.93  | 13.24   | 13.36<br>13.73<br>14.88     | 10.00    | 14.91   | 10.00   | 10.00   | 10.00   | 10.00   |  |
|               | Total<br>Area<br>C * A<br>0.71                       | 0.14<br>0.14     | 0.14   | 0.28   | 0.14   | 0.42   | 1.13    | 1.24<br>2.96<br>2.96        | 0.23     | 3.93    | 0.24    | 0.41    | 0.56    | 0.69    |  |
|               | Equiv.<br>Area<br>C * A<br>0.14                      | 0.14             | 0.14   | :      | 0.14   | :      | :       | 0.12                        | 0.23     | 0.74    | 0.24    | 0.41    | 0.56    | 0.69    |  |
|               | 0.99<br>0.99                                         | <br>             | 0.99   | 1      | 0.99   | 1      | 1       | 0.81                        | 0.95     | 0.98    | 0.96    | 0.86    | 06.0    | 0.84    |  |
|               | Inc.<br>Area<br>Ac<br>0.14                           | 0.14             | 0.14   | 1      | 0.14   | 1      | 1       | 0.14                        | 0.24     | 0.76    | 0.25    | 0.48    | 0.62    | 0.81    |  |
|               | <br>J-14                                             | J-20<br>J-18     | J-18   | J-16   | J-16   | J-14   | INLT-12 | MH-6<br>TRT ST-1<br>INLT-11 | INLT-11  | OTFL-1  | HDWL-9  | HDWL-8  | HDWL-7  | 9-TMDH  |  |
|               | J-13                                                 | J-19<br>J-20     | J-17   | J-18   | J-15   | J-16   | J-14    | INLT-12<br>MH-6<br>TRT ST-1 | INLT-11A | INLT-11 | INLT-15 | INLT-16 | INLT-17 | INLT-18 |  |
|               | Location<br>RD-7                                     | RD-10<br>P-35    | RD-9   | P-36   | RD-8   | P-37   | P-38    | P-39<br>P-40<br>P-41        | P-42     | P-43    | P-44    | P-45    | P-46    | P-47    |  |
|               |                                                      |                  |        |        |        |        |         |                             |          |         |         |         |         |         |  |



STORM SEWER CALCULATIONS

4/9/2020

Date: Date:

SCA 003.01 DFW [

Project: Computed By: Revised By:

1 Of 1 HDPEP RCP 0.010 0.013 Sheet Pipe Material: "n" Factor:

| E             | Invert Elev.<br>Jpper Lower<br>End End | 6.85    | 7.03<br>6.85        | 7.03<br>6.85        | 6.66<br>6.54       | 6.54     | 6.20    |
|---------------|----------------------------------------|---------|---------------------|---------------------|--------------------|----------|---------|
| 25 Year Storm | Inver<br>Upper<br>End                  | 6.89    | 7.09<br>7.03        | 7.09<br>7.03        | 6.75<br>6.66       | 6.75     | 6.54    |
| 25            | d Elev.<br>Lower<br>End                | 9.85    | 9.26<br>9.10        | 9.26<br>9.10        | 9.25<br>9.10       | 9.25     | 9.25    |
|               | Ground Elev.<br>Upper Lower<br>End End | 9.85    | 9.26<br>9.26        | 9.26<br>9.26        | 9.25<br>9.26       | 9.25     | 9.25    |
|               | Pipe<br>Cap.<br>CFS                    | 2.86    | 2.66<br>3.93        | 2.66<br>3.93        | 2.89<br>3.29       | 4.92     | 6.78    |
|               | Flow<br>Time<br>min.                   | 4.83    | 0.28<br>0.26        | 0.28<br>0.26        | 0.32<br>0.28       | 0.15     | 0.09    |
|               | Pipe<br>Length<br>ft                   | 264     | 36<br>49            | 36<br>49            | 45<br>45           | 36       | 31      |
|               | FPS <                                  | 0.91    | 2.17<br>3.20        | 2.17<br>3.20        | 2.35<br>2.68       | 4.01     | 5.52    |
|               | Pipe<br>Dia.<br>in                     | 24      | 15                  | 15<br>15            | 15<br>15           | 15       | 15      |
|               | Slope<br>ft/ft                         | 0.0002  | 0.0017              | 0.0017<br>0.0037    | 0.0020<br>0.0026   | 0.0058   | 0.0110  |
|               | CFS<br>CFS                             | 2.81    | 1.79<br>3.10        | 1.92<br>3.36        | 1.46<br>2.66       | 1.08     | 4.63    |
|               | in/hr                                  | :       | 6.30<br>6.20        | 6.30<br>6.20        | 6.30<br>6.19       | 6.30     | 6.09    |
|               | Tc<br>min                              | 1       | 10.00<br>10.28      | 10.00<br>10.28      | 10.00<br>10.32     | 10.00    | 10.60   |
|               | Total<br>Area<br>C * A                 | 1       | 0.28<br>0.50        | 0.31<br>0.54        | 0.23<br>0.43       | 0.17     | 0.76    |
|               | Equiv.<br>Area<br>C * A                | :       | 0.28<br>0.22        | 0.31<br>0.24        | 0.23<br>0.20       | 0.17     | 0.16    |
|               | ပ                                      | 1       | 0.86<br>0.84        | 0.92<br>0.92        | 0.90               | 0.97     | 0.92    |
|               | Inc.<br>Area<br>Ac                     |         | 0.33<br>0.26        | 0.33<br>0.26        | 0.26<br>0.25       | 0.18     | 0.17    |
|               | То                                     | HDWL-10 | INLT-19<br>HDWL-3   | INLT-20<br>HDWL-4   | INLT-22<br>INLT-23 | INLT-23  | HDWL-2  |
|               | From                                   | HDWL-5  | INLT-19A<br>INLT-19 | INLT-20A<br>INLT-20 | INLT-21<br>INLT-22 | INLT-23A | INLT-23 |
|               | Location                               | P-48    | P-49<br>P-50        | P-51<br>P-52        | P-53<br>P-54       | P-55     | P-56    |



### CONDUIT OUTLET PROTECTION CALCULATIONS

| Project: Lakes Ba<br>Computed By:<br>Revised By:<br>Project Number SCA 003                                | ay Redevelopment Area<br>DFW<br>.01                                            | Date:<br>Date:                                                | 4/10/2020         |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|
| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) =                        | <b>HW-1</b><br>6.92 cfs<br>2 feet<br>2 feet<br>0.4 feet                        | q=unit discharge=Q25<br>HW-1 Inv0.5                           | /Wo = 3.46        |
| Apron Length (La) =<br>La =                                                                               | ((q x 3 ) / Do^0.5 )<br>7.34 feet                                              |                                                               |                   |
| Apron Width (W) =<br>W =                                                                                  | 3 x Wo + 0.4(La)<br>8.94 feet                                                  |                                                               |                   |
| Median Stone Dia.(D50) =<br>(D50)                                                                         | (0.016/TW)x(q)^1.33<br>0.21 feet Use 6"                                        | min.                                                          |                   |
| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) =<br>Apron Length (La) = | HW-2<br>4.63 cfs<br>1.25 feet<br>1.25 feet<br>1.4 feet<br>((q x 3 ) / Do^0.5 ) | q=unit discharge=Q25<br>HW-2 Inv. 6.2<br>2Yr. Basin elevation | /Wo = 3.70<br>7.6 |
| La =                                                                                                      | 9.94 feet                                                                      |                                                               |                   |
| Apron Width (W) =<br>W =                                                                                  | 3 x Wo + 0.4(La)<br>7.73 feet                                                  |                                                               |                   |
| Median Stone Dia.(D50) =<br>(D50)                                                                         | (0.016/TW)x(q)^1.33<br>0.07 feet Use 6"                                        | min.                                                          |                   |

Wo =

7.8

2Yr. Basin elevation



### CONDUIT OUTLET PROTECTION CALCULATIONS

| Project: Lakes Ba<br>Computed By:<br>Revised By:<br>Project Number SCA 003         | y Redevelopemnt Area<br>DFW<br>.01                      | Date:<br>Date:                                                  | 4/10/2020        |
|------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|------------------|
| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) = | HW-3<br>3.10 cfs<br>1.25 feet<br>1.25 feet<br>0.95 feet | q=unit discharge=Q25/<br>HW-3 Inv. 6.85<br>2Yr. Basin elevation | Wo = 2.48<br>7.8 |
| Apron Length (La) =<br>La =                                                        | ((q x 3 ) / Do^0.5 )<br>6.65 feet                       |                                                                 |                  |
| Apron Width (W) =<br>W =                                                           | 3 x Wo + 0.4(La)<br>6.41 feet                           |                                                                 |                  |
| Median Stone Dia.(D50) =<br>(D50)                                                  | (0.016/TW)x(q)^1.33<br>0.06 feet Use 6" r               | nin.                                                            |                  |
| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =                             | <b>HW-4</b><br>3.36 cfs<br>1.25 feet                    | q=unit discharge=Q25/<br>HW-4 Inv. 6.85                         | Wo = 2.69        |

| Tailwater (TW) =                  | 0.95 feet                         |             |  |
|-----------------------------------|-----------------------------------|-------------|--|
| Apron Length (La) =<br>La =       | ((q x 3 ) / Do^0.5 )<br>7.21 feet |             |  |
| Apron Width (W) =<br>W =          | 3 x Wo + 0.4(La)<br>6.64 feet     |             |  |
| Median Stone Dia.(D50) =<br>(D50) | (0.016/TW)x(q)^1.33<br>0.06 feet  | Use 6" min. |  |

1.25 feet



### CONDUIT OUTLET PROTECTION CALCULATIONS

| Project:       | Lakes Bay Redevelopemnt Area |
|----------------|------------------------------|
| Computed By:   | DFW                          |
| Revised By:    |                              |
| Project Number | SCA 003.01                   |

Date:

4/10/2020

Date:

| 25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) =                         | HW-5<br>0.50 cfs<br>2 feet<br>2 feet<br>0.95 feet                       | q=unit discharge=Q25/Wo = 0.25<br>HW-5 Inv. 6.85<br>2Yr. Basin elevation 7.8 |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Apron Length (La) =<br>La =                                                        | ((q x 3 ) / Do^0.5 )<br>0.53 feet                                       |                                                                              |
| Apron Width (W) =<br>W =                                                           | 3 x Wo + 0.4(La)<br>6.21 feet                                           |                                                                              |
| Median Stone Dia.(D50) =<br>(D50)                                                  | (0.016/TW)x(q)^1.33<br>0.00 feet Use 6"                                 | ' min.                                                                       |
|                                                                                    |                                                                         |                                                                              |
| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) = | <b>HW-6</b><br>4.33 cfs<br>1.25 feet<br>1.25 feet<br>0.95 feet          | q=unit discharge=Q25/Wo = 3.46<br>HW-6 Inv. 6.85<br>2Yr. Basin elevation 7.8 |
| 25 Yr. Discharge (Q25)<br>Do =<br>Wo =                                             | 4.33 cfs<br>1.25 feet<br>1.25 feet                                      | HW-6 Inv. 6.85                                                               |
| 25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) =<br>Apron Length (La) =  | 4.33 cfs<br>1.25 feet<br>1.25 feet<br>0.95 feet<br>((q x 3 ) / Do^0.5 ) | HW-6 Inv. 6.85                                                               |



### **CONDUIT OUTLET PROTECTION CALCULATIONS**

| Project:       | Lakes Bay Redevelopemnt Area |
|----------------|------------------------------|
| Computed By:   | DFW                          |
| Revised By:    |                              |
| Project Number | SCA 003.01                   |

Date:

Date:

4/10/2020

| Median Stone Dia.(D50) = | (0.016/TW)x(q)^1.33 |             |
|--------------------------|---------------------|-------------|
| (D50)                    | 0.07 feet           | Use 6" min. |

| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) = | HW-8<br>2.58 cfs<br>1.25 feet<br>1.25 feet<br>0.95 feet | q=unit discharge=Q25/Wo = 2.06<br>HW-8 Inv. 6.85<br>2Yr. Basin elevation 7.8 |
|------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| Apron Length (La) =<br>La =                                                        | ((q x 3 ) / Do^0.5 )<br>5.54 feet                       |                                                                              |
| Apron Width (W) =<br>W =                                                           | 3 x Wo + 0.4(La)<br>5.97 feet                           |                                                                              |
| Median Stone Dia.(D50) =<br>(D50)                                                  | , , , , , ,                                             | Use 6" min.                                                                  |

4/10/2020



### **CONDUIT OUTLET PROTECTION CALCULATIONS**

| Project:       | Lakes Bay Redevelopemnt Area |       |
|----------------|------------------------------|-------|
| Computed By:   | DFW                          | Date: |
| Revised By:    |                              | Date: |
| Project Number | SCA 003.01                   |       |
|                |                              |       |

| 25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) =                         | HW-9<br>1.52 cfs<br>1.25 feet<br>1.25 feet<br>0.95 feet   | q=unit discharge=Q25/Wo = 1.22<br>HW-9 Inv. 6.85<br>2Yr. Basin elevation 7.8 |
|------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|
| Apron Length (La) =<br>La =                                                        | ((q x 3 ) / Do^0.5 )<br>3.26 feet                         |                                                                              |
| Apron Width (W) =<br>W =                                                           | 3 x Wo + 0.4(La)<br>5.06 feet                             |                                                                              |
| Median Stone Dia.(D50) =<br>(D50)                                                  | (0.016/TW)x(q)^1.33<br>0.02 feet Use 6'                   | ' min.                                                                       |
| <b>Structure No.</b><br>25 Yr. Discharge (Q25)<br>Do =<br>Wo =<br>Tailwater (TW) = | <b>HW-10</b><br>2.81 cfs<br>2 feet<br>2 feet<br>0.95 feet | q=unit discharge=Q25/Wo = 1.41<br>HW-10 Inv 6.85<br>2Yr. Basin elevation 7.8 |
| Apron Length (La) =<br>La =                                                        | ((q x 3 ) / Do^0.5 )<br>2.98 feet                         |                                                                              |
| Apron Width (W) =<br>W =                                                           | 3 x Wo + 0.4(La)<br>7.19 feet                             |                                                                              |
|                                                                                    |                                                           |                                                                              |

Median Stone Dia.(D50) = (0.016/TW)x(q)^1.33 (D50) 0.03 feet Use 6" min.

# APPENDIX H

SOIL TEST PIT LOGS AND PERMEABILITY TESTING RESULTS



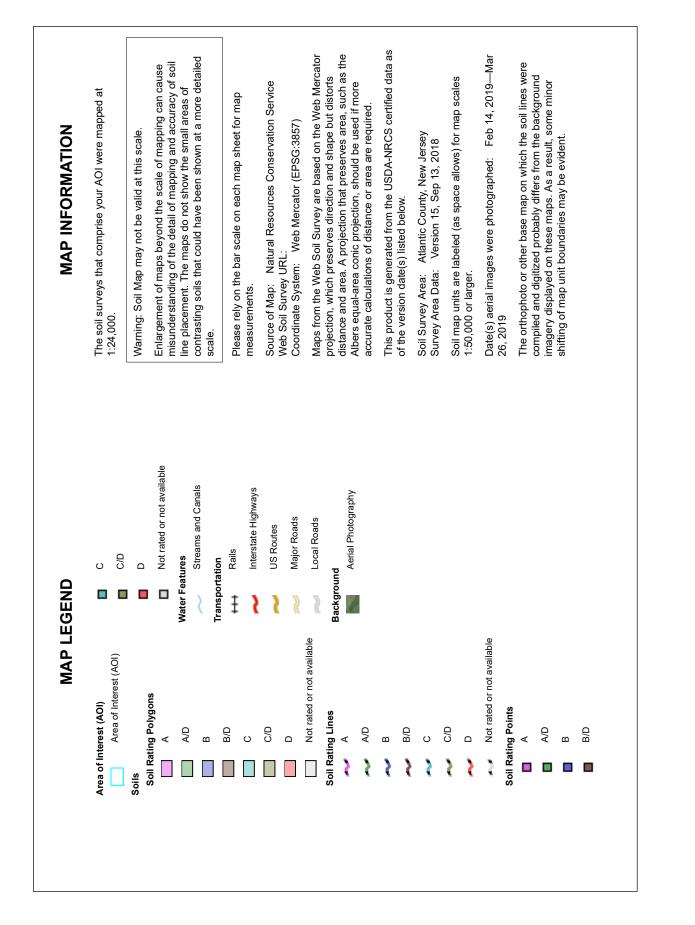
Soil Map—Atlantic County, New Jersey

Γ

| Area of Interest (AOI)       Spoil Area       Spoil Area       Thin       Thin<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The soil surveys that comprise your AOI were mapped at 1:24,000. | Warning: Soil Map may not be valid at this scale. | Enlargement of maps beyond the scale of mapping can cause | insurversiantion of the detail of inapping and accuracy of som<br>line placement. The maps do not show the small areas of | contrasting soils that could have been shown at a more detailed | scale.         | Please relv on the bar scale on each map sheet for map | measurements. | Source of Map: Natural Resources Conservation Service | Web Soil Survey URL:<br>Coordinate Svstem: Web Mercator (FPSG:3857) | Maps from the Web Soil Survey are based on the Web Mercator | projection, which preserves direction and shape but distorts | alstance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more | accurate calculations of distance or area are required. | This product is generated from the USDA-NRCS certified data as<br>of the version data(s) listed helow. | or ure version date(s) instal below.<br>Soil Survivi Arco: Attornia County Now Incov |                     | Soil map units are labeled (as space allows) for map scales | 1:50,000 or larger. | Date(s) aerial images were photographed: Feb 14, 2019—Mar 26, 2019 | The orthomhoto or other base man on which the soil lines were | compiled and digitized probably differs from the background | imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident. | -             |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|--------------------------------------------------------|---------------|-------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|---------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|------------|
| erest (AOI)<br>Jnit Polygons<br>Jnit Lines<br>Jnit Points<br><b>res</b><br><b>res</b><br>Water Featu<br>Water Featu<br>Water Featu<br>Water Count<br>water featu<br>Water Featu<br>Water Featu<br>Lines<br>Mater Featu<br>Water Featu<br>Lines<br>Mater Featu<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lines<br>Lin |                                                                  |                                                   |                                                           |                                                                                                                           |                                                                 |                | ams and Canals                                         |               | ls                                                    | -                                                                   |                                                             |                                                              |                                                                                                                                | ao                                                      |                                                                                                        | 5 6                                                                                  | Ñ                   | So                                                          | 1:5                 | Da                                                                 |                                                               | 8                                                           | <u>m</u>                                                                                                    |               |            |
| terest (AOI)<br>Area of Interest (AOI)<br>Soil Map Unit Polygons<br>Soil Map Unit Lines<br>Soil Map Unit Points<br>Point Features<br>Blowout<br>Blowout<br>Blowout<br>Blowout<br>Clay Spot<br>Clay Spot<br>Clay Spot<br>Clavel Pit<br>Gravelly Spot<br>Clavel Pit<br>Gravelly Spot<br>Landfil<br>Lava Flow<br>Marsh or swamp<br>Marsh or swamp<br>Mine or Quarry<br>Miscellaneous Water<br>Perennial Water<br>Rock Outcrop<br>Saline Spot<br>Sandy Spot<br>Severely Eroded Spot<br>Sinkhole<br>Sinkhole<br>Sinkhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₩ <                                                              |                                                   |                                                           |                                                                                                                           |                                                                 |                | Water Feature                                          | )<br>         | Iransportation<br>Re                                  |                                                                     | 5                                                           | Ŭ                                                            | )<br>L                                                                                                                         | Background                                              | Ae Ae                                                                                                  |                                                                                      |                     |                                                             |                     |                                                                    |                                                               |                                                             |                                                                                                             |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>erest (AOI)</b><br>Area of Interest (AOI)                     |                                                   | Soil Map Unit Polygons<br>Soil Map Unit Linge             |                                                                                                                           | Soil Map Unit Points                                            | Point Features | Blowout                                                | Borrow Pit    | Clay Spot                                             | Closed Depression                                                   | Gravel Pit                                                  | Gravelly Spot                                                | Landfill                                                                                                                       | Lava Flow                                               | Marsh or swamp                                                                                         | Mine or Quarry                                                                       | Miscellaneous Water | Perennial Water                                             | Rock Outcrop        | Saline Spot                                                        | Sandy Spot                                                    | Severely Eroded Spot                                        | Sinkhole                                                                                                    | Slide or Slip | Sodic Spot |

USDA Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey


# Map Unit Legend

| Map Unit Symbol             | Map Unit Name                                                                      | Acres in AOI | Percent of AOI |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------|--------------|----------------|--|--|--|
| HbmB                        | Hammonton loamy sand, 0 to 5 percent slopes                                        | 15.4         | 47.6%          |  |  |  |
| PstAt                       | Psammaquents, sulfidic<br>substratum, 0 to 2 percent<br>slopes, frequently flooded | 14.9         | 46.2%          |  |  |  |
| WATER                       | Water                                                                              | 2.0          | 6.1%           |  |  |  |
| Totals for Area of Interest |                                                                                    | 32.3         | 100.0%         |  |  |  |





Hydrologic Soil Group—Atlantic County, New Jersey





# Hydrologic Soil Group

| Map unit symbol          | Map unit name                                                                         | Rating | Acres in AOI | Percent of AOI |
|--------------------------|---------------------------------------------------------------------------------------|--------|--------------|----------------|
| HbmB                     | Hammonton loamy<br>sand, 0 to 5 percent<br>slopes                                     | В      | 15.4         | 47.6%          |
| PstAt                    | Psammaquents, sulfidic<br>substratum, 0 to 2<br>percent slopes,<br>frequently flooded | A/D    | 14.9         | 46.2%          |
| WATER                    | Water                                                                                 |        | 2.0          | 6.1%           |
| Totals for Area of Inter | est                                                                                   | 32.3   | 100.0%       |                |

### Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher



#### UNDERWOOD ENGINEERING COMPANY 143 HARDING AVE. BELLMAWR, NJ 08031

856-933-1818

|                     |                                 | 030-933-1010                           |
|---------------------|---------------------------------|----------------------------------------|
| William R. Underw   | ood, P. E.                      | Fax 856-933-3123                       |
| CLIENT:             | SCARBOROUGH PRO<br>415 New Road | PERTIES                                |
| 8 8                 | Unit 5                          |                                        |
|                     | Somers Point, NJ 08244          |                                        |
| PROJECT:            | Pleasantville Project           |                                        |
|                     | Bayview Avenue & Fran           | klin Boulevard                         |
|                     | Pleasantville, NJ               |                                        |
| <b>REQUIREMENT:</b> | Professional Engineering        | Services                               |
| LOCATION:           | Proposed Stormwater Ma          | inagement Areas                        |
|                     | Basin Area Test Pits (x6)       |                                        |
| DATE:               | 8/29/2019                       |                                        |
| UE REF. NO.:        | 4582-10513-1                    |                                        |
| W.O. NO.:           | 19-8421                         |                                        |
| ATTENTION:          | Sean Scarborough                | e-mail: sean@scarboroughproperties.com |
|                     |                                 |                                        |

#### PURPOSE

The purpose of this report is to present the findings and conclusions of the field investigation performed at the above-referenced project. More specifically, this investigation was conducted to determine soil types, depth to estimated seasonal high water table (ESHWT) and depth to groundwater (GW) at the locations observed.

#### **INVESTIGATION**

A representative of Underwood Engineering, Inc. (UEI) was present at the above-captioned project on August 15, 2019 to witness the excavation of test pits in proposed stormwater management areas located generally along Franklin Boulevard and Bayview Avenue frontages. A total of six soil profile (test) pits were excavated at the locations noted on the attached Test Pit Location Plan (attached). One representative soil sample of the most hydraulically restrictive soil observed at the test pit locations was returned to the UEI soil mechanics laboratory for textural analysis (Hydrometer and Sieve – ASTM D422) and to establish soil permeability class rating (K).

#### FINDINGS & CONCLUSIONS

Soils encountered at the test pit locations consist generally of fine to coarse sands and fine to medium gravels with trace to little silt. All test pits were excavated to depths of approximately 40 to 50 inches below existing site grades and groundwater data was recorded. Estimated seasonal high groundwater (ESHWT) was encountered at the test pit locations from depths ranging from 22 inches to 30 inches below the existing ground surface and static groundwater (GW) was encountered at depths ranging from 30 to 41 inches below the existing ground surface.

Please Note: The reported static GW levels represent the depths at the time the test pits were excavated and could vary significantly due to seasonal, as well as tidal effects.

Soil profiles recorded at each test pit location are as follows:

TP-1 Rod El.: 5.43 Inlet adj.: 6.85

| Depth (in.) | Field Classification                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-4         | Topsoil                                                                                                                                                                                                                                       |
| 4-15        | 5 YR 4/3 (reddish brown) f. SAND, (1.) fm. gravel, (tr.) silt                                                                                                                                                                                 |
| 15-50       | 10YR 6/4 (lt. yellowish brown) fm. SAND (trl) silt <b>Samp. #1</b><br>Mottles: 2.5YR 5/8 (red); common, medium, distinct @ 24 inches<br>Sidewall seepage observed 32 inches<br>Static GW observed at 40 inches<br>Test pit caved at 26 inches |
|             | End of Test Pit (EOTP)                                                                                                                                                                                                                        |

TP-2

| Field Classification                                           |
|----------------------------------------------------------------|
| Topsoil                                                        |
| 5 YR 4/3 (reddish brown) f. SAND, (1s.) fm. gravel, (tr.) silt |
| 5YR 6/8 (reddish yellow) fm. SAND (1.) f. gravel               |
| GL2 7/1 (lt. gray) fm. SAND (ls.) fm. gravel                   |
| Mottles: 2.5YR 5/8 (red); common, medium, distinct @ 22 inches |
| Sidewall seepage observed 35 inches                            |
| Static GW observed at 41 inches                                |
| Test pit caved at 23 inches                                    |
| End of Test Pit (EOTP)                                         |
|                                                                |

#### TP-3 Rod El.: 5.56

| Depth (in.)               | Field Classification                                                                                                                                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-3<br>3-5<br>5-7<br>7-42 | Topsoil<br>5 YR 4/3 (reddish brown) f. SAND, (s.) fm. gravel, (tr.) silt<br>5YR 6/8 (reddish yellow) fm. SAND (l.) f. gravel<br>GL2 7/1 (lt. gray) fc. SAND (a.) fm. gravel<br>Mottles: 2.5YR 5/8 (red); common, massive, distinct @ 30 inches<br>Sidewall seepage observed 35 inches |
|                           | Static GW observed at 40 inches<br>Test pit caved at 31 inches<br>End of Test Pit (EOTP)                                                                                                                                                                                              |

.

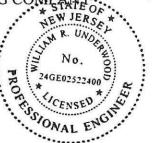
TP-4 Rod El.: 5.45

| Depth (in.)           | Field Classification                                                                                                                                                                                                                                                                                           |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-3<br>3-9<br>9-42    | Topsoil<br>5YR 6/8 (reddish yellow) fc. SAND (l.) fm. gravel<br>GL2 7/1 (lt. gray) fc. SAND (s.) fm. gravel<br>Mottles: 2.5YR 5/8 (red); common, massive, faint @ 28 inches<br>Sidewall seepage observed 36 inches<br>Static GW observed at 37 inches<br>Test pit caved at 32 inches<br>End of Test Pit (EOTP) |
| TP-5<br>Rod El.: 6.25 |                                                                                                                                                                                                                                                                                                                |
| Depth (in.)           | Field Classification                                                                                                                                                                                                                                                                                           |
| 0-2<br>2-6<br>6-40    | Topsoil<br>5YR 6/8 (reddish yellow) fc. SAND (l.) fm. gravel<br>GL2 7/1 (lt. gray) fc. SAND (a.) fm. gravel<br>Mottles: 2.5YR 5/8 (red); common, massive, faint @ 22 inches<br>Sidewall seepage observed 32 inches<br>Static GW observed at 30 inches<br>Test pit caved at 27 inches<br>End of Test Pit (EOTP) |
| TP-6<br>Rod El.: 5.58 |                                                                                                                                                                                                                                                                                                                |

| Depth (in.) | Field Classification                                              |
|-------------|-------------------------------------------------------------------|
| 0-6         | Topsoil                                                           |
| 6-16        | 10YR 6/4 (lt. yellowish brown) f. SAND (l.) fm. gravel, (l.) silt |
| 16-48       | GL2 7/1 (lt. gray) fc. SAND (l.) fm. gravel                       |
|             | Mottles: 2.5YR 5/8 (red); common, massive, distinct @ 22inches    |
|             | Sidewall seepage observed 30 inches                               |
|             | Static GW observed at 39 inches                                   |
|             | Test pit caved at 30 inches                                       |
|             | End of Test Pit (EOTP)                                            |

A textural analysis (Hydrometer and Sieve Analysis - ASTM D-422) was performed on the most hydraulically restrictive soil observed at the test pit locations. The sample tested was obtained from Test Pit TP-1. Results are as follows:

| Location (TP-x) | Depth (in.) | <b>Classification</b> | Soil Permeability Class                    |
|-----------------|-------------|-----------------------|--------------------------------------------|
| TP-1            | 15-50       | fm. SAND (trl) silt   | Rating (K)           K5 SAND (> 20 in./hr) |


Hydrometer & Sieve Analysis Report attached.

#### **QUALIFICATIONS**

The findings and conclusions presented in this report are based solely on the above investigation. No conclusions are to be drawn other than those specifically stated herein.

Respectfully submitted, UNDERWOOD ENGINEERING COMPANY...

William R. Underwood, P.E.



Attachments:

Test Pit Location Plan

Hydrometer & Sieve Analysis (ASTM D-422)

## **Underwood Engineering Company**

143 Harding Avenue • Bellmawr, New Jersey 08031

William R. Underwood, P.E., President

(856) 933-1818 · Fax (215) 259-2372

Client: Scarborough Properties Project: Pleasantville Site Requirement: Hydrometer & Sieve Analysis Date Performed: 8/23/2019 Location: TP-1 @ 15-50 in. Test Number: 1 Project No:

#### ASTM D-422 HYDROMETER AND SIEVE ANALYSIS

#### A. COARSE FRAGMENT CONTENT

Total dry sample wt. = 250.0 Wt.

Wt. retained #10 sieve (2mm) = 22.4

% Coarse framents = 9.0

#### **B. HYDROMETER ANALYSIS**

Weight used for hydrometer analysis = 100.0g

Percent Passing #10 sieve = 91

Temperature = 24 °C

a = 1.0 based on specific gravity of soil particles = 2.65 from Table 1 of ASTM D-422

w, weight used for hydrometer analysis/percent passing  $\#10 \ge 109.8$ 

L, value of effective depth, Table 2 of ASTM D-422 = see table below

k, based on specific gravity of soil particle and temperature = 0.01301

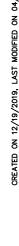
| Time, t<br>(minutes) | Hydrometer<br>reading, r | Percent in<br>suspension,<br>P=100ra/w | L (cm) | Soil particle diam.(mm),<br>D = k sqrt(L/t) |
|----------------------|--------------------------|----------------------------------------|--------|---------------------------------------------|
| 2                    | 12                       | 10.9                                   | 14.3   | 0.03479                                     |
| 5                    | 11                       | 10.0                                   | 14.5   | 0.02216                                     |
| 15                   | 9                        | 8.2                                    | 14.8   | 0.01292                                     |
| 30                   | 7                        | 6.4                                    | 15.2   | 0.00926                                     |
| 60                   | 6                        | 5.5                                    | 15.3   | 0.00657                                     |
| 250                  | 5                        | 4.6                                    | 15.5   | 0.00324                                     |
| 1440                 | 4                        | 3.6                                    | 15.6   | 0.00135                                     |

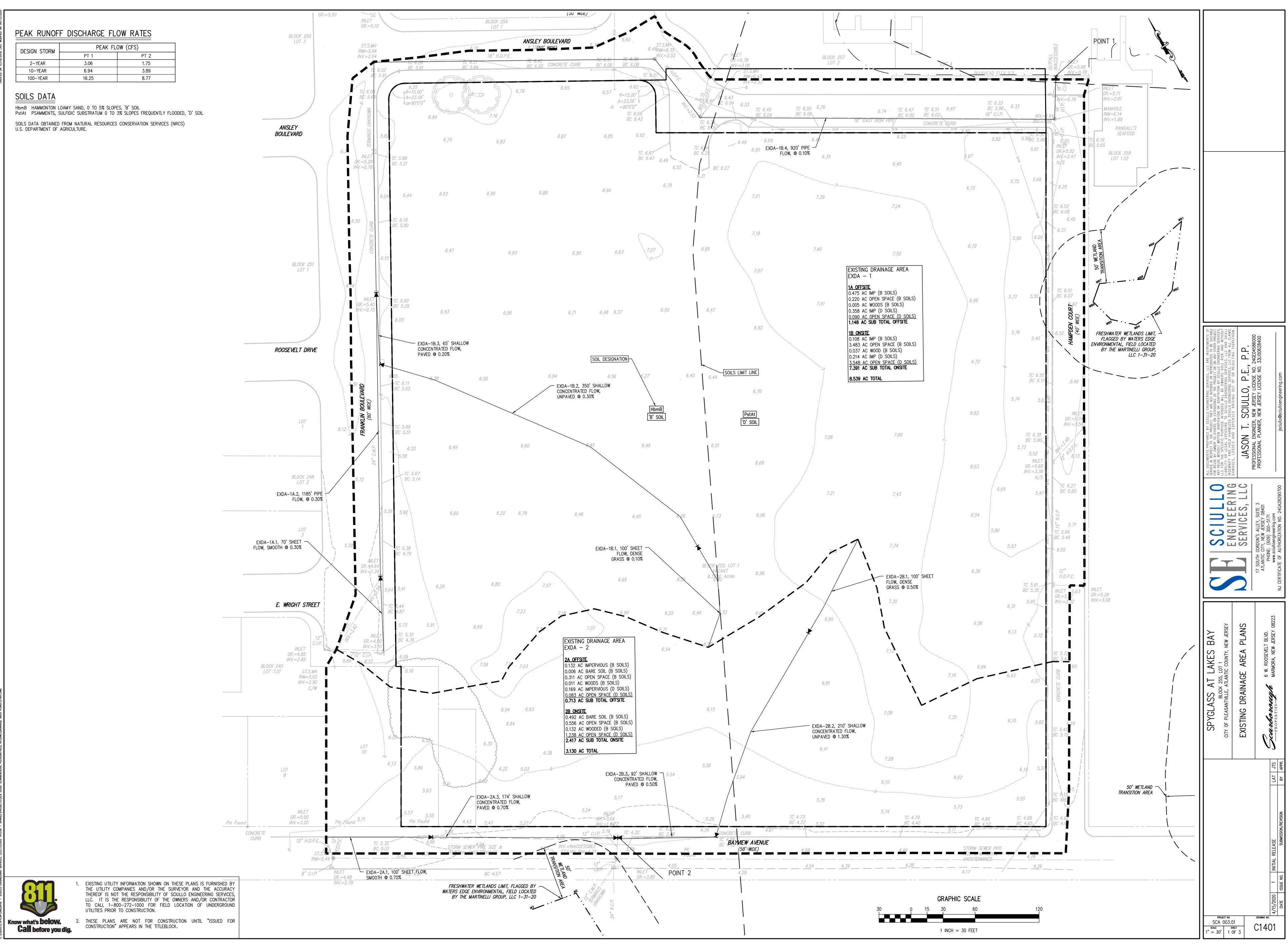
#### C. SIEVE ANALYSIS (of hydrometer sample)

Wt. passing #60 sieve (0.25mm) = 9.9 Wt retained #300 sieve (0.045mm) = 91.4 % Fine plus very fine sand = 10.8

#### D. SOIL MORPHOLOGY

Structure : Single Grain

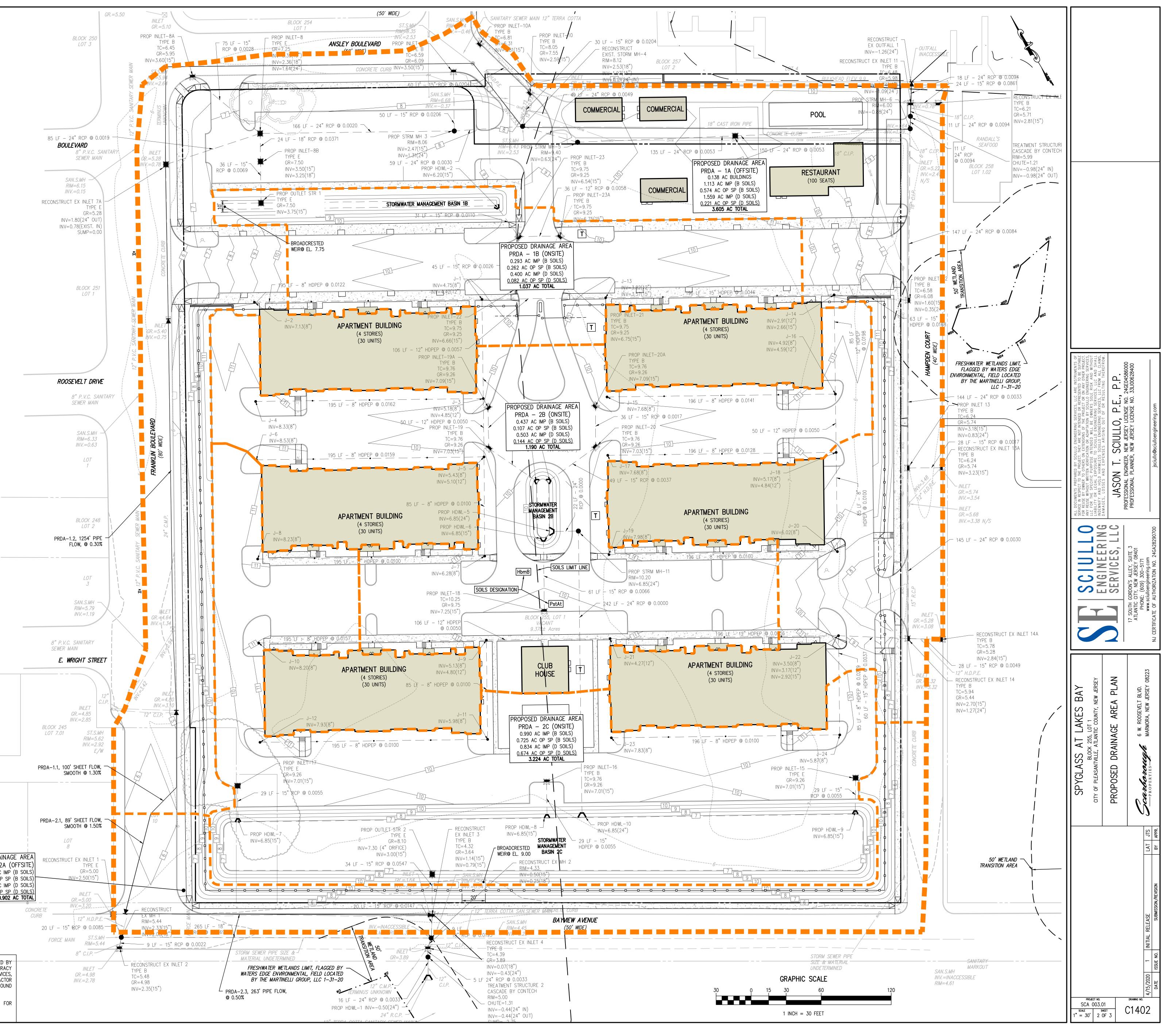

Consistence : Loose

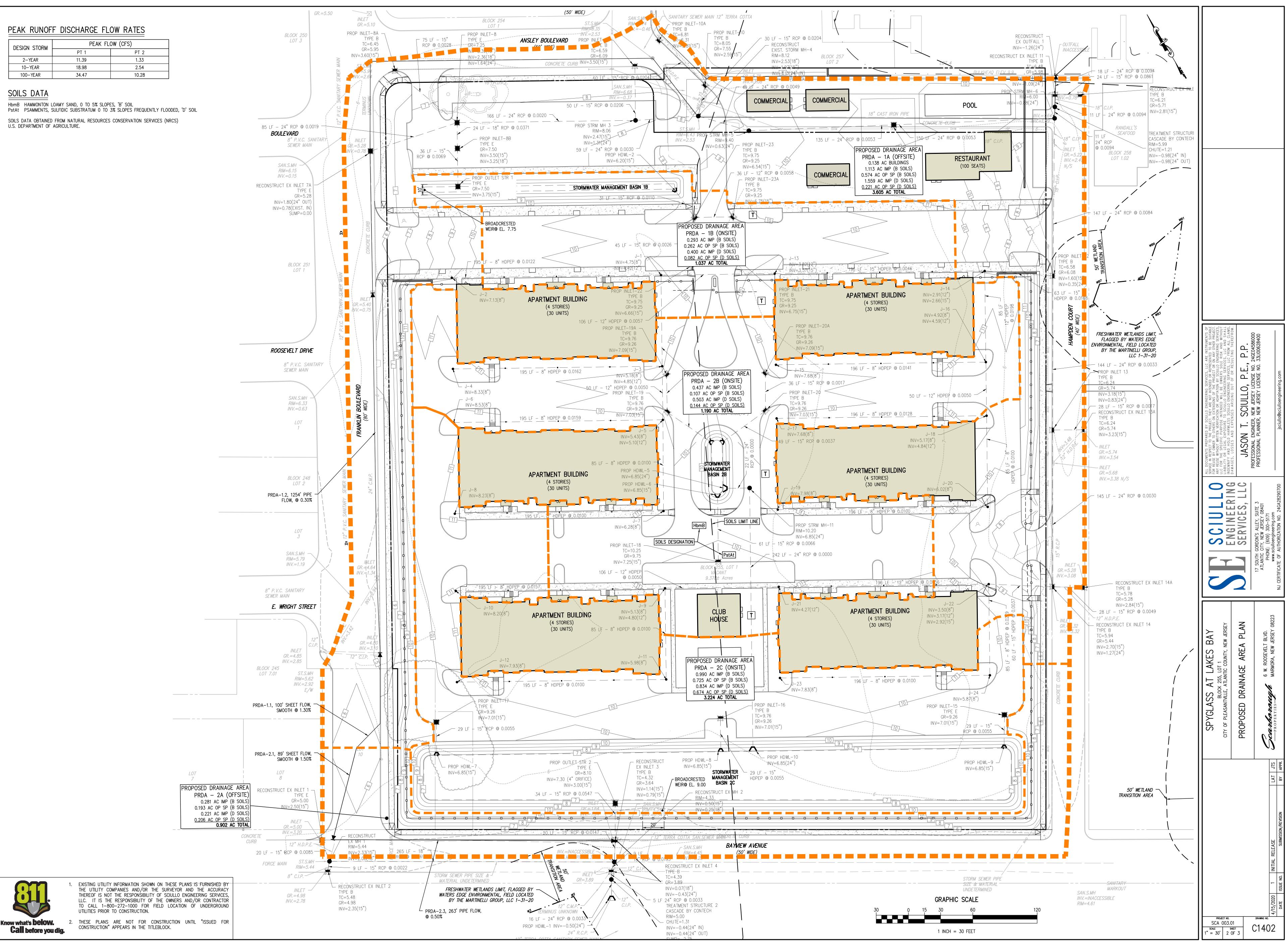

E. Soil Permeability CLASS RATING and TEXTURAL ANALYSIS %Sand = 91.4 %Silt = 5.7 %Clay = 2.9

Soil Texture: SAND Soil Permeability Class Rating: K5 (> 20 in.hr.)

# **APPENDIX** I

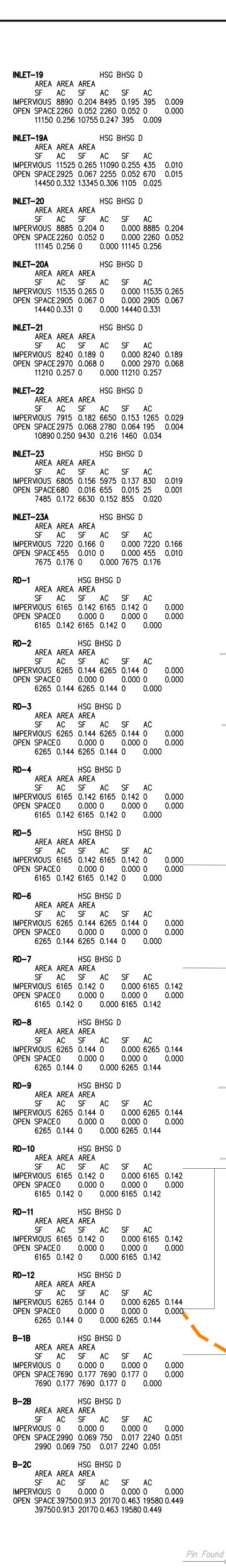
DRAINAGE AREA PLANS

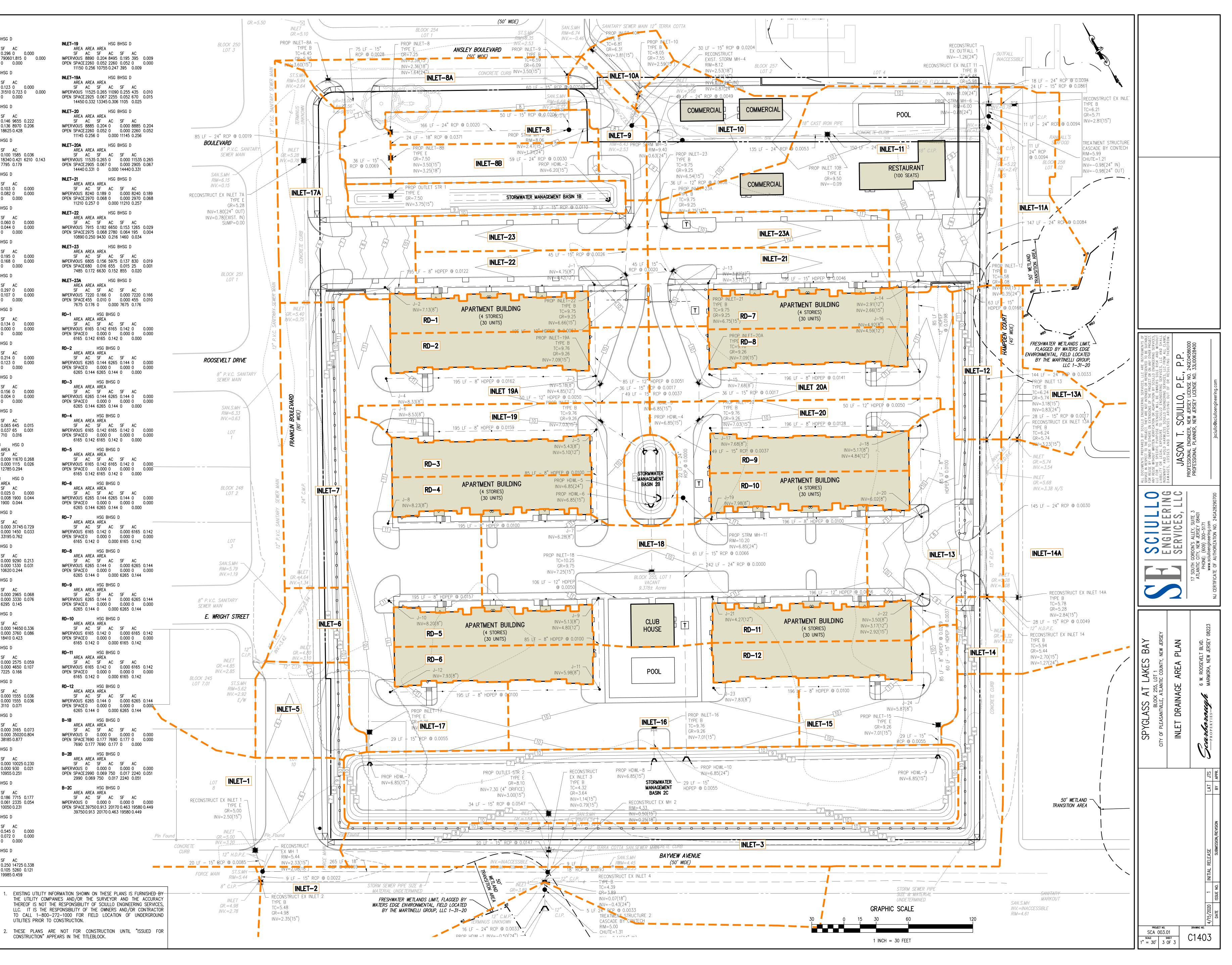



|   |    | GRAPH | IIC SCALE |  |
|---|----|-------|-----------|--|
| Q | 15 | 30    | 60        |  |
|   |    |       |           |  |

| CREATED ON 12/19/2019. LAST MODIFIED ON 04. | ~      |
|---------------------------------------------|--------|
| ED ON 12/19/2019, LAST MODIFIED             | 2      |
| ED ON 12/19/2019. LAST MODIFIE              | S      |
| ED ON 12/19/2019, LAS                       | Ē      |
| ED ON 12/19/                                |        |
| ED ON 1                                     | /2019. |
| ED ON 1                                     | 19,    |
| ຄ                                           | 12     |
| - 63                                        | S      |
|                                             | - 63   |


| DESIGN STORM | PEAK FLOW (CFS) |       |  |
|--------------|-----------------|-------|--|
| DESIGN STORM | PT 1            | PT 2  |  |
| 2-YEAR       | 11.39           | 1.33  |  |
| 10-YEAR      | 18.98           | 2.54  |  |
| 100-YEAR     | 34.47           | 10.28 |  |
|              |                 |       |  |








SOILS DATA INLET-1 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 12915 0.296 12915 0.296 0 0.000 0.25 AC RESI 790601.815 790601.815 0 0.000 91975 2.111 91975 2.111 0 0.000 INLET-2 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 5375 0.123 5375 0.123 0 0.000 0.25 AC RESI 31510 0.723 31510 0.723 0 0.000 368850.847 368850.847 0 0.000 INLET-3 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 16020 0.368 6365 0.146 9655 0.222 OPEN SPACE14880 0.342 5910 0.136 8970 0.206 309000.709 12275 0.282 18625 0.428 INLET-4 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 5925 0.136 4340 0.100 1585 0.036 0.25 AC RESI 245500.564 18340 0.421 6210 0.143 304750.700 226800.521 7795 0.179 INLET-5 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 4505 0.103 4505 0.103 0 0.000 OPEN SPACE 3560 0.082 3560 0.082 0 0.000 8065 0.185 8065 0.185 0 0.000 INLET-6 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 2630 0.060 2630 0.060 0 0.000 OPEN SPACE1930 0.044 1930 0.044 0 0.000 4560 0.105 4560 0.105 0 0.000 INLET-7 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 8490 0.195 8490 0.195 0 0.000 OPEN SPACE 7335 0.168 7335 0.168 0 0.000 15825 0.363 15825 0.363 0 0.000 INLET-7A HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 12955 0.297 12955 0.297 0 0.000 OPEN SPACE 4660 0.107 4660 0.107 0 0.000 17615 0.404 17615 0.404 0 0.000 INLET-8 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 5840 0.134 5840 0.134 0 0.000 OPEN SPACEO 0.000 0 0.000 0 0.000 5840 0.134 5840 0.134 0 0.000 INLET-8A HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 9330 0.214 9330 0.214 0 0.000 OPEN SPACE 5345 0.123 5345 0.123 0 0.000 14675 0.337 14675 0.337 0 0.000 INLET-8B HSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 6805 0.156 6805 0.156 0 0.000 OPEN SPACE165 0.004 165 0.004 0 0.000 6970 0.160 6970 0.160 0 0.000 INLET-9 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 3465 0.080 2820 0.065 645 0.015 OPEN SPACE1695 0.039 1630 0.037 65 0.001 5160 0.118 4450 0.102 710 0.016 INLET-10 HSG B HSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 12070 0.277 400 0.009 11670 0.268 OPEN SPACE1115 0.026 0 0.000 1115 0.026 13185 0.303 400 0.009 12785 0.294 INLET-10A HSG B HSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 1110 0.025 1110 0.025 0 0.000 OPEN SPACE 2245 0.052 345 0.008 1900 0.044 3355 0.077 1455 0.033 1900 0.044 INLET-11 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 31745 0.729 0 0.000 31745 0.729 OPEN SPACE1450 0.033 0 0.000 1450 0.033 33195 0.762 0 0.000 33195 0.762 INLET-11A HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 9290 0.213 0 0.000 9290 0.213 OPEN SPACE1330 0.031 0 0.000 1330 0.031 10620 0.244 0 0.000 10620 0.244 INLET-12 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 2965 0.068 0 0.000 2965 0.068 OPEN SPACE 3330 0.076 0 0.000 3330 0.076 6295 0.145 0 0.000 6295 0.145 INLET-13 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 14650 0.336 0 0.000 14650 0.336 OPEN SPACE 3760 0.086 0 0.000 3760 0.086 18410 0.423 0 0.000 18410 0.423 INLET-13A HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 2575 0.059 0 0.000 2575 0.059 OPEN SPACE 4650 0.107 0 0.000 4650 0.107 7225 0.166 0 0.000 7225 0.166 INLET-14 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 1555 0.036 0 0.000 1555 0.036 OPEN SPACE1555 0.036 0 0.000 1555 0.036 3110 0.071 0 0.000 3110 0.071 INLET-14A HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 3165 0.073 0 0.000 3165 0.073 OPEN SPACE 35020 0.804 0 0.000 35020 0.804 38185 0.877 0 0.000 38185 0.877 INLET-15 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 10025 0.230 0 0.000 10025 0.230 OPEN SPACE 930 0.021 0 0.000 930 0.021 10955 0.251 0 0.000 10955 0.251 INLET-16 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 15815 0.363 8100 0.186 7715 0.177 OPEN SPACE 4980 0.114 2645 0.061 2335 0.054 207950.477 10745 0.247 10050 0.231 INLET-17 HSG BHSG D AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 237300.545 237300.545 0 0.000 OPEN SPACE 3140 0.072 3140 0.072 0 0.000 268700.617 268700.617 0 0.000 HSG BHSG D INLET-18 AREA AREA AREA SF AC SF AC SF AC IMPERVIOUS 25615 0.588 10890 0.250 14725 0.338 OPEN SPACE 9830 0.226 4570 0.105 5260 0.121 354450.814 15460 0.355 19985 0.459





Know what's **DEIOW**. **Call** before you dig.

UTILITIES PRIOR TO CONSTRUCTION. 2. THESE PLANS ARE NOT FOR CONSTRUCTION UNTIL "ISSUED FOR CONSTRUCTION" APPEARS IN THE TITLEBLOCK.

THEREOF IS NOT THE RESPONSIBILITY OF SCIULLO ENGINEERING SERVICES,

# SPYGLASS AT LAKES BAY

# PRELIMINARY AND FINAL SITE PLANS



FRANKLIN BOULEVARD LOOKING SOUTH



BAYVIEW AVENUE LOOKING WEST



FRANKLIN BOULEVARD LOOKING NORTH



BAYVIEW AVENUE LOOKING EAST







1. EXISTING UTILITY INFORMATION SHOWN ON THESE PLANS IS FURNISHED BY THE UTILITY COMPANIES AND/OR THE SURVEYOR AND THE ACCURACY THEREOF IS NOT THE RESPONSIBILITY OF SCIULLO ENGINEERING SERVICES, LLC. IT IS THE RESPONSIBILITY OF THE OWNERS AND/OR CONTRACTOR TO CALL 1-800-272-1000 FOR FIELD LOCATION OF UNDERGROUND UTILITIES PRIOR TO CONSTRUCTION.

2. THESE PLANS ARE NOT FOR CONSTRUCTION UNTIL "ISSUED FOR CONSTRUCTION" APPEARS IN THE TITLEBLOCK.

# BLOCK 255, LOT 1 CITY OF PLEASANTVILLE, ATLANTIC COUNTY, NEW JERSEY



 $\frac{\text{AERIAL MAP}}{\text{SCALE: 1" = 300'}}$ 



ANSLEY BOULEVARD LOOKING WEST



HAMPDEN COURT LOOKING SOUTH

# APPLICANT/OWNER: SPYGLASS QOZB LLC



6 W. ROOSEVELT BLVD. MARMORA, NEW JERSEY 08223

# PREPARED BY:



# APPLICANT/OWNER:

SPYGLASS QOZB LLC c/o SCARBOROUGH PROPERTIES 6 W. ROOSEVELT BLVD. MARMORA, NEW JERSEY 08223

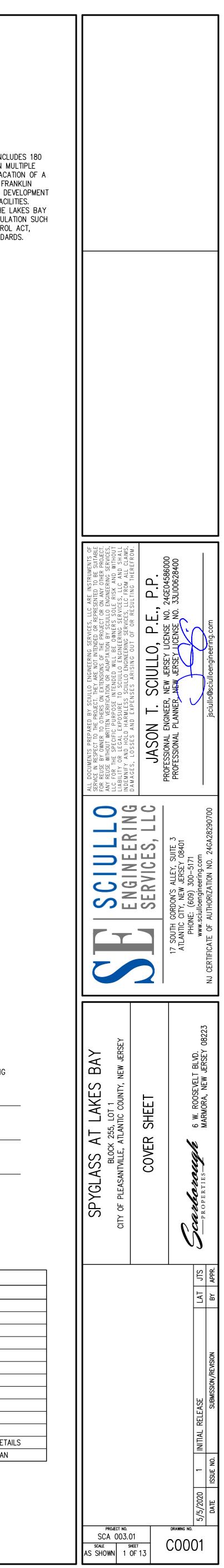
# APPLICANT'S INTENT:

THE APPLICANT PROPOSES TO CONSTRUCT A MIXED USE DEVELOPMENT THAT INCLUDES 18 RESIDENTIAL APARTMENTS IN 6 BUILDINGS AND RETAIL & COMMERCIAL USES IN MULTIPLE BUILDINGS ALONG THE WATERFRONT OF TUNNIS BASIN. THE PROJECT INCLUDES VACATION OF PORTION OF ANSLEY BOULEVARD & CREATION OF A NEW ROAD TO CONNECT FRANKLIN BOULEVARD & HAMPDEN COURT. IN ADDITION TO THE BUILDINGS & ROADWAY, THE DEVELOPMENT INCLUDES LANDSCAPING, LIGHTING, PARKING & STORMWATER MANAGEMENT FACILITIES. DEVELOPMENT WILL BE PERFORMED FOLLOWING THE STANDARDS SET FORTH BY THE LAKES BAY REDEVELOPMENT PLAN OR THE CITY OF PLEASANTVILLE & APPLICABLE STATE REGULATION SUCH AS THE NJ COASTAL ZONE MANAGEMENT RULES, FLOOD HAZARD AREA CONTROL ACT, STORMWATER MANAGEMENT RULES & RESIDENTIAL SITE IMPROVEMENT STANDARDS.



ANSLEY BOULEVARD LOOKING EAST




HAMPDEN COURT LOOKING NORTH

# CERTIFICATION OF APPROVALS

I HEREBY CERTIFY THAT THIS SITE PLAN HAS BEEN APPROVED BY RESOLUTION \_\_\_\_\_\_ OF THE CITY OF PLEASANTVILLE PLANNING BOARD.

| BOARD CHAIRPERSON | DATE |
|-------------------|------|
| BOARD SECRETARY   | DATE |
| CITY ENGINEER     | DATE |

| SHEET INDEX |          |                                               |  |  |
|-------------|----------|-----------------------------------------------|--|--|
| SHEET NO.   | DWG. NO. | SHEET TITLE                                   |  |  |
| 1 OF 13     | C0001    | COVER SHEET                                   |  |  |
| 2 OF 13     | C0002    | INFORMATION SHEET                             |  |  |
| 3 OF 13     | C0101    | SITE PLAN                                     |  |  |
| 4 OF 13     | C0201    | GRADING AND STORMWATER MANAGEMENT PLAN        |  |  |
| 5 OF 13     | C0401    | UTILITY PLAN                                  |  |  |
| 6 OF 13     | C0701    | LIGHTING PLAN                                 |  |  |
| 7 OF 13     | C1101    | SITE DETAILS                                  |  |  |
| 8 OF 13     | C1102    | UTILITY DETAILS                               |  |  |
| 9 OF 13     | C1103    | SANITARY SEWER DETAILS AND PROFILES           |  |  |
| 10 OF 13    | C1104    | WATER DETAILS                                 |  |  |
| 11 OF 13    | C1201    | SOIL EROSION AND SEDIMENT CONTROL PLAN        |  |  |
| 12 OF 13    | C1301    | SOIL EROSION AND SEDIMENT CONTROL NOTES & DET |  |  |
| 13 OF 13    | C2001    | TRUCK TURNING MOVEMENT & SIGHT TRIANGLES PLAN |  |  |





| NA       | PLEASANTVILLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 57       | W DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2        | W WRIGHT ST S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | G WALL SL AVE AVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5        | HTY RD SALAN AND SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 40 AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N.C.N.   | GEW GEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| and a    | SHADELAND AVE<br>ALE AND AVE<br>AVE SHE STE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5        | AX AVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| apr      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /        | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| X        | A Children and a chil |
| J.S      | S.G.S. PLEASANTVILLE QUAD SHEET LOCATION MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SCAL     | E: 1" = 1,000'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PR       | <u>OJECT NOTES</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ۹.       | <u>GENERAL SITE NOTES</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.       | TRACT FOR DEVELOPMENT CONSISTS OF SHEETS # 13 & 20, BLOCK 255, LOT 1, OF THE OFFICIAL TAX MAP OF PLEASANTVILLE.<br>TRACT FOR DEVELOPMENT IS ZONED WFC AS INDICATED ON THE OFFICIAL ZONING MAP OF PLEASANTVILLE. THE DEVELOPMENT,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.       | HOWEVER IS GOVERNED BY THE STANDARDS OUTLINED IN THE LAKES BAY REDEVELOPMENT AREA PLAN.<br>TOTAL AREA OF TRACT = $9.378\pm$ ACRES OF LAND.<br>THE PROJECT SHALL COMPLY WITH THE CURRENT RECYCLING PROGRAM IN EFFECT IN PLEASANTVILLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.       | GRADING AROUND BUILDING AND FINISHED FLOOR ELEVATIONS ARE SUBJECT TO CHANGE UPON REVIEW OF CONSTRUCTION PLANS OF PROPOSED BUILDINGS UNITS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | ALL BARRIER FREE DESIGN AND CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE LATEST BARRIER FREE AND N.J.D.O.T. STANDARDS.<br>ANY VARIATIONS FROM THE PLANS MUST BE AUTHORIZED BY THE DESIGN ENGINEER AND APPROVED BY THE CITY ENGINEER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.       | THIS SET OF PLANS SHALL NOT BE UTILIZED AS CONSTRUCTION DOCUMENTS UNTIL EACH PLAN HAS BEEN HAS BEEN REVISED TO INDICATE "ISSUED FOR CONSTRUCTION".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | CONSTRUCTION DETAILS/SHOP DRAWINGS UTILIZED BY THE CONTRACTOR SHALL BE REVIEWED AND APPROVED BY THE TOWNSHIP ENGINEER.<br>REFER TO COMPLETE SET OF PLANS FOR ADDITIONAL INFORMATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.       | THIS SET OF DRAWINGS AND ALL INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR THE USE ONLY BY THE PARTY FOR WHOM THE WORK IS CONTRACTED OR WHOM IT IS CERTIFIED. THIS SET OF DRAWINGS MAY NOT BE COPIED, REUSED, DISCLOSED,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | DISTRIBUTED, OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF SCIULLO ENGINEERING SERVICES,<br>LLC.<br>ANY DEMOLITION MATERIAL SHALL BE PROPERLY DISPOSED OF AND NO ON-SITE BURIAL IS PERMITTED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.       | THE DEVELOPER AND/OR CONTRACTOR SHALL OBTAIN A STREET OPENING/ACCESS PERMIT FROM THE CITY OF PLEASANTVILLE PRIOR TO THE START OF CONSTRUCTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | PRIOR TO ANY WORK BEING PERFORMED WITHIN FRANKLIN BOULEVARD, ANSLEY BOULEVARD, HAMPDEN COURT OR BAYVIEW<br>AVENUE THE PLEASANTVILLE POLICE DEPARTMENT SHALL BE CONTACTED REGARDING PROVISIONS FOR ANY TRAFFIC CONTROL<br>MEASURES THAT MAY NEED TO BE IMPLEMENTED DURING CONSTRUCTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | SURVEY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | BEARINGS REFER TO THE NEW JERSEY PLANE COORDINATE SYSTEM NAD83. VERTICAL DATUM REFERS TO NAVD88.<br>BOUNDARY, TOPOGRAPHICAL, AND EXISTING CONDITIONS INFORMATION TAKEN FROM PLAN ENTITLED "TOPOGRAPHIC SURVEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | SITUATE IN BLOCK 255, LOT 1, CITY OF PLEASANTVILLE, ATLANTIC COUNTY, NEW JERSEY" BY STEPHEN C. MARTINELLI, LAND<br>SURVEYING, LLC, PROJECT NUMBER 15256, SHEET 1 OF 1, DATED 8–18–17, AND UNREVISED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| С.       | CONTRACTOR/OWNER RESPONSIBILITY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | THE CONTRACTOR/OWNER SHALL DESIGNATE A PERSON THAT IS KNOWLEDGEABLE OF CONSTRUCTION SAFETY STANDARDS AND IS EXPECTED TO BE AT THE CONSTRUCTION SITE ON A REGULAR BASIS. THIS PERSON SHALL BE RESPONSIBLE FOR THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | IMPLEMENTATION, DISCHARGE, AND MONITORING OF SAFETY STANDARDS AND PRACTICES AT THE SITE. THE CONTRACTOR/OWNER<br>SHALL PROVIDE DESIGN ENGINEER WITH NAME, ADDRESS AND TELEPHONE NUMBER OF DESIGNEE. IN LIEU OF THIS INFORMATION,<br>THE REPRESENTATIVE PERSON FROM THE CONTRACTOR'S ORGANIZATION WHO SIGNED THE CONTRACT SHALL HEREBY BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.       | RESPONSIBLE FOR THIS FUNCTION.<br>CONTRACTOR SHALL SCHEDULE ALL CONSTRUCTION TO BE IN ACCORDANCE WITH CURRENT O.S.H.A. STANDARDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | SITE CONTRACTOR IS TO VERIFY WITH DESIGN ENGINEER ON WHAT PERMITS AND APPROVALS ARE PENDING OR HAVE BEEN<br>APPROVED.<br>SITE CONTRACTOR IS TO VERIFY AND MATCH HORIZONTAL CONTROL AND VERTICAL ELEVATIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.       | CONTRACTOR SHALL PERFORM ALL WORK IN A WORKMANLIKE MANNER IN ACCORDANCE WITH ALL APPLICABLE CODES, ORDINANCES, AND MANUFACTURERS' RECOMMENDATIONS AND STANDARDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | ALL DIMENSIONS AND EXISTING CONDITIONS MUST BE VERIFIED BY CONTRACTOR AND OWNER MUST BE NOTIFIED OF ANY<br>DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.<br>UNDERGROUND UTILITIES LOCATIONS ARE APPROXIMATE AND ARE TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.       | OF CONSTRUCTION.<br>THE CONTRACTOR SHALL VERIFY IN FIELD ALL CONDITIONS AS SHOWN ON THE PLANS AND SHALL BE RESPONSIBLE FOR FIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Э.       | MEASUREMENTS FOR ALL NEW CONSTRUCTION. REFER TO ARCHITECTURAL DRAWINGS FOR ANY INFORMATION NOT SHOWN HERE.<br>CONTRACTOR SHALL BE RESPONSIBLE FOR ALL SHORING, UNDERPINNING AND STRUCTURAL STABILITY DURING CONSTRUCTION.<br>THE CONTRACTOR SHALL CALL 1-800-272-1000 FOR FIELD LOCATIONS OF UNDERGROUND UTILITIES PRIOR TO CONSTRUCTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.       | IN THE EVENT CONDITIONS AT THE SITE ARE NOTICEABLY DIFFERENT (AT THE TIME OF CONSTRUCTION) FROM THE DOCUMENTS PROVIDED, THE CONTRACTOR AND/OR OWNER SHALL NOTIFY THE DESIGN ENGINEER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | THE PROPOSED SITE GRADING DEPICTED IN THESE PLANS IS INTENDED TO PROVIDE A GENERAL GUIDE FOR GRADING. THE GENERAL CONTRACTOR, CONSTRUCTION MANAGER OR OWNER SHALL INSTRUCT THE CONCRETE CONTRACTOR TO TAKE CARE IN SETTING FORMS FOR PEDESTRIAN AREAS TO ENSURE THEY CONFORM TO THE NEW JERSEY BARRIER FREE SUBCODE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.       | THE CONTRACTOR SHALL COMPLY WITH ALL CONDITIONS OF APPROVAL IMPOSED BY ALL REGULATORY AGENCIES HAVING JURISDICTION AS IT RELATES TO THE CONSTRUCTION AND MAINTENANCE OF THE IMPROVEMENTS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | CONTRACTOR DAMAGE TO ANY EXISTING FEATURE SUCH AS, BUT NOT LIMITED TO, CONCRETE CURBS, CONCRETE WALKS, PAVING, LIGHTS, PLANTERS, SIGNS, UTILITIES OR BUILDINGS NOT SCHEDULED FOR REMOVAL SHALL BE RESTORED TO ORIGINAL CONDITION BY THE CONTRACTOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.       | THE OWNER, OR HIS REPRESENTATIVE, IS TO DESIGNATE AN INDIVIDUAL RESPONSIBLE FOR CONSTRUCTION SITE SAFETY DURING THE COURSE OF SITE IMPROVEMENTS PURSUANT TO N.J.A.C. 5:23-2.21 (E) OF THE N.J. UNIFORM CONSTRUCTION CODE AND CFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ).       | 1926.32 (F) (OSHA COMPETENT PERSON).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | ALL CONSTRUCTION UNDER THIS CONTRACT SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE NEW JERSEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.       | DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATION FOR ROAD AND BRIDGE CONSTRUCTION AS AMENDED.<br>ALL ROADWAY DESIGN AND CONSTRUCTION FOR MUNICIPAL ROADS SHALL BE IN ACCORDANCE WITH STANDARDS SET FORTH BY<br>CITY OF PLEASANTVILLE AND THE NEW JERSEY RSIS STANDARDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.       | ALL TRAFFIC SIGN PLACEMENT SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, U.S. DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATION FOR ROAD AND BRIDGE CONSTRUCTION AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.       | AMENDED. ALL SIGNS SHALL BE MOUNTED ON BREAKAWAY SIGN POSTS AS DETAILED AND APPROVED BY NJDOT.<br>THE APPLICANT SHALL NOTIFY THE CITY ENGINEER A MINIMUM OF 72 HOURS PRIOR TO THE START OF ANY ROAD CONSTRUCTION.<br>ALL ROADWAY SUBGRADES SHALL BE TESTED IN ACCORDANCE WITH THE ORDINANCE. ANY DEFICIENCIES SHALL BE CORRECTED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S.       | THE SATISFACTION OF THE CITY ENGINEER.<br>THE SURFACE COURSE SHALL NOT BE CONSTRUCTED UNTIL A MINIMUM OF ONE (1) YEAR AFTER THE COMPLETION OF THE BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.       | COURSE, EXCEPT THAT TEMPORARY PAVING SHALL BE PLACED AROUND ALL MANHOLES, VALVES, BOXES, INLETS, ETC.<br>MATERIAL PLACED AS FILL SHALL BE FREE OF DETRIMENTAL AMOUNTS OF SOD, ROOTS, STONE (>6" DIAMETER), FROZEN SOIL AND<br>OTHER OBJECTIONABLE MATERIALS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -        | UTILITY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •        | PROPOSED UTILITIES SHALL BE INSTALLED UNDERGROUND WITHIN THE PROPOSED PROJECT LIMITS.<br>STORMWATER MANAGEMENT SHALL BE IN ACCORDANCE WITH STANDARDS SET FORTH BY CITY OF PLEASANTVILLE, NEW JERSEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.       | RESIDENTIAL SITE IMPROVEMENT STANDARDS, AND THE STATE OF NEW JERSEY STORMWATER MANAGEMENT RULES.<br>STORM SEWER RCP PIPE (ROUND) TO BE IN ACCORDANCE WITH ASTM C-76, CLASS III, WALL B, EXCEPT WHERE NOTED. ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | CONCRETE STORM SEWER PIPE IS TO HAVE EITHER RUBBER GASKET OR BUTYL TAPE JOINTS AND BE WRAPPED WITH MORTAR AND FABRIC ON THE OUTSIDE. ALL 36" AND LARGER PIPE SHALL HAVE THE INSIDE OF THE JOINT MORTARED. DRAINAGE INLET STRUCTURES AND ENDWALLS SHALL BE CONSTRUCTED IN ACCORDANCE WITH NJDOT STANDARD DETAILS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.<br>6. | ALL INLETS TO HAVE BICYCLE SAFE GRATES.<br>T.C. DESIGNATIONS INDICATE TOP OF CURB ELEVATIONS, B.C. INDICATES BOTTOM OF CURB ELEVATIONS AND GUT. INDICATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.       | GUTTER ELEVATIONS.<br>GAS, ELECTRIC AND TELEPHONE SERVICE SHALL BE INSTALLED UNDERGROUND THROUGHOUT THE DEVELOPMENT IN ACCORDANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.       | WITH REGULATIONS OF THE LOCAL UTILITY COMPANIES AND CITY OF PLEASANTVILLE.<br>ALL MATERIALS, METHODS AND DETAILS OF IMPROVEMENT CONSTRUCTION SHALL CONFORM TO THE REGULATIONS OF CITY OF<br>PLEASANTVILLE, ATLANTIC COUNTY AND/OR THE APPROPRIATE UTILITY COMPANY, WHICHEVER REGULATION TAKES PRECEDENCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ).       | WHERE IT IS NECESSARY TO CONNECT TO EXISTING UTILITIES WITHIN EXISTING ROADWAYS, THE CONTRACTOR SHALL PROVIDE ALL NECESSARY SAW CUTTING, FOR WATER AND SEWER SERVICE. TRENCHING, BACKFILL, COMPACTION AND PAVING SHALL BE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.       | ACCORDANCE WITH CITY OF PLEASANTVILLE AND ATLANTIC COUNTY SPECIFICATIONS, AS APPLICABLE.<br>BEDDING AND BACKFILL FOR THE REINFORCED CONCRETE PIPE SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S<br>RECOMMENDATIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.       | TELEVISION INSPECTION OF THE STORM SEWER SYSTEM, AT NO EXPENSE TO THE TOWNSHIP, WILL BE REQUIRED PRIOR TO FINAL ACCEPTANCE BY THE TOWNSHIP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.       | PIPE LENGTHS AND GRADIENTS ARE CALCULATED TO THE CENTERLINE OF SANITARY AND STORM SEWER STRUCTURES. ACTUAL PIPE LENGTH MAY BE LESS THAN CALCULATED LENGTH, AND SHOULD BE COMPUTED BY CONTRACTOR PRIOR TO CONSTRUCTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1. EXISTING UTILITY INFORMATION SHOWN ON THESE PLANS IS FURNISHED BY<br>THE UTILITY COMPANIES AND/OR THE SURVEYOR AND THE ACCURACY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

SCALE: 1" = 250'

CONSTRUCTION.

F. <u>SOILS DATA NOTES</u>

SOILS DATA

| 1. | EMERGENCY  |
|----|------------|
| 2. | IN ACCORDA |

|    | CONVERTIO   |
|----|-------------|
| 3. | THE STATE ( |
|    | RIPARIAN ZO |
|    | DEPARTMENT  |
|    | FLOOD HAZA  |
|    | (609) 777-0 |

# ZONING SCHEDULE

| PLAN<br>SECTION |   |
|-----------------|---|
| 5.1D            |   |
| 5.1A            |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
| 5.2B            |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 | 4 |

SITE LOCATION COASTAL METROPOLITAN PLANNING AREA UNFORESTED 9.378 AC N/A (PA-1)

**Call** before you dig.



N.R.C.S. U.S. DEPARTMENT OF AGRICULTURE SOILS MAP

13. EXISTING UTILITY INFORMATION SHOWN ON THIS PLAN IS FURNISHED BY THE UTILITY COMPANIES OR SURVEY PLAN BY SURVEYOR AND THE ACCURACY THEREOF IS NOT THE RESPONSIBILITY OF SCIULLO ENGINEERING SERVICES, LLC IT IS THE RESPONSIBILITY OF OWNER AND/OR CONTRACTOR TO CALL 1-800-272-1000 FOR FIELD LOCATION OF UNDERGROUND UTILITIES PRIOR TO

SOIL INVESTIGATION PERFORMED BY UNDERWOOD ENGINEERING COMPANY, BELLMAWR, NEW JERSEY, DATED 8/29/2019. FOR TEST PIT RESULTS REFER TO STORMWATER MANAGEMENT REPORT.

SOIL LOGS REFLECT A SAMPLING OF SOIL CONDITIONS IN APPROXIMATE LOCATIONS WITHIN THE AREA OF THE PROPOSED DRAINAGE BASIN AND TO THE DEPTH IN WHICH THEY WERE TAKEN. THEY ARE NOT INTENDED TO REFLECT SOIL CONDITIONS OF THE ENTIRE BASIN. IF AT THE TIME OF EXCAVATION THE CONTRACTOR DETERMINES THAT THERE MAY BE CLAY OR HARD-PACKED CLODS, THE CONTRACTOR SHOULD NOTIFY THE OWNER AND DESIGN ENGINEER TO DETERMINE IF TOTAL REMOVAL IS REQUIRED. ALL SOIL EROSION AND SEDIMENT CONTROL IMPLEMENTATION SHALL BE IN ACCORDANCE WITH STANDARDS SET FORTH BY THE CAPE ATLANTIC CONSERVATION DISTRICT.

HbmB HAMMONTON LOAMY SAND 0 TO 5% SLOPES PstAt PSAMMENTS, SULFIDIC SUBSTRATUM 0 TO 3% SLOPES FREQUENTLY FLOODED

SOILS DATA OBTAINED FROM NATURAL RESOURCES CONSERVATION SERVICES (NRCS) U.S. DEPARTMENT OF AGRICULTURE.

# FLOOD HAZARD NOTES

1. THE ENTIRE SITE IS LOCATED IN THE TIDAL FLOOD HAZARD AREA (FLOOD ZONE AE10) ACCORDING TO THE PRELIMINARY FEDERAL MANAGEMENT AREA FLOOD INSURANCE RATE MAP NUMBER 34001C0319G WITH A PRELIMINARY DATE OF MAY 30, 2014. 71

DANCE WITH NJAC 7:13-3.4(D) (FLOOD HAZARD AREA AND FLOODWAY BASED ON A FEMA FLOOD INSURANCE STUDY, FEMA TIDAL METHOD), THE FLOOD HAZARD AREA DESIGN FLOOD ELEVATION AT THE PROJECT SITE IS 10 FEET IN NAVD 1988. TO CONVERT TO NGVD 1929, ADD 1.3 FEET.

E OF NEW JERSEY HAS DETERMINED THAT ALL OR A PORTION OF THIS SITE LIES IN A FLOOD HAZARD AREA AND/OR ZONE. CERTAIN ACTIVITIES IN FLOOD HAZARD AREAS AND RIPARIAN ZONES ARE REGULATED BY THE NEW JERSEY T OF ENVIRONMENTAL PROTECTION AND SOME ACTIVITIES ARE PROHIBITED ON THIS SITE OR MAY FIRST REQUIRE A ARD AREA PERMIT. CONSULT WWW.NJ.GOV/DEP/LANDUSE OR CONTACT THE DIVISION OF LAND USE REGULATION AT -0454 FOR MORE INFORMATION PRIOR TO ANY CONSTRUCTION ONSITE.

| PLAN<br>SECTION |                                                       | STANDARD                                 | PERMITTED/REQUIRED                                                                                       | PROPOSED                                 | STATUS |
|-----------------|-------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|--------|
| 5.1D            |                                                       | USE                                      | APARTMENTS (180 MAX)                                                                                     | 180 APARTMENT UNITS                      | С      |
| 5.1A            |                                                       | USE                                      | EATING & DRINKING<br>ESTABLISHMENTS                                                                      | EATING & DRINKING<br>ESTABLISHMENTS      | С      |
|                 |                                                       | MINIMUM LOT AREA                         | 2.0 AC                                                                                                   | 9.38 AC                                  | С      |
|                 |                                                       | MINIMUM LOT DEPTH                        | 200 FT                                                                                                   | 650 FT                                   | С      |
|                 |                                                       | MINIMUM LOT WIDTH                        | 200 FT                                                                                                   | 604 FT                                   | С      |
|                 | MINIMUM                                               | FRONT YARD (HAMPDEN COURT)               | 15 FT                                                                                                    | 16 FT                                    | С      |
|                 | MINIMUM                                               | FRONT YARD (OTHER STREETS)               | 30 FT                                                                                                    | 49 FT                                    | С      |
|                 |                                                       | MINIMUM SIDE YARD                        | 10 FT                                                                                                    | 17 FT                                    | С      |
|                 |                                                       | MINIMUM REAR YARD                        | 20 FT                                                                                                    | N/A                                      | N/A    |
|                 | N                                                     | AXIMUM BUILDING HEIGHT                   | 52 FT                                                                                                    | 52 FT                                    | С      |
|                 | МА                                                    | XIMUM NUMBER OF STORIES                  | 4                                                                                                        | 4                                        | С      |
|                 | MA                                                    | XIMUM BUILDING COVERAGE                  | 30%                                                                                                      | 20%                                      | С      |
|                 | MA                                                    | XIMUM FLOOR AREA RATIO                   | 1.20                                                                                                     | 0.77                                     | С      |
|                 | М                                                     | INIMUM PARKING SETBACK                   | 20 FT                                                                                                    | 20 FT                                    | С      |
|                 | MINIMUM OPEN SPACE                                    |                                          | 10%                                                                                                      | 26.81%                                   | С      |
|                 | MAXIMUM SITE COVERAGE                                 |                                          | 90%                                                                                                      | 73.2%                                    | С      |
|                 | MINIMUM BUFFER FROM RESIDENTIAL USES                  |                                          | 30 FT                                                                                                    | 34 FT                                    | С      |
|                 | MINIMUM BUFFER FROM NON-RESIDENTIAL USES              |                                          | 10 FT                                                                                                    | N/A                                      | N/A    |
|                 | MAXIMUM BUILDING LENGTH                               |                                          | 200 FT                                                                                                   | 185 FT                                   | С      |
| 5.2B            | SEP                                                   | ARATION BETWEEN BUILDINGS                | 20 FT                                                                                                    | 84 FT                                    | С      |
|                 | NUMBER OF LOADING SPACES                              |                                          | 1 LOADING SPACE FOR<br>EVERY 10,000 GROSS SF OF<br>COMMERCIAL SPACE<br>(6,000 SF = 1 SPACE)              | 1                                        | С      |
|                 | NUMBER OF PARKING SPACES<br>NON-RESIDENTIAL USES      | COMMERCIAL ACTIVITIES                    | 1 SPACE FOR EVERY 300 SF<br>2400 SF/300 SF = 8                                                           |                                          |        |
|                 |                                                       | MEDICAL OFFICES                          | 1 SPACE FOR EVERY 2 EXAM<br>ROOMS = N/A                                                                  |                                          |        |
|                 |                                                       | PROFESSIONAL & ADMINISTRATIVE<br>OFFICES | 1 SPACE FOR EVERY 350 SF<br>= N/A                                                                        |                                          |        |
|                 |                                                       | EATING AND DRINKING<br>ESTABLISHMENTS    | 1 SPACE FOR EVERY 3<br>SEATS = 33 SPACES                                                                 | TOTAL REQUIRED =<br>311;                 | _      |
|                 | NUMBEF                                                | PERSONAL SERVICE ESTABLISHMENTS          | 1 SPACE FOR EACH 1/3 OF<br>AN OPERATOR OTHERWISE 1<br>SPACE FOR EACH 100 SF OF<br>GROSS FLOOR AREA = N/A | 306 ON-SITE<br>96 GARAGE<br>48 ON-STREET | С      |
|                 | NUMBER OF<br>PARKING<br>SPACES<br>RESIDENTIAL<br>USES | 1– AND 2–BEDROOM APARTMENT<br>UNITS      | 1.5 SPACES PER UNIT<br>=180 x 1.5 = 270                                                                  |                                          |        |
|                 | NUM<br>PA<br>SP<br>U                                  | 3 BEDROOM APARTMENT UNITS                | 2.0 SPACES PER UNIT =<br>N/A                                                                             |                                          |        |

# RESIDENTIAL = 180 1 & 2 BR UNITS X 1.5 SPACE/UNIT = 270 SPACES RESTAURANT = 100 SEATS X 1 SPACE/3 SEATS = 33 SPACES

 FORESTED
 0.000
 AC
 10%
 0.000
 AC
 0.00%
 0.000
 AC

# CAFRA COVERAGE REQUIREMENTS

|   | VEGETATIVE COVER REQUIREMENTS FOR SITE IN CAFRA AREA (7:7-13.18 TABLE I) |                  |                                                         |      |                                                                           |                                            |  |
|---|--------------------------------------------------------------------------|------------------|---------------------------------------------------------|------|---------------------------------------------------------------------------|--------------------------------------------|--|
| I | VEGATATIVE<br>COVER                                                      | NET LAND<br>AREA | TREE PRESERVATION<br>REQUIRED (FOR<br>FORESTED PORTION) | TREE | TREE PRESERVATION AND/OR<br>PLANTING REQUIRED<br>(FOR UNFORESTED PORTION) | PROPOSED<br>TREE<br>PRESERVATION<br>AND/OR |  |

N/A N/A OAC

N/A

0 %

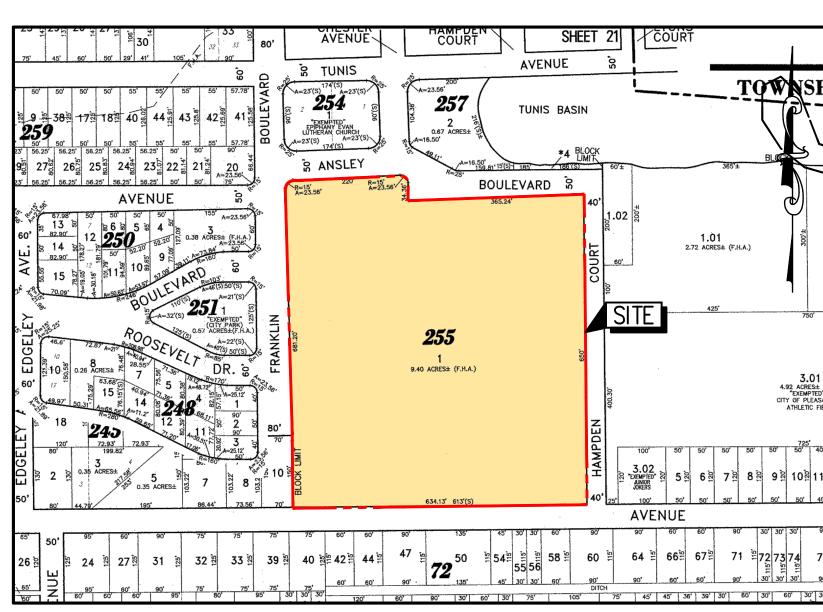
PLANTING

5% 0.47 AC

N/A N/A

N/A

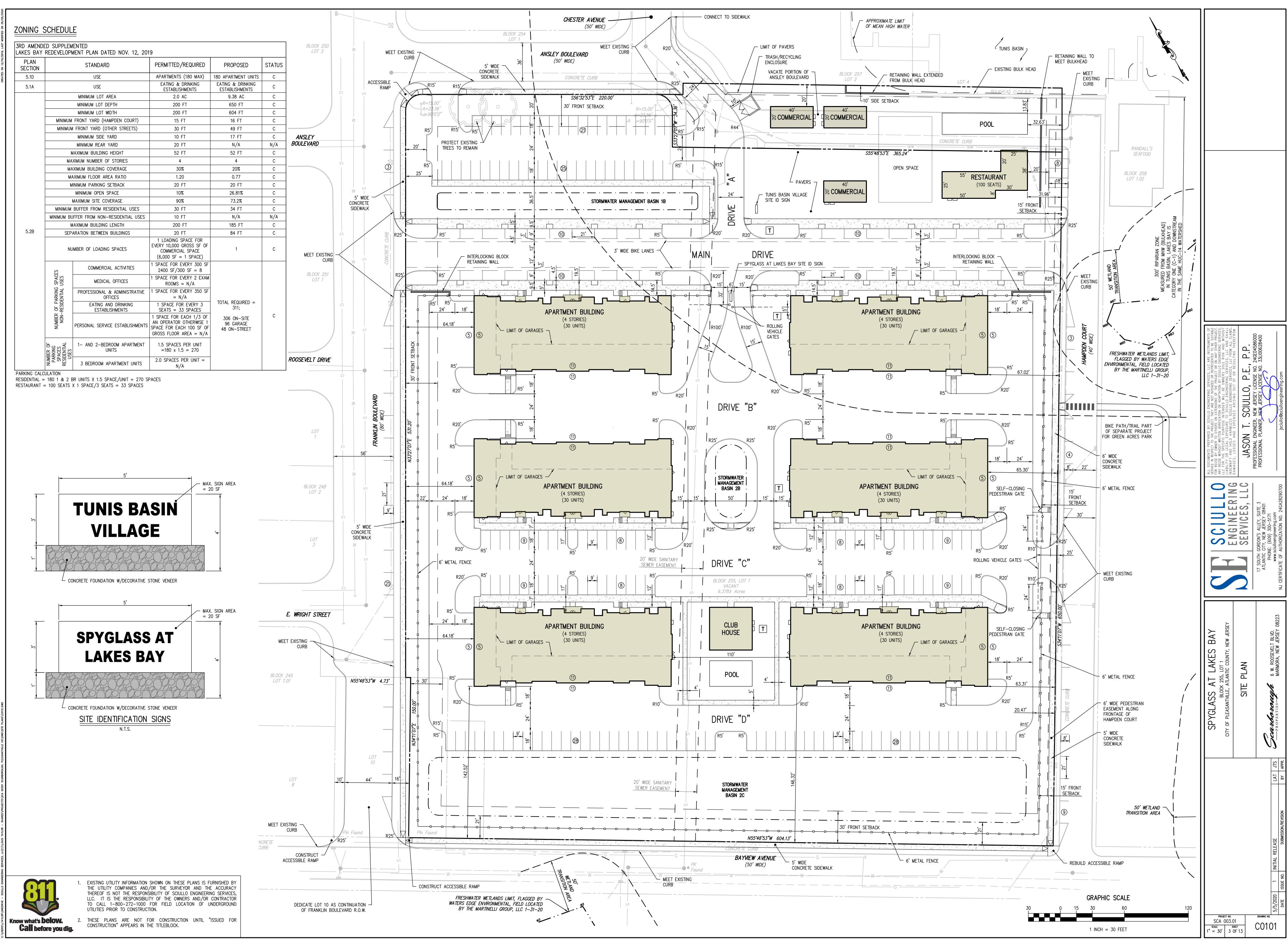
0 AC

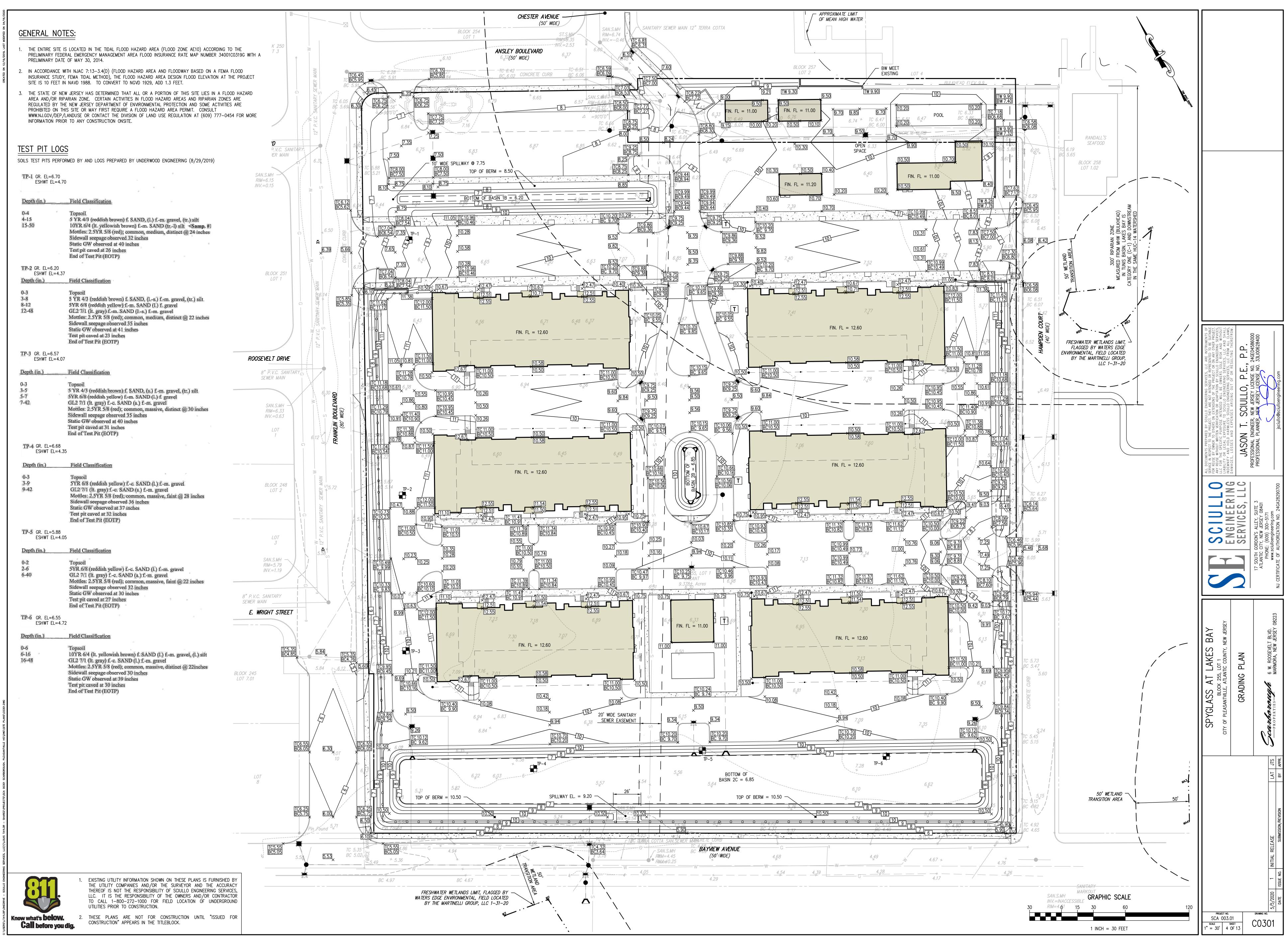

| reet                      |                    |                |
|---------------------------|--------------------|----------------|
| Prospect Avenue Prospect  | t Avenue Boulevard | Decs           |
|                           | ey Avenue          | Decatur Avenue |
| Edgeley Avenue            | ey Avenue          |                |
|                           | esoo Ansie         |                |
| Greenfield Alvenue        | d ley Boulevard    | - Iunis-       |
| h<br>Avenue               |                    | unis Avenue    |
| Edgewater Avenue<br>Oakla | Hampden Court      | SIT            |
| Oakland Avenue            | WFC                |                |
|                           | Jay view Aven      |                |
|                           | 18                 |                |

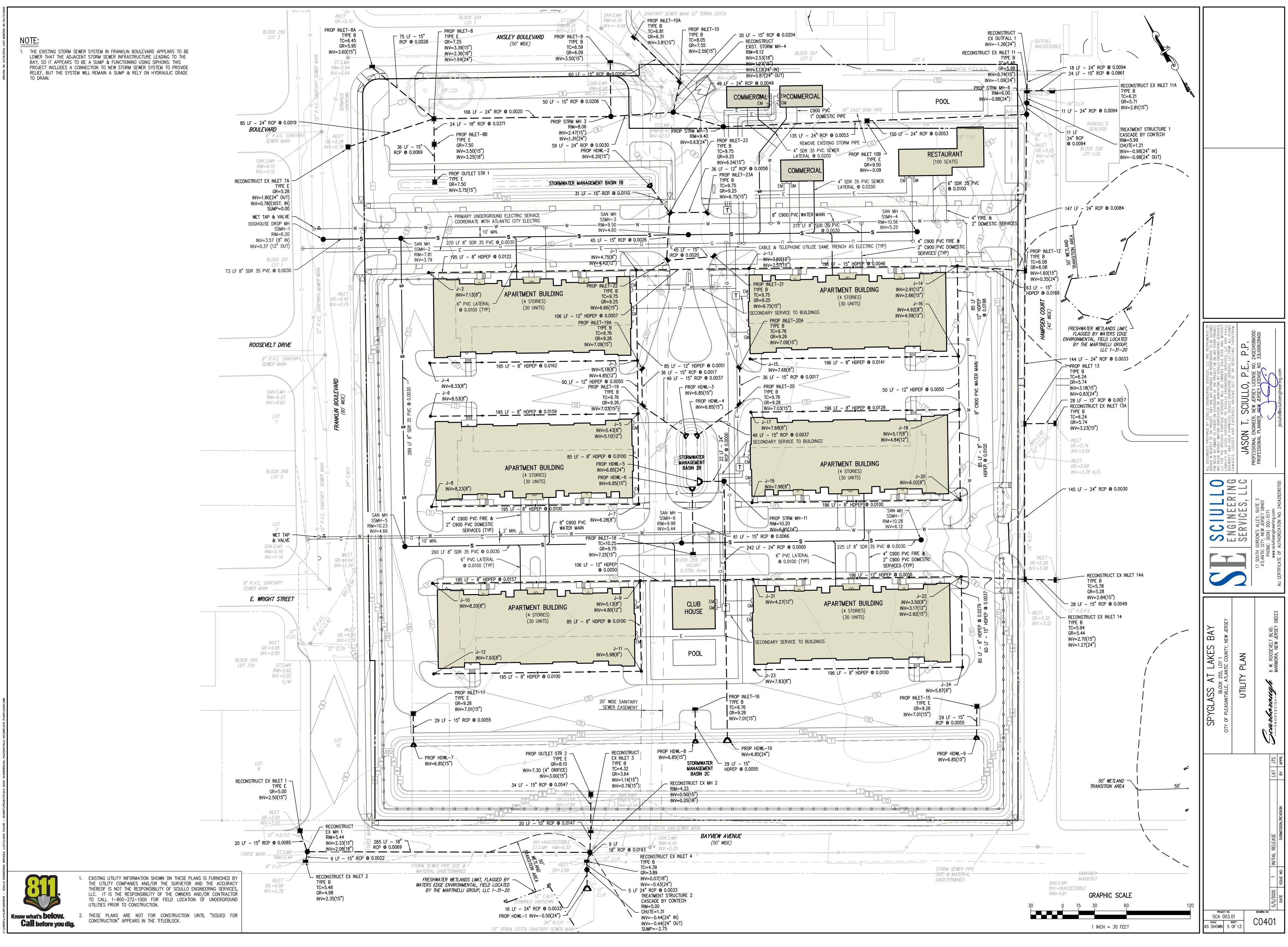
| OFFICIAL      | ZONING | MAP | OF | PLEASANTVILLE |
|---------------|--------|-----|----|---------------|
| SCALE: N.T.S. |        |     |    |               |

# CITY OF PLEASANTVILLE CERTIFIED OWNER'S LIST WITHIN 200'

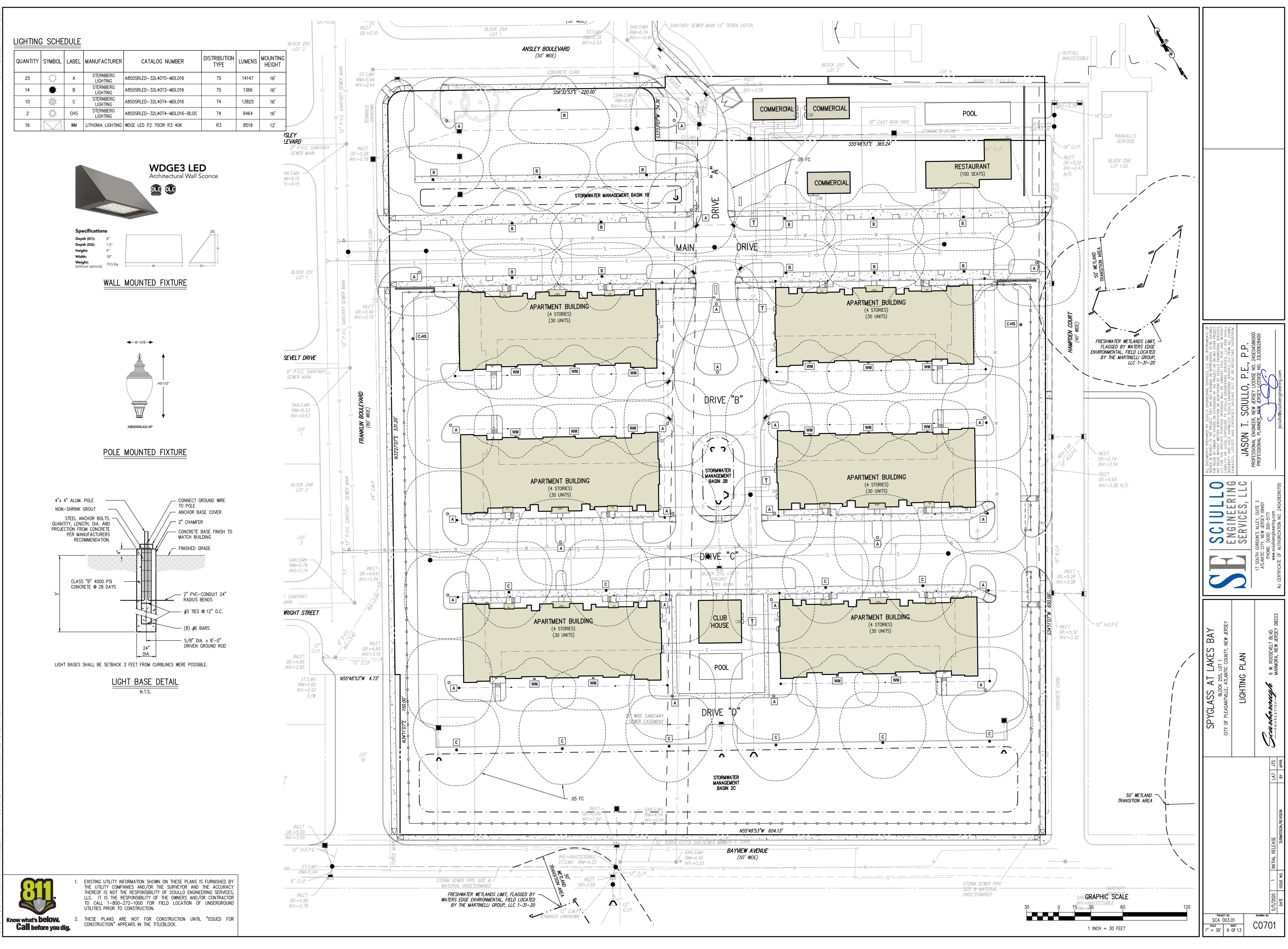
| <b>BLOCK</b><br>71 | <b>LOT</b><br>38 | PROPERTY LOCATION<br>129 E EDGEWATER AVE   | <b>OWNER</b><br>SKINNER, REGINALD & TRACY J<br>129 EDGEWATER AVENUE<br>PLEASANTVILLE, NJ 08232         | <b>BLOCK</b><br>258 | <b>LOT</b><br>9 | PROPERTY LOCATION<br>322 E BAYVIEW          | OWNER<br>MITCHELL, JOHN<br>2 BEESLEYS PL<br>MARMORA, NJ 08223                                             | <b>BLOCK</b><br>257 | LOT<br>4 | PROPERTY LOCATION<br>222 ANSLEY BLVD | OWNER<br>CITY IN REM 1981<br>CITY HALL<br>PLEASANTVILLE, NJ 08232              | SOUTH JERSEY GAS CO<br>1 SOUTH JERSEY PLAZA, FOLSOM, NJ 08037<br>ATLANTIC CITY ELECTRIC – REAL ESTATE DE<br>5100 HARDING HIGHWAY #399, MAYS LANDIN |
|--------------------|------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|----------|--------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 71                 | 39               | 201 E EDGEWATER AVE                        | NJDEP<br>401 E STATE ST<br>TRENTON, NJ 08625                                                           | 258                 | 10              | 324 E BAYVEW AVE                            | GRIFFITH, LESTER & VICTORIA<br>244 LAFAYETTE AVE<br>PEMBERTON, NJ 08068                                   | 258                 | 1.02     | 310 S HAMPDEN CT                     | LENN, ALFRED % JODI C/O RANDALLS<br>301 ANSLEY BLVD<br>PLEASANTVILLE, NJ 08232 | COMCAST CABLE<br>901 W LEEDS AVENUE, ABSECON, NJ 08201                                                                                             |
| 71<br>71           | 41<br>42         | 203 E EDGEWATER AVE<br>205 E EDGEWATER AVE | US BANK TRUCT C/O RES CAP MGT<br>3630 PEACHTREE RD NE 1500<br>ATLANTA, GA 30326<br>CHAMPAGNE ROOM, LLC | 258<br>259          | 11<br>21        | 326 E BAYVIEW AVE<br>66 TUNIS AVE           | LASHLEY, CLAUDIA M<br>328 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232<br>MRA PROPERTY MANAGEMENT LLC         | 258                 | 3.01     | 350 S HAMPDEN CT                     | CITY IN REM<br>CITY HALL<br>PLEASANTVILLE, NJ 08232                            | NEW JERSEY AMERICAN WATER CO<br>3215 FIRE ROAD, EHT, NJ 08234<br>VERIZON, NJ                                                                       |
| 71                 | 42<br>43         | 205 E EDGEWATER AVE                        | 55 MAIN ST<br>TOMS RIVER, NJ 08753<br>CITY IN REM 1958                                                 | 259                 | 16              | 215 LYONS CT                                | 1202 TILTON RD #1<br>NORTHFIELD, NJ 08225<br>GEBERT, DONNA DISPAS                                         | 258                 | 3.02     | 306 E BAYVIEW AVE                    | CITY OF PLEASANTVILLE<br>18 N FIRST ST<br>PLEASANTVILLE, NJ 08232              | 540 BROAD ST., NEWARK, NJ 07102<br>ATLANTIC COUNTY ENGINEERING DEPARTMENT<br>PO BOX 719 NORTHFIELD, NJ 08225                                       |
| 71                 | 44               | 209 E EDGEWATER AVE                        | CITY HALL HOLD FOR DRAIN<br>PLEASANTVILLE, NJ 08232<br>CITY IN REM 202                                 | 260                 | 20              | 217 LYONS CT                                | 505 GRANDVIEW AVE<br>PERKASIE, PA 18944<br>DONNELLY, JOHN<br>217 LYONS CT                                 | 258                 | 5        | 312 E BAYVIEW AVE                    | AGOSTINI, PAUL & SHARON<br>10 DOVE CT                                          | CITY OF PLEASANTVILLE, DAVINNA KING-ALI,<br>18 N FIRST ST., PLEASANTVILLE, NJ 08232                                                                |
| 71                 | 46               | 211-217 E EDGEWATER AV                     | CITY HALL<br>PLEASANTVILLE, NJ 08232<br>E CITY IN REM 1958<br>CITY HALL HOLD FOR DRAIN                 | 260                 | 26              | 223 LYONS CT                                | PLEASANTVILLE, NJ 08232<br>KOWALEWSKI, PATRICK D & PATRICIA L<br>223 LYONS CT                             | 259                 | 22       | 62 TUNIS AVE                         | MIDDLETOWN, DE 19709<br>BROWN, JAMES F<br>62 TUNIS AVE                         | COMMISSIONER, NJDEP<br>PO BOX 412, TRENTON, NJ 08625<br>EGG HARBOR TOWNSHIP CLERK                                                                  |
| 71                 | 50               | 221 E EDGEWATER AVE                        | PLEASANTVILLE, NJ 08232<br>RICKENBACH, ERNEST D & MARYANNE P<br>2135 OLD WELSH RD                      | 71                  | 35              | 125 E EDGEWATER AVE                         | PLEASANTVILLE, NJ 08232<br>DEGUZMAN B & DEGUZMAN PENA E<br>125 E EDGEWATER AVE                            | 259                 | 23       | 58 TUNIS AVE                         | PLEASANTVILLE, NJ 08232<br>WILLIAMS, JANET A<br>58 TUNIS AVE                   | 3515 BARGAINTOWN ROAD, EHT, NJ 08234                                                                                                               |
| 71                 | 52               | 225 E EDGEWATER AVE                        | ABINGTON, PA 19001<br>GONZALEZ, MAYRA<br>225 E EDGEWATER AVE<br>PLEASANTVILLE, NJ 08232                | 72                  | 16              | 130 E EDGEWATER AVE                         | PLEASANTVILLE, NJ 08232<br>MOORE JOHN<br>130 E EDGEWATER AVE<br>PLEASANTVILLE, NJ 08232                   | 259                 | 41       | 301 S FRANKLIN BLVD                  | PLEASANTVILLE, NJ 08232<br>BARRERA, ARTURO C & MARLENE C                       |                                                                                                                                                    |
| 71                 | 54               | 229–301 E EDGEWATER AV                     |                                                                                                        | 72                  | 17              | 200 E EDGEWATER AVE                         | NEW JERSEY DEP<br>401 E STATE ST<br>TRENTON, NJ 08625                                                     | 260                 | 12       | 213 LYONS CT                         | 30 HARTFORD DR<br>EHT, NJ 08234<br>NGUYEN, NGOC V                              |                                                                                                                                                    |
| 72                 | 10               | 120 E EDGEWATER AVE                        | GIANNINI, FRANCIS JOHN<br>248 SHOWELLTON AVE<br>ABSECON, NJ 08201                                      | 72                  | 18              | 202 E EDGEWATER AVE                         | MCKETHAN, CHRISTINE<br>202 E EDGEWATER AVE<br>PLEASANTVILLE, NJ 08232                                     |                     | 21       |                                      | 213 LYONS CT<br>PLEASANTVILLE, NJ 08232                                        |                                                                                                                                                    |
| 72                 | 13               | 124 E EDGEWATER AVE                        | 4 SHEPHERDS LLC<br>2304 SHEPHERD DR<br>NORTHFIELD, NJ 08225                                            | 72                  | 20              | 204 E EDGEWATER AVE                         | CITY IN REM 2002<br>CITY HALL<br>PLEASANTVILLE, NJ 08232                                                  | 260                 | 21       | 220 S HAMPDEN CT                     | KHUU, MONG XUAN<br>220 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08232                 |                                                                                                                                                    |
| 72                 | 42               | 205 E BAYVIEW AVE                          | LAZARO, RAQUEL<br>205 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232                                         | 72                  | 23              | 212 E EDGWATER AVE                          | CITY IN REM 1959<br>CITY HOLD FOR DRAIN<br>PLEASANTVILLE, NJ 08232                                        | 260                 | 27       | 224 S HAMPDEN CT                     | PEYTON, TAIMIA<br>224 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08232                  |                                                                                                                                                    |
| 72                 | 44               | 209 E BAYVEW AVE                           | MASSI, ANTHONY D & JOAN ,<br>174 FRAZER AVE<br>COLLINGSWOOD, NJ 08108                                  | 72                  | 31              | 111 E BAYVIEW AVE                           | MCKINNON, ZACHARY & KAREN SMITH<br>111 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232                           | 260                 | 28       | 302 TUNIS AVE                        | MERCATANTI, PETER<br>514 WARREN AVE<br>SPRING LAKE, NJ 07762                   |                                                                                                                                                    |
| 72                 | 47               | 213 E BAYVIEW AVE                          | CITY IN REM 1954<br>CITY HALL HOLD FOR DRAIN<br>PLEASANTVILLE, NJ 08232                                | 72                  | 32<br>33        | 117 E BAYVIEW AVE                           | CHISOLM, TINA<br>117 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232<br>149 W THOMPSON PROPERTIES LLC            | 76                  | 22       | 219 S CHESTER AVE                    | PICKENS, CARL JR & TERRI<br>219 S CHESTER AVE<br>PLEASANTVILLE, NJ 08232       |                                                                                                                                                    |
| 72<br>72           | 60<br>64         | 237 E BAYVIEW AVE<br>303 E BAYVIEW AVE     | DICKEL, CHARLES R<br>237 BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232<br>CITY OF PLEASANTVILLE               | 72<br>72            | 33<br>39        | 125 E BATVIEW AVE                           | 405 DELAWARE AVE<br>EHT, NJ 08234<br>MARMOLEJO, JOHN & BARCES-BERRIOS,                                    | 76                  | 24       | 223 S CHESTER AVE                    | SMITH, SHIRLEY A<br>223 S CHESTER AVE<br>PLEASANTVILLE, NJ 08232               |                                                                                                                                                    |
| 72                 | 66               | 311 E BAYVIEW AVE                          | CITY HALL<br>PLEASANTVILLE, NJ 08232<br>RAAB, ROZALIA                                                  |                     |                 |                                             | LUZ<br>127 E BAYVIE WAVE<br>PLEASANTVILLE, NJ 08232                                                       | 78                  | 16       | 215 S HAMPDEN CT                     | GRIFFITH, DONALD R<br>215 S HAMPDEN CT                                         |                                                                                                                                                    |
| 72                 | 67               | 313 E BAYVIEW AVE                          | PO BOX 482<br>NYC, NY 10014<br>LOPEZ, JUANA<br>8220 MONHEGAN CT                                        | 72                  | 40<br>50        | 201 E BAYVIEW AVE<br>223 E BAYVIEW AVE      | GARCES, TERESA& RAMOS, JORGE<br>201 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232<br>PEREZ, PRIMATIVO          | 78                  | 17       | 214 S CHESTER AVE                    | PLEASANTVILLE, NJ 08232<br>ANDREWS, BEULAH & ARNOLD<br>214 S CHESTER AVE       |                                                                                                                                                    |
| 72                 | 71               | 317 E BAYVIEW AVE                          | 8220 MONHEGAN CT<br>SEVERN, MD 21144<br>CRISCIONE, PAUL & MARC<br>1228 WEEKSTOWN RD                    |                     |                 | 55227 E BAYVIEW AVE                         | 223 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232<br>KACZANOWSKI, HELEN L EST                                  | 78                  | 18       | 217 S HAMPDEN CT                     | PLEASANTVILLE, NJ 08232<br>ORTIZ, LORENZA & HORTENCIA<br>217 S HAMPDEN CT      |                                                                                                                                                    |
| 72                 | 72               | 323 E BAYVIEW AVE                          | EGG HARBOR, NJ 08215<br>CRISCIONE, PAUL & MARC<br>1228 WEEKSTOWN RD                                    |                     |                 | 2220 S FRANKLIN BLVD                        | 316 E GREENFIELD AVE<br>PLEASANTVILLE, NJ 08232<br>WU, A FU                                               | 78                  | 19       | 218 S CHESTER AVE                    | PLEASANTVILLE, NJ 08232<br>HERRERA, YOLANI                                     |                                                                                                                                                    |
| 72                 | 73               | 325 E BAYVIEW AVE                          | EGG HARBOR, NJ 08215<br>SHEHINSKY, RUSSEL<br>8015 SUMMERDALE AVE<br>PHILA, PA 19152                    |                     | 78              | 11210 S CHESTER AVE                         | 220 S FRANKLIN BLVD<br>PLEASANTVILLE, NJ 08232<br>CABRERA DE HIDALGO, YOKAIRA L<br>210 S CHESTER AVE      |                     | 78       | 22221 S HAMPDEN CT                   | 218 S CHESTER AVE<br>PLEASANTVILLE, NJ 08232<br>VELASQUEZ, OSCAR & LILIAN      |                                                                                                                                                    |
| 72                 | 74               | 327 E BAYVEW AVE                           | PHILA, PA 19152<br>GILDEIN, OLGA<br>1818 LONEY ST<br>PHILA, PA 19111                                   | 2                   | 245             | 5126 E BAYVIEW AVE                          | PLEASANTVILLE, NJ 08232<br>IRWIN, HELEN I (EST)<br>126 E BAYVIEW AVE                                      |                     |          | 23222 S CHESTER AVE                  | 221 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08232<br>MAS I LLC                       |                                                                                                                                                    |
| 72                 | 86               | 218 E EDGEWATER AVE                        | ROGERS, RONALD<br>717 RAVENWOOD DR<br>GALLOWAY, NJ 08205                                               | 2                   | 245             | 7130 E BAYVIEW AVE                          | PLEASANTVILLE, NJ 08232<br>PRECISE MANAGEMENT LLC<br>130 E BAYVIEW AVE                                    |                     |          | 24223 S HAMPDEN CT                   | 2020 NEW ROAD B<br>LINWOOD, NJ 08221<br>KHUU, TRINH MONG                       |                                                                                                                                                    |
| 72                 | 88               | 222 E EDGEWATER AVE                        | CITY IN REM 1959<br>CITY HALL<br>PLEASANTVILLE, NJ 08232                                               | 2                   | 245 7           | .0177 E WRIGHT ST                           | PLEASANTVILL,E NJ 08232<br>ARIAS, DAGOBERTO & MATILDE<br>77 E WRIGHT ST                                   |                     |          |                                      | 223 Ś HAMPDEN CT<br>PLEASANTVILLE, NJ 08232                                    |                                                                                                                                                    |
| 72                 | 90               | 224 E EDGEWATER AVE                        | CITY IN REM 2002<br>CITY HALL<br>PLEASANTVILLE, NJ 08232                                               | 2                   | 245             | 8136 E BAYVIEW AVE                          | PLEASANTVILLE, NJ 08232<br>BRADFORD, MICHAEL D<br>136 E BAYVIEW AVE<br>PLEASANTVILLE, NJ 08232            |                     | 78       | 25224 S CHESTER AVE                  | HENTZ, MICHAEL<br>224 S CHESTER AVE<br>PLEASANTVILLE, NJ 08232                 |                                                                                                                                                    |
| 72                 | 91               | 228 E EDGEWATER AVE                        | HOLDEN, SCOTTY<br>228 E. EDGEWATER AVE<br>PLEASANTVILLE, NJ 08232                                      | 245                 |                 | 10142 E BAYVIEW AVE                         | PLEASANTVILLE, NJ 08232<br>CITY OF PLEASANTVILLE<br>CITY HALL<br>PLEASANTVILLE, NJ 08232                  |                     | 78       | 26225 S HAMPDEN CT                   | COUCH, WILLIAM E<br>225 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08232                |                                                                                                                                                    |
| 72                 | 92<br>96         | 234 E EDGEWATER AVE                        | MUNNY, N; KHAN, H & RAHMAN, K TC<br>485 GENISTA AVE<br>GALLOWAY, NJ 08205<br>CITY IN REM 2000          | 2                   | 245             | 2071 E WRIGHT ST                            | FORD, LISA D<br>71 E WRIGHT ST<br>PLEASANTVILLE, NJ 08232                                                 | 2                   | 250      | 365 TUNIS AVE                        | GODDARD, ETHEL<br>65 TUNIS AVE<br>PLEASANTVILLE, NJ 08232                      |                                                                                                                                                    |
| 72<br>72           | 96<br>99         | 238 E EDGEWATER AVE<br>304 E EDGEWATER AVE | CITY IN REM 2000<br>CITY HALL<br>PLEASANTVILLE, NJ 08232<br>CITY OF PLEASANTVILLE                      | 2                   | 245             | 2273 E WRIGHT ST                            | CUARTO, MAXIMO<br>73 E WRIGHT ST<br>PLESANTVILLE, NJ 08232                                                | 2                   | 250      | 461 TUNIS AVE                        | TARIE PROPERTIES, LLC<br>204 TALLOWWOOD DR<br>EHT NJ 08234                     |                                                                                                                                                    |
| 72                 | 101              | 306 E EDGEWATER AVE                        | CITY HALL<br>PLEASANTVILLE, NJ 08232<br>HDHR INC                                                       | 245                 |                 | 3069 E WRIGHT ST                            | CHALMERS, MARIO<br>69 E WRIGHT ST<br>PLEASANTVILLE, NJ 08232                                              | 2                   | 250      | 559 TUNIS AVE                        | WILKINSON, ROBERT & PATRICIA<br>248 N MANNHEIM AVE                             |                                                                                                                                                    |
| 72                 | 102              | 308 E EDGEWATER AVE                        | PO BOX 1241<br>PLEASANTVILLE, NJ 08232<br>SHAW, ROBERT R JR<br>127 TM ER BOAD                          |                     | 248             | 1351 S FRANKLIN BLVD                        | LOCKETT, VIVIAN & FRANK<br>129 E EDGEWATER AVE<br>PLEASANTVILLE, NJ 08232                                 | 2                   | 250      | 653 TUNIS AVE                        | EGG HARBOR, NJ 08215<br>PEREZ, JOSE & OLGA<br>53 TUNIS AVE                     |                                                                                                                                                    |
| 245                | 3                | 108 E BAYVIEW AVE                          | 127 TYLER ROAD<br>GREENFIELD, NJ 08270<br>RODRIGUEZ, WADYS & SANTIAGO, CARLOS<br>108 E BAYVIEW AVE     |                     | 248<br>248      | 2 353 S FRANKLIN BL<br>3355 S FRANKLIN BLVD | VDESPICHAN, VICTORIA<br>112 N 1ST ST<br>PLEASANTVILLE, NJ 08232<br>JONES, KEVIN M SR & VELTA C            | 2                   | 250      | 962 ANSLEY BLVD                      | PLEASANTVILLE, NJ 08232<br>ANDUJAR, ILUMINADO & GIL, MARIA<br>62 ANSLEY BLVD   |                                                                                                                                                    |
| 245                | 27               | 75 E WRGHT ST                              | PLEASANTVILLE, NJ 08232<br>YAP, EDGARDO & ZAIDITA<br>75 E WRIGHT ST                                    |                     | 248             | 469 ROOSEVELT DR                            | 355 S FRANKLIN BLVD<br>PLEASANTVILLE, NJ 08232<br>LOCKETT, VIVIAN & FRANK                                 | 2                   | 250      | 1056 ANSLEY BLVD                     | PLEASANTVILLE, NJ 08232<br>WILHELM, ROBERT D                                   |                                                                                                                                                    |
| 248                | 7                | 59 ROOSEVELT DR                            | PLEASANTVILLE, NJ 08232<br>ACEVEDO, ALICIA<br>59 ROOSEVELT DR                                          |                     | 248             | 563 ROOSEVELT DR                            | 69 ROOSEVELT DR<br>PLEASANTVILLE, NJ 08232<br>LU NGUYET THU                                               | 2                   | 250      | τ2 ANSLEY BLVD                       | 212 POMONA ROAD<br>PORT REPUBLIC, NJ 08240<br>ALEXANDER, EUNICE                |                                                                                                                                                    |
| 248                | 15               | 52 E WRIGHT ST                             | PLEASANTVILLE, NJ 08232<br>OLSON, STEPHEN M<br>52 E WRIGHT ST<br>PLEASANTVILLE, NJ 08232               | 2                   | 248             | 853 ANSLEY BLVD                             | 13 S ST. DAVIDS PL<br>ATLANTIC CITY, NJ 08401<br>CHOWDHURY, RUBAYET<br>184 STEELMANVILLE RD               |                     |          | 1248 ANSLEY BLVD                     | 52 ANSLEY BLVD<br>PLEASANTVILLE, NJ 08232<br>SLOT REALTY LLC                   |                                                                                                                                                    |
| 254                | 1                | 300 S FRANKLIN BLVD                        | EPIPHANY EVAN LUTHERAN CHURCH<br>PO BOX 741<br>PLEASANTVILLE, NJ 08232                                 | 2                   | 248             | 10350 S EDGELEY AVE                         | EGG HARBOR TOWNSHIP, NJ 08234<br>WAGENER, HELEN CAROL<br>350 S EDGELEY AVE                                |                     |          |                                      | 1 BELMOR HILL<br>LINWOOD, NJ 08221                                             |                                                                                                                                                    |
| 255                | 1                | 350 S FRANKLIN BLVD                        | CITY OF PLEASANTVILLE<br>CITY HALL<br>PLEASNTVILLE, NJ 08232                                           | 248                 | 11              | 68 E WRIGHT ST                              | PLEASANTVILLE, NJ 08232<br>BATHROOM AND KITCHEN KING REMODELI<br>2408 BARCLAY BLVD                        |                     |          | 1544 ANSLEY BLVD                     | DOMINGUEZ, KENNYS & MARIA JT<br>44 ANSLEY BLVD<br>PLEASANTVILLE,NJ 08232       |                                                                                                                                                    |
| 258                | 1.01             | 320 S HAMPDEN CT                           | MAGGIO, DIANE<br>320 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08234                                           | 248                 | 12              | 62 E WRIGHT ST                              | MARLTON, NJ 08053<br>BISHOP, ROSS B & NICOLE J<br>62 E WRIGHT ST<br>PLEASANTVILLE, NJ 08232               | 2                   | 259      | 20305 S FRNAKLIN BLVD                | DELLINGER, MARK JR<br>540 SEAVIEW AVE<br>GALLOWAY, NJ 08205                    |                                                                                                                                                    |
| 258                | 1.01             | 320 S HAMDEN CT                            | MAGGIO, DIANE<br>320 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08234                                           | 248                 | 14              | 58 E WRIGHT ST                              | PLEASANIVILLE, NJ 08232<br>CONTRERAS, WILFREDO & JIMENEZ,<br>JENARA<br>58 E WRIGHT ST                     | 2                   | 260      | 9208 S HAMPDEN CT                    | CARPENTER, MARC & LAUREN<br>121 BALFOUR AVE<br>LINWOOD, NJ 08221               |                                                                                                                                                    |
| 258                | 6<br>7           | 314 E BAYVIEW AVE<br>316 E BAYVIEW AVE     | ROJAS, JUAN R & PALARDY, SUSAN M<br>PO BOX 124<br>ABSECON, NJ 08201<br>CITY OF PLEASANTVILLE           | 251                 | 1               | 333 S FRANKLIN BLVD                         | PLEASANTVILLE, NJ 08232<br>CITY OF PLEASANTVILLE<br>CITY HALL                                             | 2                   | 260      | 19218 S HAMPDEN CT                   | ZUMWALK, MARIE<br>218 S HAMPDEN CT<br>PLEASANTVILLE, NJ 08232                  |                                                                                                                                                    |
| 258<br>258         | ,<br>8           | 316 E BAYVIEW AVE                          | CITY OF PLEASANIVILLE<br>CITY HALL<br>PLEASANTVILLE, NJ 08232<br>PRICE, CHARLOTTE                      | 257                 | 2               | 300 S CHESTER AVE                           | PLEASANTVILLE, NJ 08232<br>HARMON, AUGUSTUS C & BERNITA V<br>300 S CHESTER AVE<br>PLEASANTVILLE, NJ 08232 | 42                  | 223      | DRIVE                                | EGG HARBOR TOWNSHIP<br>3515 BARGAINTOWN ROAD<br>EGG HARBOR TOWNSHIP, NJ 08234  |                                                                                                                                                    |
|                    | -                |                                            | 202 MT VERNON AVE<br>NORTHFIELD, NJ 08225                                                              |                     |                 |                                             | PLEASANTVILLE, NJ 08232                                                                                   |                     |          |                                      |                                                                                |                                                                                                                                                    |

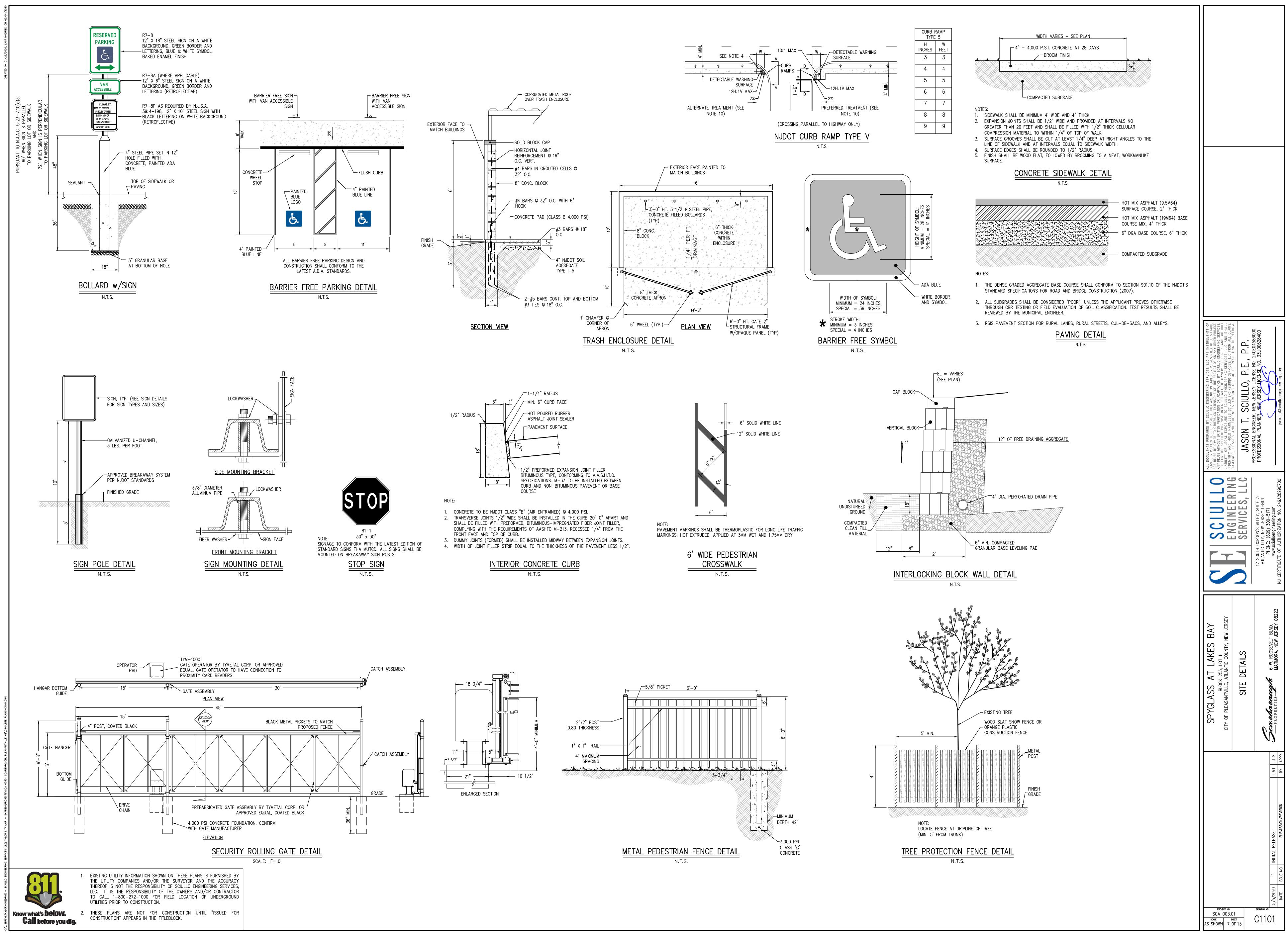


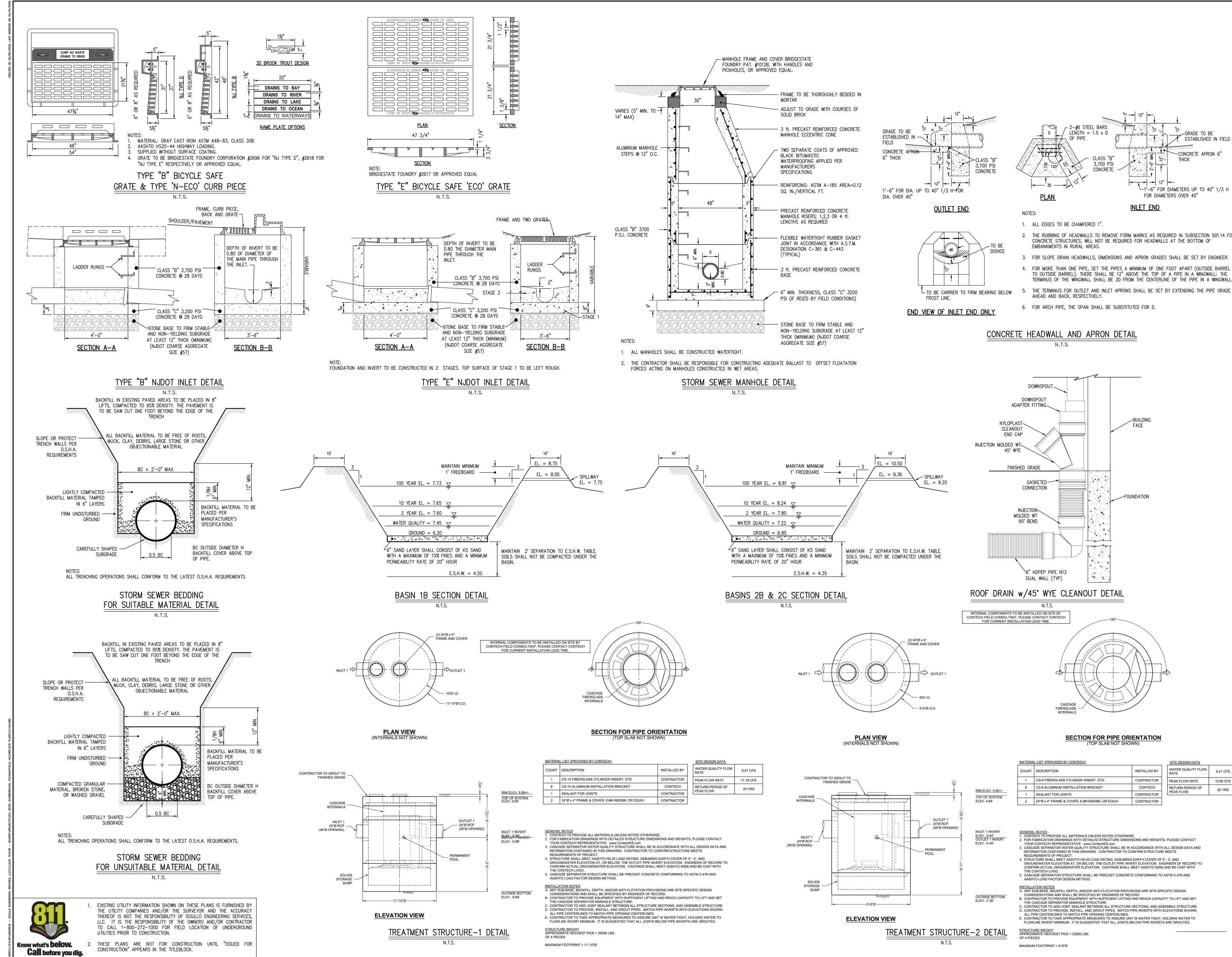



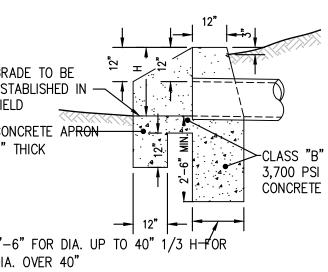


# OFFICIAL TAX MAP OF PLEASANTVILLE

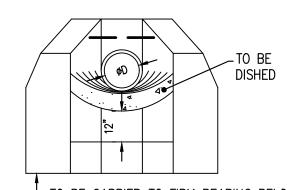
SCALE: 1" = 200'

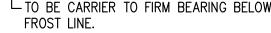


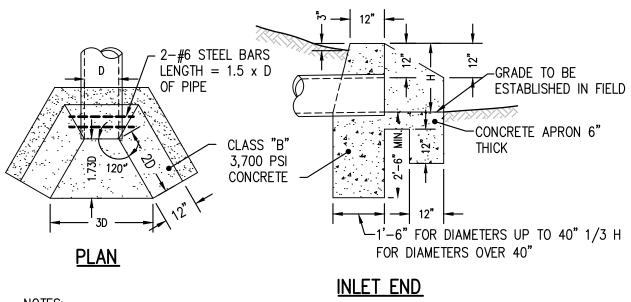



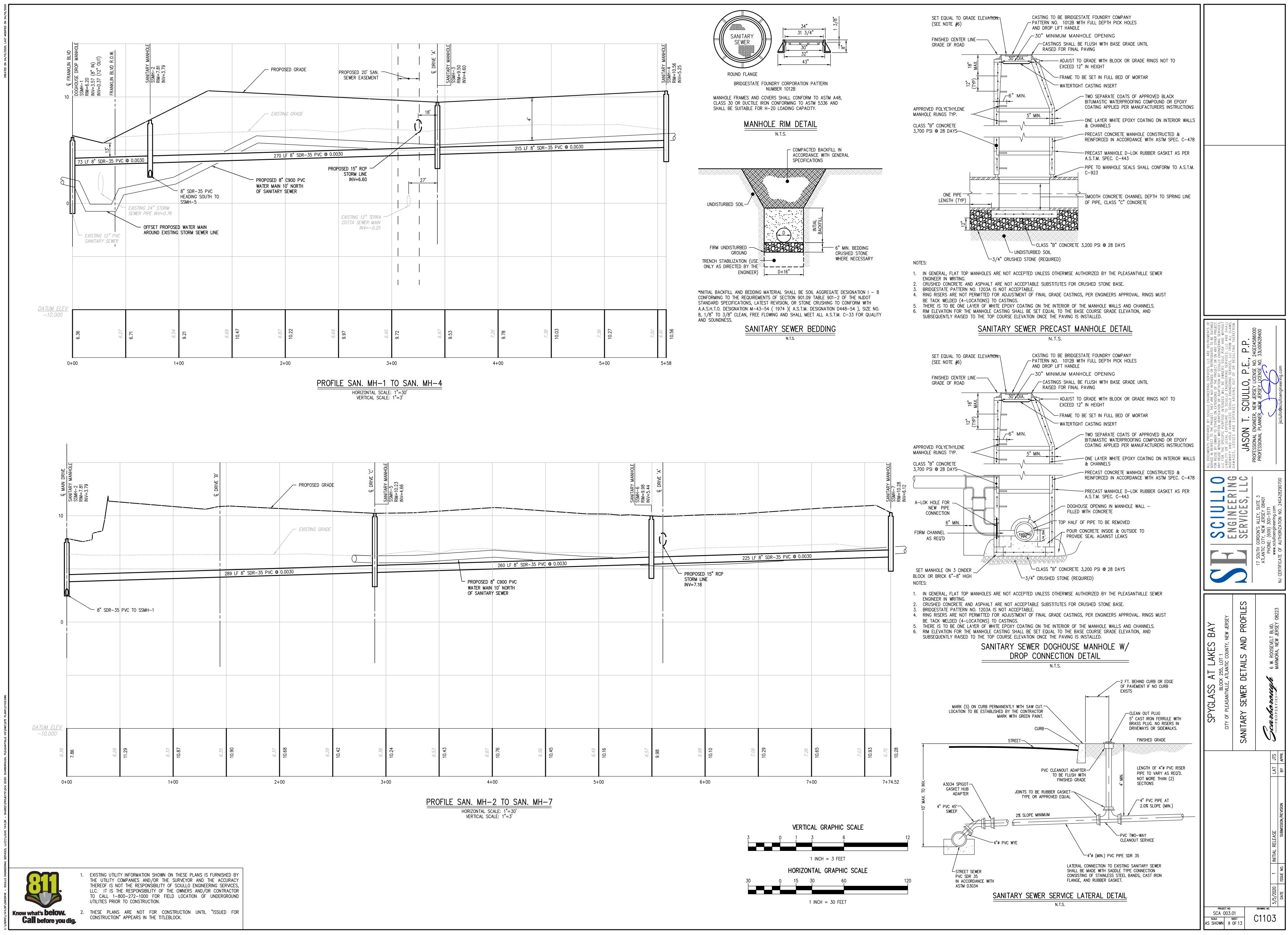



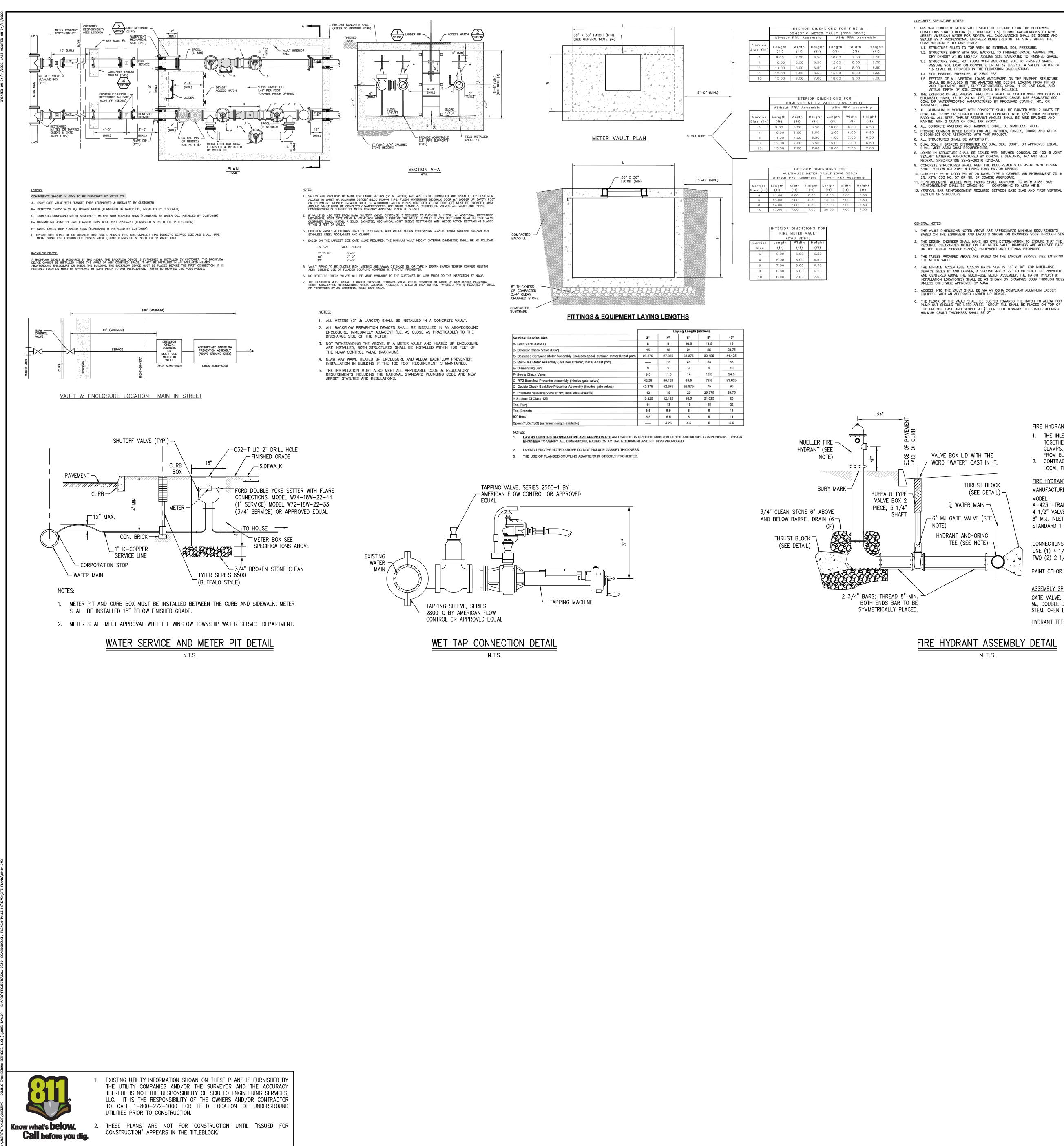





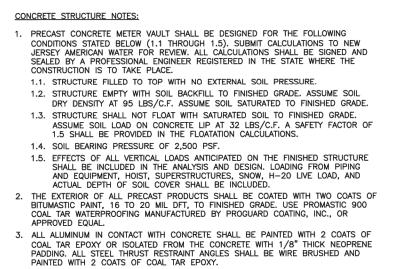






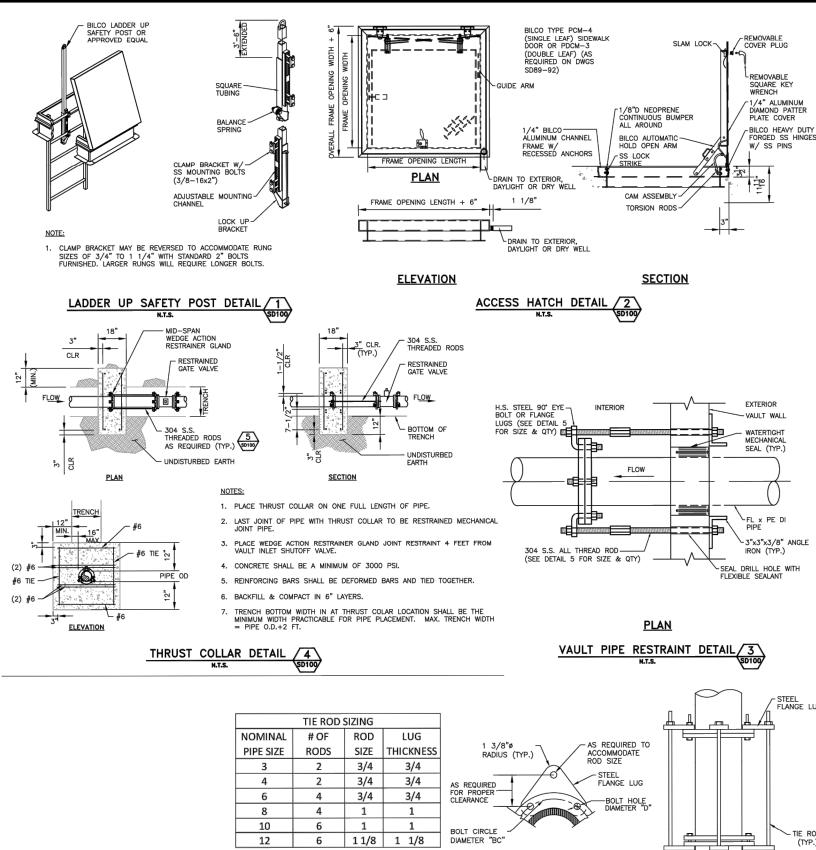




- 2. THE RUBBING OF HEADWALLS TO REMOVE FORM MARKS AS REQUIRED IN SUBSECTION 501.14 FOR CONCRETE STRUCTURES, WILL NOT BE REQUIRED FOR HEADWALLS AT THE BOTTOM OF
- 3. FOR SLOPE DRAIN HEADWALLS, DIMENSIONS AND APRON GRADES SHALL BE SET BY ENGINEER.
- 4. FOR MORE THAN ONE PIPE, SET THE PIPES A MINIMUM OF ONE FOOT APART (OUTSIDE BARREL TO OUTSIDE BARREL); THERE SHALL BE 12" ABOVE THE TOP OF A PIPE IN A WINGWALL: THE
- THE TERMINUS FOR OUTLET AND INLET APRONS SHALL BE SET BY EXTENDING THE PIPE GRADE








BUFFALO TYPE -2 3/4" BARS; THREAD 8" MIN.



5. PROVIDE COMMON KEYED LOCKS FOR ALL HATCHES, PANELS, DOORS AND QUICK DISCONNECT CAPS ASSOCIATED WITH THIS PROJECT. 6. ALL STRUCTURES SHALL BE WATERTIGHT. 7. DUAL SEAL II GASKETS DISTRIBUTED BY DUAL SEAL CORP., OR APPROVED EQUAL, SHALL MEET ASTM C923 REQUIREMENTS. JOINTS IN STRUCTURE SHALL BE SEALED WITH BITUMEN CONSEAL CS-102-B JOINT SEALANT MATERIAL MANUFACTURED BY CONCRETE SEALANTS, INC AND MEET FEDERAL SPECIFICATION SS-S-00210 (210-A). CONCRETE STRUCTURES SHALL MEET THE REQUIREMENTS OF ASTM C478. DESIGN SHALL FOLLOW ACI 318-14 USING LOAD FACTOR DESIGN. 10. CONCRETE: fc = 4,000 PSI AT 28 DAYS. TYPE III CEMENT. AIR ENTRAINMENT 7% ± 2%. ASTM C33 NO. 57 OR NO. 67 COARSE AGGREGATE. 11. REINFORCEMENT: WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185. BAR REINFORCEMENT SHALL BE GRADE 60, CONFORMING TO ASTM A615.

GENERAL NOTES 1. THE VAULT DIMENSIONS NOTED ABOVE ARE APPROXIMATE MINIMUM REQUIREMENTS BASED ON THE EQUIPMENT AND LAYOUTS SHOWN ON DRAWINGS SD89 THROUGH SD92. THE DESIGN ENGINEER SHALL MAKE HIS OWN DETERMINATION TO ENSURE THAT THE REQUIRED CLEARANCES NOTED ON THE METER VAULT DRAWINGS ARE ACHIEVED BASED ON THE ACTUAL SERVICE SIZE(S), EQUIPMENT AND FITTINGS PROPOSED. 3. THE TABLES PROVIDED ABOVE ARE BASED ON THE LARGEST SERVICE SIZE ENTERING THE METER VAULT.

4. THE MINIMUM ACCEPTABLE ACCESS HATCH SIZE IS 36' X 36". FOR MULTI-USE SERVICE SIZES 8" AND LARGER, A SECOND 48" X 72" HATCH SHALL BE PROVIDED AND CENTERED ABOVE THE MULTI-USE METER ASSEMBLY. THE HATCH TYPE(S) & INSTALLATION LOCATION(S) SHALL BE AS SHOWN ON DRAWINGS SD89 THROUGH SD92, UNLESS OTHERWISE APPROVED BY NJAW. ACCESS INTO THE VAULT SHALL BE VIA AN OSHA COMPLIANT ALUMINUM LADDER EQUIPPED WITH AN APPROVED LADDER UP DEVICE. 6. THE FLOOR OF THE VAULT SHALL BE SLOPED TOWARDS THE HATCH TO ALLOW FOR PUMP OUT SHOULD THE NEED ARISE. GROUT FILL SHALL BE PLACED ON TOP OF THE PRECAST BASE AND SLOPED AT <sup>1</sup>/<sub>4</sub>" PER FOOT TOWARDS THE HATCH OPENING. MINIMUM GROUT THICKNESS SHALL BE 2".



NOTE: MAX. PRESSURE 300 PSI

TIE ROD RESTRAINT DETAIL 5

FIRE HYDRANT NOTES

- 1. THE INLET HUB, GATE VALVE AND HYDRANT TEE SHALL BE RODDED TOGETHER WITH CONTINUOUS THREADED RODS (ALL THREAD), SOCKET CLAMPS, WASHERS, AND CORPORATION EYE BOLTS TO PREVENT HYDRANT
- FROM BLOWING OFF. 2. CONTRACTOR SHALL INSURE THAT THE FIRE HYDRANT THREADS CONFORM TO LOCAL FIRE COMPANY'S STANDARDS.

FIRE HYDRANT SPECIFICATIONS

MANUFACTURER: MUELLER-CENTURION MODEL: A-423 -TRAFFIC MODEL

4 1/2" VALVE OPENING (MIN.) 6" M.J. INLET HUB

STANDARD 1 1/2" PENTAGON OPERATION NUT-OPEN COUNTER CLOCKWISE

CONNECTIONS: ONE (1) 4 1/2" PUMPER CONNECTION-N.S. THREAD TWO (2) 2 1/2" HOSE CONNECTIONS-N.S. THREAD. PAINT COLOR - YELLOW

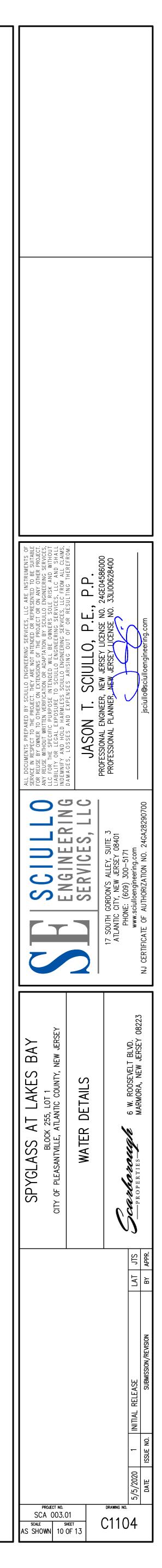
ASSEMBLY SPECIFICATIONS GATE VALVE: MJ, DOUBLE DISC, IBBM, NON-RISING STEM, OPEN LEFT, AWWA C-500 HYDRANT TEE: US PIPE U-590, CLOW 1217 OR EQUAL

FIRE HYDRANT ASSEMBLY DETAIL N.T.S.

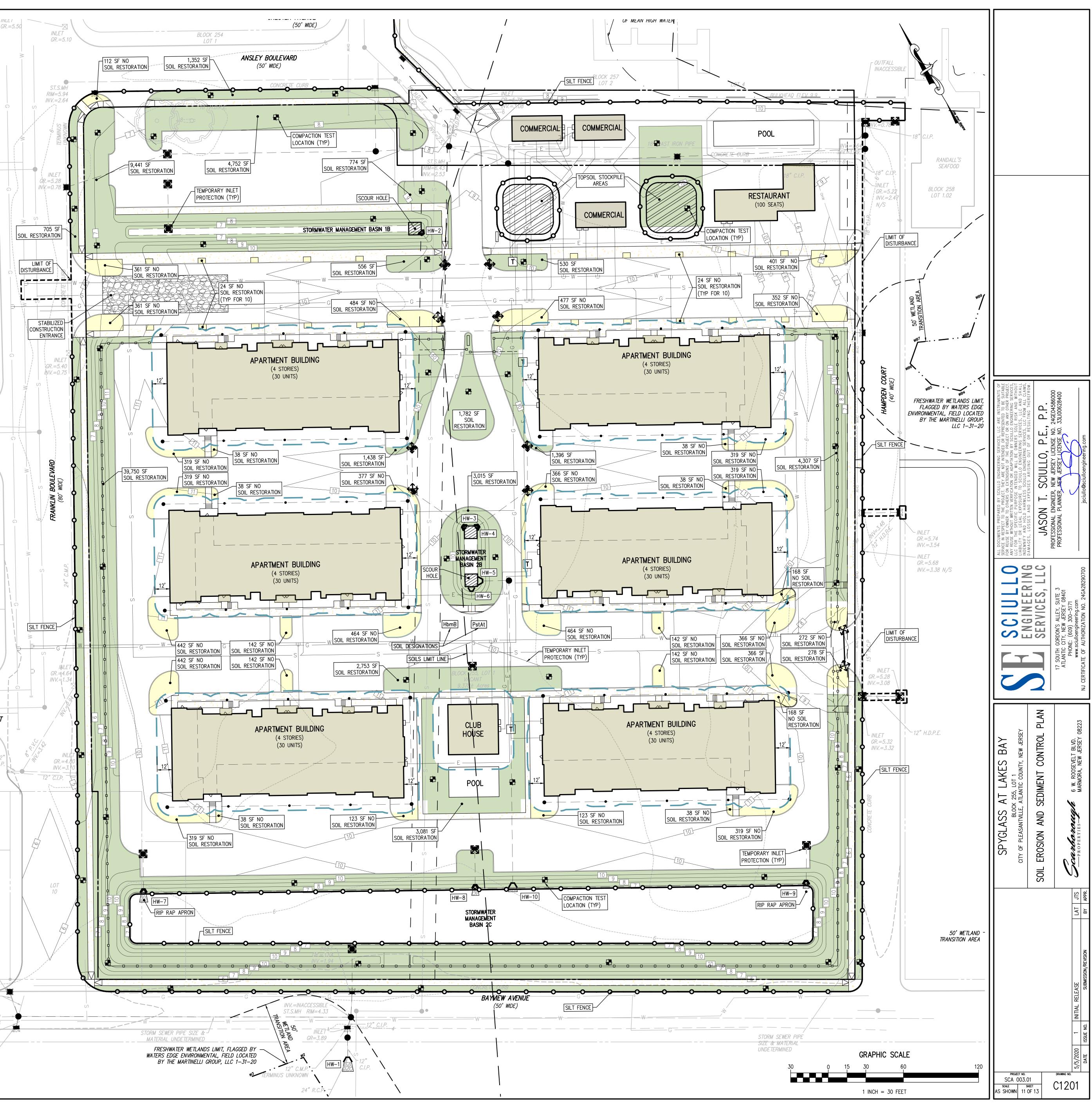
# VALVE BOX LID WITH THE -WORD "WATER" CAST IN IT

🖗 WATER MAIN 🖳

TEE (SEE NOTE)


−6"MJ GATE VALVE (SEE∖

HYDRANT ANCHORING


NOTE)

THRUST BLOCK

(SEE DETAIL) –



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL AREA OF PROPOSED DISTURBANC                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>Particle Control of The Control of Controls of Co</pre>                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                            | CE = 451,968 SF; 10.37 AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                 |
| <pre>NOT CONTRACT.<br/>Subject of the set of the</pre>                                                                                                                                                                                                                               | LEGEND                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ooo                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| WELLAND  WE                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANSLEY                                                                                                                                          |
| <pre>Note C. MARKED SUBJECT 19 MEDICAL PLANE MARKED<br/>SUBJECT 10 MEDICAL PLANE MARKED 19 MEDICAL PLANE MARKED 19 MEDICAL<br/>SUBJECT 10 MEDICAL PLANE MARKED 19 MEDICAL PLANE MARKED 19 MEDICAL<br/>SUBJECT 10 MEDICAL PLANE MARKED 19 M</pre>                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            | TEMPORARY STABILIZED CONSTRUCTION ENTRANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BOULEVARI                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | AND ALL IMPERVIOUS SURFACES EXCLUDED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
| Constant Die Der Constant (Die Der Constant Die Der                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                          | TO BE RESTORED TO LANDSCAPE OVER 500 S.F.) = 77,257 SF; 1.77 AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| <page-header></page-header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            | LOCATIONS TO BE DETERMINED IN FIELD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| <page-header></page-header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| SUST DATA<br>The MENOTY LIGHT REF. C. C. STREPT<br>THE MENOTY LIGHT REF. C. STREPT<br>THE MENOTY LIGHT RE                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| And Market ALL AND SHALL TRADET AND ADDRESS OF SHALL TRADET AND ADDRESS OF SHALL ADDRESS OF SHALL TRADET ADDRESS OF SHALL T                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            | SUILS DESIGNATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |
| <text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            | 0-5% SLOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BLO0<br>L0                                                                                                                                      |
| of A CHILD.<br>Source of the property of the pro                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| SUMMENTS SUM OF THE CARE ALLANCE DU CONSERVATION CONTROL<br>SUBJECT COMPACTION AND TESTING REQUIREMENTS<br>SUBJECT COMPACTION TESTING REQUIREMENTS<br>SUBJECT SUBJECT SUBJEC                                                                                                                                                                                                                                   | OF AGRICULTURE.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| SOL COMPACTION TESTING REQUIREMENTS  1. SUBJECTS SUBJECT TO UPDATE TO SUBJECT TO UPDATE CASE TERMINATION SUBJECT TO UPDATE TO A DEPTH OF SCHOOL TO BE THE TO UPDATE TO                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| <ul> <li>a. Sawkat side herden to the Affacture or organ Cate Personal Sampa No Sampa Shuttanian Noises and Sampa No. Sampa Samp</li></ul>                                                                                                                                                                                                                                   | SOIL DE-COMPACTION                                                                                                                                                                                                                                                                                                                                                         | AND TESTING REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |
| <ul> <li>Benders NS, HALL &amp; FREE &amp; DECISION COMPACTION TO A LEGATION AND AND AND AND AND THE ESTABLISHMENT OF THE BURNEL THE THE COMPACTION AND AND AND AND AND AND AND AND AND AN</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. SUBGRADE SOILS PRIOR TO TH                                                                                                                                                                                                                                                                                                                                              | E APPLICATION OF TOPSOIL (SEE PERMANENT SEEDING AND STABILIZATION NOTES FOR TOPSOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROOSEVELT                                                                                                                                       |
| CONTROL SET TORSED CARTOR FLAM CONTROL SET TORSED CARTOR REPORT ON THE PLANE ACCEPT OF THE PLANE ACCEPT OF THE PLANE SET OF A MARKET OF THE PLANE ACCEPT OF THE PLANE ACCEPT OF THE PLANE SET OF THE PLANE ACCEPT OF THE PLANE SET OF THE PLANE ACCEPT OF THE PL                                                                                                                                                                                                                                                   | REQUIREMENTS) SHALL BE FRE<br>PERMANENT VEGETATIVE COVER                                                                                                                                                                                                                                                                                                                   | E OF EXCESSIVE COMPACTION TO A DEPTH OF 6.0 INCHES TO ENHANCE THE ESTABLISHMENT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| Solutional control in the provide second according to the provide                                                                                                                                                                                                                                          | CERTIFIED SOIL EROSION CONTR<br>3. COMPACTION TESTING LOCATION                                                                                                                                                                                                                                                                                                             | ROL PLAN<br>NS ARE DENOTED ON THE PLAN. A COPY OF THE PLAN OR PORTION OF THE PLAN SHALL BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |
| STING WEITED (25 EDIN, BELOW, HE CONTRACTOR/OWER 3 SHALL HAR THE OPTION TO TREPORT BEING () CONFACTION<br>WEITED (CHEREND TESTING TO BEING A BEAMAGE THE LIN'S OF CREESS COMPACING HERMIN HARD (ALT HE DECESSING<br>COMPACTION TESTING HERMOS<br>A PROBING WEITEST (GE DECA)<br>DE HAO-HELD STITUST (SEE DECA)<br>DE HEAD-HELD STITUST (SEE DECA                                                                                                                     | SOIL CONSERVATION DISTRICT.<br>COMPLIANCE FROM THE DISTRIC                                                                                                                                                                                                                                                                                                                 | THIS FORM MUST BE FILLED OUT AND SUBMITTED PRIOR TO RECEIVING A CERTIFICATE OF<br>CT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
| ADDIDUM, NORE PLACED ISSUES I DUMARINA INFORMATION MIRANA, ADDIDUMA ID AND TISSUES WHERE WAS BODD FROMES TO ADDIDUCT DUMARIES AND PROCEEDED INFORMATION MIRANES. ADDIDUCT DUMARIES AND THE PROPAGADES OF A DUMARIES INFORMATION MIRANES. ADDIDUCT DUMARIES INFORMATION INFORMATION MIRANES. ADDIDUCT DUMARIES INFORMATION INFORMATION ADDIDUCT DUMARIES INFORMATION INFORMATIO                                                                                                                                                                                                                                         | TESTING METHOD (SEE DETAIL                                                                                                                                                                                                                                                                                                                                                 | BELOW), THE CONTRACTOR/OWNER SHALL HAVE THE OPTION TO PERFORM EITHER (1) COMPACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |
| COMPACTION TESTING METHODS  A PROVINCE WE LEX (SEE DETAIL)  B HAX-HEAD DERIFORCITE TEST (LEXEND PARTSSIGNAL FINAIRER REQUERD)  C THE BLAX DIRNTY TEST (LEXEND PARTSSIGNAL FINAIRER REQUERD)  C THE SCALTORING THE STOREST PARTSSIGNAL FINAIRER REQUERD)  NOTE: ADDITAL TESTING KENDES WICH CONFORM TO ASY STANDARDS AND SEPECEATIONS, AND WHCH PRODUCE A DRY WEAHT, SE BLAX DIRNTY WEATURES IN MAY BE ALLOWED SUBJECT TO TREASULATION (SCARPCATION/TLLARE (O' VINAIM SEPH))  RECORDINGES SHALL BE USED TO IMITGATE EXCESSIVE SUBJECT TO TREASULATION (SCARPCATION/TLLARE (O' VINAIM SEPH))  RECORDINGES SHALL BE USED TO IMITGATE EXCESSIVE SUBJECT TO FRANCH, MAY DEPH) MERE THERE IS NO DAMAGER  RECORDER UTURES (SARAPT DE SUBJECT TO RESULATION FIRM TO PLACEMENT OF TOPSOL AND ESTABLISHENT OF  RESIDENTIAN OF COMPACTION SUBJECT TO RESULATION FIRM TO PLACEMENT OF TOPSOL AND ESTABLISHENT OF  RESIDENTIAN OF COMPACTION SUBJECT TO RESULATION FIRM TO PLACEMENT OF TOPSOL AND ESTABLISHENT OF  RESIDENTIAN OF COMPACTION SUBJECT TO RESULATION FIRM TO PLACEMENT OF TOPSOL AND ESTABLISHENT OF  RESIDENTIAN OF COMPACTION SUBJECT TO RESULATION FIRM TO PLACEMENT OF TOPSOL AND ESTABLISHENT OF  RESIDENTIAN OF COMPACTION SUBJECT TO RESULATION FIRM TO PLACEMENT APPROVAL  SUB_SOLL SHOULD BE MOST BUT TOTS  SUB_SOLL SHOULD BE MOST BUT TOTS  SUBJECT TO RESULATE EXTENDED FORMATION  RESULTION RESULT TO RESULATE TO TREASE TO  DEMONAND APPROVE TO SUBJECT TO RESULATION  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOTS  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOTT  NOT  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOT  NOT  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOT  NOT  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOTT  NOT  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOTT  NOT  SUBJECT TO RESULATE EXTENDES  SUB_SOLL SHOULD BE MOST BUT TOTT  NOT  SUBJECT TO RESULATE EXTENDES  SUBJECT TO RESULATE TO RESULATE TO RESULATE TO RESULATION  SUBJECT TO RESULATE TO RESULATE TO RESULATION  SUB                                                                                                                                                                                                                                         | ADDITIONAL, MORE DETAILED TE<br>COMPACTED AREAS WOULD REC                                                                                                                                                                                                                                                                                                                  | ESTING TO ESTABLISH THE LIMITS OF EXCESSIVE COMPACTION WHEREUPON ONLY THE EXCESSIVELY QUIRED COMPACTION MITIGATION. ADDITIONAL DETAILED TESTING SHALL BE PERFORMED BY A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                                                                               |
| A PROBING WELLES (GEL DETAL)<br>B. HIAO-HEND PROFEROPERTS (GER DETAL)<br>C. HUE BOUR DENTY TST (UCRNEEP PROFESSIONAL NAMEER REQUIRED)<br>C. HUE BOUR DENTY TST (UCRNEEP PROFESSIONAL NAMEER REQUIRED)<br>NOTE - ROOTIONAL HENDING ETHOUSE INFORMATION TO ASTREET REQUIRED)<br>NOTE - ROOTIONAL HENDING ETHOUSE INFORMATION TO ASTREET APPROVAL.<br>SOL COMPACING THE SUB INFORMATION STATUS (CARIFORNIAN (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)<br>OR SILLAU) IS PROFESSIONAL INFORMATION FOR TO PLACEDAR TO PLACEDAR IO (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)<br>OR SILLAU) IS PROFESSIONAL INFORMATION FOR TO PLACEDARIO (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)<br>OR SILLAU) IS PROFESSIONAL INFORMATION FOR TO PLACEDARIO (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)<br>OR SILLAU) IS PROFESSIONAL INFORMATION FOR TO PLACEDARIO (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)<br>PROEDURES STATUS (CONE<br>ESTIMATION CONSTITUTE) SUBJECT TO DENOTATION (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)<br>MIRE MAY DE SE INFORMATION (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)) MIRET HERE IS NO DAVIGER<br>STATUS TO ASSUEL TO SUBJECT TO THE SECONDARY OF THE TO PLACEDARI OF THE STATUS<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)) MIRET HERE IS NO DAVIGER<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)) MIRET HERE IS NO DAVIGER<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (6 <sup>4</sup> MINIMA DEPH)) MIRET HERE IS NO DAVIGER<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH) MIRET<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH) MIRET<br>MIRETARD DO NOT TEST HERE SOL<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH)<br>SOL SUBJECT TO THE SECOND STATUS (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH)<br>SOL SUBJECT TO THE SCRAIPCARD (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH)<br>SOL SUBJECT TO THE SCRAIPCARD (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH)<br>SOL SUBJECT TO THE SCRAIPCARD (SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) DEPH)<br>SOL SUBJECT TO THE SCRAIPCARD (SCRAIPCARD) SCRAIPCARDA/TILLAR: (5 <sup>4</sup> MINIMA) |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| O     COLLAR DENSITY LIST (JUDINED PROTESSIONLE MENDER REQUIRED)     NOTE ADDITANT, ESTING METHODS WHICH ONDERNOT AS AN STRAMBARS, MOI SPECIFICATIONS, MOI WHICH PRODUCE A DRY MEIDIT,     SOL COMPACTON STRING S NOT REQUIRED (FAMILY SUBJEC) COMPACTION REVENTION     SOL PARTY TISTING S NOT REQUIRED (FAMILY SUBJEC), COMPACTION REVENTION     SOL SCHAPTON TISTING S NOT REQUIRED FAMILY SUBJEC), COMPACTION REVENTION     PROCEDURES SHALL BE URBOT TO MITCHE CONSTRUCTION.     PROCEDURES SHALL BE URBOT TO MITCHE DESSING SOL COMPACTION PRIOR TO PLACEMENT OF TOPSOL AND ESTABLISHMENT OF     REVENTION COMPACTION SUBJECT OF THE ALTERNATIVE, MONTHER WEINON AS SPECIFIED BY A NEW     SOL SCHAPTON TEST MENT ESTIMATION     SOL SCHAPT OF TEST MENT     TOMMARD THE STUBERT FAMILY SUBJECT TO FUNCTION     SOL SHOULD BE MOST BUT NOT     TOMMARD THE STUBERT FAMILY     SOL SHOULD BE MOST BUT NOT     TOMMARD THE STUBERT     TOMMARD THE STUBERT TO THE STUBERT     TOMMARD THE STU                                                                                                                                                                                                                                              | A. PROBING WIRE TEST (SEE DETA<br>B. HAND-HELD PENETROMETER TE                                                                                                                                                                                                                                                                                                             | NIL)<br>EST (SEE DETAIL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |
| SOL BLUK DENSITY VEASUREMENT MAY BE ALLORED SUBJECT TO DETRICT APPROVAL.<br>SOL COMPACTION ISTING IS NOT ECURED E FAMILY SUBJECT TO DESTRUCT OWNERS AND ESTABLISHMENT OF<br>PROCEDURES FOR SOL COMPACTION MITIGATION<br>PROCEDURES SUBJECT TO MITIGATE EXCESSIVE CONSTRUCTION.<br>PROCEDURES SUBJECT TO MITIGATE EXCESSIVE SOL COMPACTION PROR TO PLACEMENT OF TOPSOL AND ESTABLISHMENT OF<br>PROMENT VECTORS.<br>RESTORATION OF COMPACTION SUBJECT TO JUNCT TO PLACEMENT OF TOPSOL AND ESTABLISHMENT OF<br>PROMENT VECTORS.<br>RESTORATION OF COMPACTION SUBJECT TO JUNCT TO PLACEMENT OF TOPSOL AND ESTABLISHMENT OF<br>PROMENT VECTORS.<br>SOL SHOULD BE WOST BUT NOT<br>SOL SHOULD BE WOST BUT NOT<br>STREAT DOWNAPD PRESSING SUBJECT TO<br>STREAT DOWNAPD PRESSING SUBJECT TO<br>STRE                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLOC<br>LC                                                                                                                                      |
| CRE SMILLARE IS PROPOSED AS PART OF THE SEQUENCE OF CONSTRUCTION.<br>PROCEDURES SAIL BE USED TO INTRAFE EXCESSIONE SOIL COMPACTION PRIOR TO PLACEMENT OF TOPSOIL AND ESTABLISHMENT OF<br>PERMANENT VECETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHALL BE THROUGH DEEP SCARIFICATION/TILLARE (6" MINIMUM DETTIP) WHERE THERE IS NO DAMAGER<br>TO UNDECRECIONAL DITLES (CARL) ETTIESTICE. IN THE LITERATIVE, AND MUETHIOD SUBJECT TO OSTINCT APPROVAL.<br>ESSENT LICENSED PROFESSIONAL ENGINEER MAY BE SUBSTITUTED SUBJECT TO OSTINCT APPROVAL.<br>SOIL SPOULD BE MOOT PUT WET<br>SOIL STOLL DEEMOOT PUT OF<br>DOWNWARD PERSUNG LICENO, DEBRISS) IS<br>PROBING WIRE TEST<br>NITS<br>NOTE<br>STILL STOLL DEEMOOT PUT ON TOT STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT ON THE STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT OF STILL STOLL DEEMOOT PUT OF<br>STILL STOLL DEEMOOT PUT OF STILL STOLL DEEMOOT                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| PROCEDURES SHALL BE USED TO MIRGATE EXCESSIVE SQL. COMPACTION PRIOR TO PLACEMENT OF TOPSOL. AND ESTABLISHMENT OF<br>PROMARTINE COVER.<br>RESTORATION OF COMPACTID SOLS SHALL BE THROUGH DEEP SCARIFICATION/TILLACE (6" MINIMUM DEPTH) WHERE THERE IS NO DANOER<br>TO UNDERROWND UTURES (CARLE, IRRIGATION SYSTERS, ETC.). IN THE ALTERNATIVE, ANOTHER WHEND AS SPECIFIED BY A NEW<br>LEREY LICENSED PROFESSIONAL ENGINEER MAY BE SUBSITIUTED SUBJECT TO TOPSOL. AND ESTABLISHMENT OF<br>SUBJECT TO FREEZONG<br>TO UNDERROWND THE SUBJECT TO FREEZONG<br>TO UNDERLY THE SUBJECT TO FREEZONG<br>SUBJECTION (ROCK, ROOT, DEERNS) S<br>SUBJECTION (ROCK, ROOT, DEERNS) S<br>SUBJECT TO SUBJECT TO TEST WHEN SUBJECT TO<br>TO JOUNNER PREZENCE USED<br>TO JOUNNER PREZENCE USE                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |
| PERMANENT VEGETATIVE COVER<br>RESTORATION OF COMPACTED SOLS SHALL BE THROUGH DEEP SCARRICATION/TILLACE (6' MINUUM DEEPH) WHERE THERE IS NO DANGER<br>TO UNDERGROUND UTILES (CABLE, RIRKITATION STERLY, ETC.). IN THE ALTERNATIVE, MOTHER METHOD AS SPECIFIED BY A NEW<br>SOL SHOULD BE MOIST BUT NOT<br>SOL SHOULD BE MOIST BUT NOT<br>SOL SECURITY BUT NOT<br>SOL SHOULD BE MOIST BUT NOT<br>SOL SECURITY BUT NOT<br>DOWNAND PRESSURE USED TO<br>DOWNAND PRESSURE USED TO<br>DOWNAND PRESSURE USED TO<br>DOWNAND PRESSURE USED TO<br>NUMER AT LEPTH<br>WE WAS I PRETRATE A<br>DOWNAND PRESSURE USED TO<br>DOWNAND PRESSURE USED TO<br>DOWNAND PRESSURE USED TO<br>SOL SHOULD BE MOIST BUT NOT<br>SOL SHOULD BE MO                                                                                                     | PROCEDURES FOR SOIL COM                                                                                                                                                                                                                                                                                                                                                    | PACTION MITIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| ID UNDERROUND UITUITES (CARLE, PRICEATION STOTEMES, ETC.). IN THE ALTERNAMUE, ANDHER METHOD AS SPECIFIED BY A NEW<br>JERREY LICENSED PROFESSIONAL ENGINEER MAY BE SUBSTITUTED SUBJECT TO DISTIRCT APPRAVAL.<br>SOL SHOULD BE MOST BUT NOT<br>SOL SHOULD BE MOST BUT NOT<br>SOL SHOULD BE MOST BUT NOT<br>SOL SHOULD BE MOST BUT NOT<br>ODWINNED FRESSNEL Y RY OR<br>SOLGET TO FRESSNEL Y RY OR<br>SOLGET TO FRESSNEL Y RY OR<br>DOWINNED FRESSNEL SOLW, STEPATO<br>DOWINNED FRESSNEL SOLW, STEPATO<br>PROBING WIRE AT DEPTH<br>NTS.<br>NTS.<br>NTS.<br>DOWING THE WAY BE RE-INSERTED F/MEEN AN<br>OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOST BUT NOT<br>IS EXCESSIVELY DRY OR SUBJECT TO<br>NTS.<br>DOWING THE WAY BE RE-INSERTED F/MEEN AN<br>OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>STALARTON THERE AND PRISSNEL SOLW<br>STELADY DOWINKAP PRISSNEL SOLW<br>STELADY DOWINKAP PRISSNEL SOLW<br>DEBRICTION (ROCK, ROOT, DEBRIS) IS<br>HANDHELLD SOLL PENETROMETER TEST<br>N.T.S.<br>DEBRICTION (ROCK, ROOT, DEBRIS) IS<br>HANDHELLD SOLL PENETROMETER TEST<br>N.T.S.<br>DOWING THE WAY BE RE-INSERTED F/MEEN<br>AN DESTRUCTION (ROCK, ROOT, DEBRIS) IS<br>HANDHELD SOLL SOLL PENETROMETER TEST<br>N.T.S.<br>DOWING THE WAY BE RE-INSERTED F/MEEN<br>AN DESTRUCTION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE WAY BE RE-INSERTED F/MEEN<br>AN DESTRUCTION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ROOT THE AND THE ROOT THE APPRICACE AND THE ADDITION OF A DOWING AND PRISSNEL SOLW<br>STELADY DOWING THE REAL SOLUTION (ROCK, ROOT, DEBRIS) IS<br>HANDHELD SOLUT PENETROMETER TEST<br>N.T.S.<br>DOWING THE ADDITION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION OF A DOWING AND PRISSNEL SOLUTION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION OF A DOWING AND PRISSNEL SOLUTION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION OF A DOWING AND PRISSNEL SOLUTION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION (ROCK, ROOT, DEBRIS) IS<br>DOWING THE ADDITION (ROCK, ROOT, DEBRI                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                            | ATE EXCESSIVE SOIL COMPACTION PRIOR TO PLACEMENT OF TOPSOIL AND ESTABLISHMENT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                               |
| SOL SHOULD BE MORT PUT NOT<br>SATURATED. DO NOT TEST WHEN<br>TEXPERATURES. SLOW, STRADY<br>DOWNWARD PRESSURE USED TO<br>DOWNWARD PRESSURE USED TO<br>DOWNWARD PRESSURE USED TO<br>PROBING WHE HE RE-INSERTED IF AMENA AN<br>OPSTRUCTION (ROCK, ROOT, DEERIS) IS<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>SOL STUDIATED. DO NOT TEST WHEN<br>SOL SHOULD BE MORT BUT NOT<br>SOL SHOULD SHOULD SHOULD SHOULD SHOULD SHOULD SHOULD SHOULD SHOUL                                                                                               | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                               |
| Sol, SHOULD BE MOST BUT NOT<br>SUBJECT TO PREZING<br>DOWNWARD PRESURE USED TO<br>ADVANCE THE WRE<br>DOWNWARD PRESURE USED TO<br>ADVANCE THE WRE<br>DOWNWARD PRESURE USED TO<br>ADVANCE THE WRE<br>DOWNWARD PRESURE TO F/WEIN MA<br>Gestration (ROCK, ROOT, DEBRS) IS<br>ENCOUNTERED.<br>PROBING WIRE TEST<br>N.T.S.<br>SOL SHOULD BE MOST BUT NOT<br>SUBJECT MARK SON<br>STEADY DOWNWARD PRESURE USED<br>TO ADVANCE THE WRE<br>SOL SHOULD BE MOST BUT NOT<br>SUBJECT MARK SON<br>STEADY DOWNWARD PRESURE USED<br>TO ADVANCE THE WRE<br>MOTO<br>SUBJECT MARK SON<br>STEADY DOWNWARD PRESURE USED<br>TO ADVANCE THE WRE<br>MOTO<br>SUBJECT DOWN THERES. SOM<br>STEADY DOWNWARD PRESURE USED<br>TO ADVANCE THE WRE<br>MOTO<br>SUBJECT TO FREEDWICE TO<br>RESEAT TO DEBRIS IS<br>SOL SHOULD BE MOST BUT NOT<br>SUBJECT TO THE STORE<br>SOL SHOULD BE MOST BUT NOT<br>SUBJECT TO THE STORE<br>SOL SHOULD BE MOST BUT NOT<br>TO ADVANCE THE WRE<br>SOL SHOULD BE MOST BUT NOT<br>SOL SHOULD BE MOST BUT NOT<br>TO ADVANCE THE WRE<br>SOL SHOULD BE MOST BUT NOT<br>SOL SHOULD BE MOST BUT NOT<br>SOL SHOULD SOL PERETROMETER SOL<br>SOL SHOULD SOL PERETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF                                                                                                                                                                                                                            | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                                                                                                               |
| SUL IS EXCESSIVELY DRY OR<br>SUBJECT TO FREEZING<br>DOWNWARD PESSING USED TO<br>ADVANCE THE WIRE<br>DEFORMATION.<br>WIRE MAY BE RE-INSERTED IF /WHEN AN<br>OBSTRUCTION (FOCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>PROBING WIRE TEST<br>INT.S.<br>DENEMONATOR STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>SATURATED. DO NOT TEST WHEN SOL<br>IS EXCESSIVELY DRY OR USED TO<br>FREEZING TEMPERATURES. SLOW<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>OF ZOD<br>DENEMONATION.<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>SOL SHOULD BE MOIST BUT NOT<br>STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>IS EXCESSIVELY DRY OF USED TO<br>THE STRUCTOR (ROOK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOLL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF                                                                                                                                                                                                                            | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                                                                                                                                               |
| DOWNWARD PRESSure USED TO<br>ADVANCE THE WRE<br>WRE MAY BE RE-INSERTED IF/WHEN AN<br>OBSTRUCTION (ROCK, ROOT, DEBRS) IS<br>PROBING WRE TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL                                                                                                                                                                       | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                               |
| WRE MAY BE RE-INSERTED IF/MHEN AN<br>DESTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>PROBING WIRE TEST<br>N.T.S.<br>Sol. SHOULD BE MOST BUT NOT<br>IS SATURATED. DO NOT BISST WHEN SOL<br>FREZING TEMPERATURES. SOL<br>SATURATED. DO NOT BUSST BUT NOT<br>IS EXCESSIVELY DRY OR SUBJECT TO<br>RESEAR TO MANY OF THE WIRE<br>COMMAND PRESSURE USED<br>TO ADVANCE THE WIRE<br>PENETROMETER MAY BE RE-INSERTED IF/MHEN<br>AN OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOLL PENETROMETER TEST<br>N.T.S.<br>MILES AT 6"<br>COMMAND PRESSURE USED<br>IS AUGUSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>COMMAND PRESSURE USED<br>TO ADVANCE THE WIRE<br>MILES AT 6"<br>COMMAND PRESSURE USED<br>TO ADVANCE THE WIRE<br>MILES AT 6"<br>COMMAND PRESSURE USED<br>IS AUGUSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>COMMAND IS AUGUSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>COMMAND                                                                                                              | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS                                                                                                                                               | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.<br>NOTE:<br>LD BE MOIST BUT NOT<br>D. DO NOT TEST WHEN<br>EXCESSIVELY DRY OR<br>SUBJECT TO FREEZING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. WRIGHT                                                                                                                                       |
| WRE MAY BE RE-INSERTED IF/WHEN AN<br>DESTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>PROBING WIRE TEST<br>N.T.S.<br>SOL SHOULD BE MOIST BUT NOT<br>SATURATED. DO NOT TEST WHEN STOR<br>FREEZING THEREFARTURES. STOR<br>STEADY DOWNWARD PRESSURE USED<br>TO ADVANCE THE WIRE<br>B.C.O' MIN. VISIBLE MARK:<br>ON SHAFT AT DEPTH<br>PROFINOMETER MAY BE RE-INSERTED IF/WHEN<br>AN DESTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOIL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL SHOUL<br>SATURATED                                                                                                                               | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.<br>NOTE:<br>LD BE MOIST BUT NOT<br>D. DO NOT TEST WHEN<br>EXCESSIVELY DRY OR<br>SUBJECT TO FREEZING<br>TURES. SLOW, STEADY<br>D PRESSURE USED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |
| PROBING WIRE TEST<br>N.T.S.<br>NOTE:<br>SOIL SHOULD BE MOIST BUT NOT<br>SATURATED. DO NOT TEST WHEN SOIL<br>IS EXCESSIVELY DRY OR SUBJECT TO<br>RELESS AT 6"<br>OR LESS AT 6"<br>OR LESS AT 6"<br>CONTINUE WARE<br>FOR LESS AT 6"<br>CONTINUE<br>SUBJECT ON SHAFT AT DEPTH<br>AN OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>MANDHELD SOIL PENETROMETER TEST<br>N.T.S.<br>CONTINUE WARE<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL SHOUL<br>SATURATED                                                                                                                               | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT                                                                                                                                       |
| Contraction of the solution of                                                                                                                                                                                                                                         | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR                                                                                                                         | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>SER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT                                                                                                                                       |
| Soli SHOULD BE MOIST BUT NOT<br>SATURATED. DO NOT TEST WHEN SOL<br>IS EXCESSIVELY DRY OR SUBJECT TO<br>REBEZING TEMPERATURES. SLOW,<br>STEADY DOWNARD PRESSURE USED<br>TO ADVANCE THE WIRE<br>PENETROMETER MAY BE RE-INSERTED IF/WHEN<br>AN OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOIL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROCEDURES SHALL BE USED TO MITIGAPERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHATO UNDERGROUND UTILITIES (CABLE, IRFJERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR                                                                                                                                     | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT<br>[NL<br>GR.=4.<br>INV.=2.<br>OCK 245<br>OT 7.01                                                                                     |
| FREEZING TEMPERATURES. SLOW,<br>STEADY DOWNWARD PRESSURE USED<br>TO ADVANCE THE WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PROCEDURES SHALL BE USED TO MITIGAPERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHATO UNDERGROUND UTILITIES (CABLE, IRFJERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR                                                                                                                                     | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>REGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EXER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E. WRIGHT<br>[NL<br>GR.=4.<br>INV.=2.<br>OCK 245<br>OT 7.01                                                                                     |
| COT MIN. VISIBLE MARK<br>ON SHAFT AT DEPTH<br>PENETROMETER MAY BE RE-INSERTED IF/WHEN<br>AN OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOIL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL SHOUNWAR<br>WIRE M<br>OBSTRI<br>ENCOU                                                                                                            | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>REATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E. WRIGHT<br>[NL<br>GR.=4.<br>INV.=2.<br>OCK 245<br>OT 7.01                                                                                     |
| PENETROMETER MAY BE RE-INSERTED IF/WHEN<br>AN OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOIL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROCEDURES SHALL BE USED TO MITIGAPERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHO<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING                                        | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>ERR MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.<br>15.5 GA STEEL WIRE<br>(SURVEY FLAG)<br>HOLD WIRE HERE<br>WIRE MUST PENETRATE A<br>MINIMUM OF 6" WITHOUT<br>DEFORMATION.<br>6.0" MIN. VISIBLE MARK ON<br>WIRE AT DEPTH<br>MAY BE RE-INSERTED IF/WHEN AN<br>UCTION (ROCK, ROOT, DEBRIS) IS<br>NTERED.<br>MOTE:<br>NTER.<br>ULD BE MOIST BUTNOT<br>NTER.<br>ULD BE MOIST BUTNOT<br>ON NOT FEST WHEN SOL<br>UN DRY OR SUBJECT TO<br>SUBJECT TO<br>MINIMUM OF 6" WITHOUT<br>DEFORMATION.<br>MIRE AT DEPTH<br>MAY BE RE-INSERTED IF/WHEN AN<br>UCTION (ROCK, ROOT, DEBRIS) IS<br>MIRE AT DEPTH<br>MAY BE RE-INSERTED IF/WHEN AN<br>UCTION (ROCK, ROOT, DEBRIS) IS<br>MIRE AT DEPTH<br>MAY BE MOIST BUTNOT<br>NTER.<br>MINIMUM OF SUBJECT TO<br>MIRE AT DEPTH<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MIRE AT DEPTH<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MIRE AT DEPTH<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MIRE AT DEPTH<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MINIMUM OF ST WITHOUT<br>MINIMUM OF ST WITHOUT<br>DEFORMATION.<br>MINIMUM | E. WRIGHT<br>[NL<br>GR.=4.<br>INV.=2.<br>OCK 245<br>OT 7.01                                                                                     |
| AN OBSTRUCTION (ROCK, ROOT, DEBRIS) IS<br>ENCOUNTERED.<br>HANDHELD SOIL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROCEDURES SHALL BE USED TO MITIGAPERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHO<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING                                        | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT<br>[NL<br>GR.=4.<br>INV.=2.<br>OCK 245<br>OT 7.01                                                                                     |
| HANDHELD SOIL PENETROMETER TEST<br>N.T.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROCEDURES SHALL BE USED TO MITIGAPERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU                                                                                                | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>REATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E. WRIGHT<br>[NL<br>GR.=4.<br>INV.=2.<br>OCK 245<br>OT 7.01                                                                                     |
| MV<br>GR.=5<br>MV/=3<br>12'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SH.<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATED<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHOU<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING<br>STEADY DOW<br>PENETR<br>AN OBS | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>REATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>ERR MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E. WRIGHT                                                                                                                                       |
| GR.=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATEL<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHO<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING<br>STEADY DOW                      | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>REATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E. WRIGHT                                                                                                                                       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATEL<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHO<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING<br>STEADY DOW                      | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATEL<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHO<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING<br>STEADY DOW                      | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT<br><i>E. WRIGHT</i><br><i>GR.=4.</i><br><i>INV.=2.</i><br><i>OCK 245</i><br><i>OT 7.01</i><br><i>K</i><br><i>INL</i><br><i>GR.=5.</i> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATEL<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHO<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING<br>STEADY DOW                      | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Е. WRIGHT<br>                                                                                                                                   |
| 1. EXISTING UTILITY INFORMATION SHOWN ON THESE PLANS IS FURNISHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PROCEDURES SHALL BE USED TO MITIGA<br>PERMANENT VEGETATIVE COVER.<br>RESTORATION OF COMPACTED SOILS SHA<br>TO UNDERGROUND UTILITIES (CABLE, IRF<br>JERSEY LICENSED PROFESSIONAL ENGINE<br>SOIL SHOUL<br>SATURATEL<br>SOIL IS<br>TEMPERA<br>DOWNWAR<br>WIRE M<br>OBSTRI<br>ENCOU<br>SOIL SHOU<br>SATURATED. D<br>IS EXCESSIVE<br>FREEZING<br>STEADY DOW                     | ALL BE THROUGH DEEP SCARIFICATION/TILLAGE (6" MINIMUM DEPTH) WHERE THERE IS NO DANGER<br>RIGATION SYSTEMS, ETC.). IN THE ALTERNATIVE, ANOTHER METHOD AS SPECIFIED BY A NEW<br>EER MAY BE SUBSTITUTED SUBJECT TO DISTRICT APPROVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. WRIGHT                                                                                                                                       |



|          | THE SOIL CONSERVATION DISTRICT SHALL BE NOTIFIED 48 HOURS PRIOR TO ANY LAND DISTURBANCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WO                | <u> RK I</u>                   | IOURS AND NOISE CONTROL                                                                                                                                                                                                                                              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.       | THE SOLE CONSERVATION DISTRICT SHALL BE NOTIFIED 48 HOURS PRIOR TO ANY LAND DISTORBANCE.<br>CAPE ATLANTIC CONSERVATION DISTRICT<br>6260 OLD HARDING HIGHWAY<br>MAYS LANDING, NJ 08330<br>(609) 625–3144 OR (609) 625–7000 EXT. 6154<br>FAX: (609) 625–7360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.                | A. N                           | TRUCTION HOURS<br>MONDAY THRU FRIDAY: 7:00AM-6:00F<br>SATURDAY: 8:00AM-4:30PM                                                                                                                                                                                        |
| 2.       | SOIL EROSION AND SEDIMENT CONTROL PRACTICES ON THIS PLAN SHALL BE CONSTRUCTED IN ACCORDANCE WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                | SUNDAY: NO WORK TO BE PERFORMED                                                                                                                                                                                                                                      |
| 3.       | THE CURRENT STANDARDS FOR SOIL EROSION AND SEDIMENT CONTROL IN NEW JERSEY.<br>A COPY OF THE CERTIFIED SOIL EROSION AND SEDIMENT CONTROL PLAN INCLUDING REVISION THEREOF MUST BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.                | NOISE                          | CITY OF ABSECON SHALL BE NOTIFIED                                                                                                                                                                                                                                    |
| 4.       | MAINTAINED ON THE PROJECT SITE DURING CONSTRUCTION.<br>IN NO CASE SHALL THE CERTIFICATION OF THE PROJECT BY THE DISTRICT EXTEND BEYOND THREE AND ONE HALF<br>YEARS OF THE ORIGINAL CERTIFICATION DATE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | etc.<br>Prod                   | WHICH MEET STANDARDS ESTABLISHED<br>UCED.                                                                                                                                                                                                                            |
| ō.<br>ō. | PRIOR TO ANY GRADING OPERATION AND/OR INSTALLATION OF PROPOSED STRUCTURES OR UTILITIES, A NJPDES REQUEST FOR AUTHORIZATION ("RFA") FORM FOR STORMWATER DISCHARGE ASSOCIATED WITH CONSTRUCTION ACTIVITY MUST BE FILED WITH NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION ("NJDEP") IF THE CONSTRUCTION WILL DISTURB MORE THAN ONE ACRE. THE APPLICATION MUST BE COMPLETED BY THE ENTITY RESPONSIBLE FOR MAINTENANCE OF SOIL EROSION CONTROL MEASURES DURING CONSTRUCTION, TYPICALLY THE DEVELOPER OR CONTRACTOR. THE APPLICATION IS A SIMPLE FORM FILED ON THE NJDEP WEBSITE USING PROJECT CODES PROVIDED BY THE SOIL CONSERVATION DISTRICT. IF REQUIRED, THE ENGINEER WILL ASSIST THE DEVELOPER OR CONTRACTOR BY PROVIDING TECHNICAL INFORMATION TO COMPLETE THE APPLICATION. ALL APPLICABLE SOIL EROSION AND SEDIMENT CONTROL PRACTICES SHALL BE IN PLACE PRIOR TO ANY GRADING OPERATION AND/OR INSTALLATION OF PROPOSED STRUCTURES OR UTILITIES. | 1.                | INSTA<br>A. F<br>B. F<br>CLEAF | D CONSTRUCTION SEQUENC<br>ALL TEMPORARY SOIL EROSION AND SE<br>PLACE STABILIZED CONSTRUCTION ENT<br>PLACE SILT FENCE AND INLET PROTEC<br>R AND GRUB CONSTRUCTION AREA.<br>PLACE TOPSOIL STOCKPILE AREAS WHE                                                          |
| 7.       | ANY CHANGES TO THE SITE PLAN WILL REQUIRE THE SUBMISSION OF A REVISED SOIL EROSION AND SEDIMENT CONTROL PLAN TO THE DISTRICT. THE REVISED PLAN MUST BE IN ACCORDANCE WITH THE CURRENT NEW JERSEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                | EXCAVATE BASINS AND INSTALL FILTER                                                                                                                                                                                                                                   |
| 3.       | STANDARDS FOR SOIL EROSION AND SEDIMENT CONTROL.<br>THE CONTRACTOR SHALL PERFORM ALL WORK, FURNISH ALL MATERIALS AND INSTALL ALL MEASURES REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.<br>4.          |                                | H GRADE PAVEMENT AREA BED AND E                                                                                                                                                                                                                                      |
|          | TO REASONABLY CONTROL SOIL EROSION RESULTING FROM CONSTRUCTION OPERATIONS AND PREVENT EXCESSIVE FLOW OF SEDIMENT FROM THE CONSTRUCTION SITE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                | LL TEMPORARY INLET PROTECTION.<br>TRUCT CURBING AND SUBBASE FOR P                                                                                                                                                                                                    |
| 9.<br>10 | THE DISTRICT MAY REQUIRE ADDITIONAL SOIL EROSION MEASURES TO BE INSTALLED, AS DETERMINED BY THE<br>DISTRICT<br>OFFSITE LAND DISTURBANCE MAY REQUIRE ADDITIONAL SOIL EROSION AND SEDIMENT CONTROL MEASURES TO BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                | TRUCT CORBING AND SUBBASE FOR P                                                                                                                                                                                                                                      |
|          | DETERMINED BY THE DISTRICT.<br>STAGED CONSTRUCTION METHODS TO MINIMIZE EXPOSED SURFACES, WHERE APPLICABLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.                |                                | BLISH FINAL GRADING, PERMANENT VEC<br>ASIN BOTTOM.                                                                                                                                                                                                                   |
|          | THE SITE SHALL AT ALL TIMES BE GRADED AND MAINTAINED SUCH THAT STORMWATER RUNOFF IS DIVERTED TO SOIL EROSION AND SEDIMENT CONTROL FACILITIES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                | COMPACTION TESTING IS NOT REQUIRE<br>IINIMUM DEPTH) OR SIMILAR) IS PROPO                                                                                                                                                                                             |
| 13.      | SOIL EROSION AND SEDIMENT CONTROL MEASURES WILL BE INSPECTED AND MAINTAINED ON A REGULAR BASIS<br>AND AFTER EVERY STORM EVENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                | SCAPE AS NECESSARY.                                                                                                                                                                                                                                                  |
| 4.       | APPLICABLE SOIL EROSION AND SEDIMENT CONTROL PRACTICES SHALL BE LEFT IN PLACE UNTIL CONSTRUCTION IS COMPLETED AND/OR THE AREA IS STABILIZED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                | TRUCT FINAL PAVEMENT COURSE.<br>VE SOIL CONSERVATION MEASURES WH                                                                                                                                                                                                     |
| 5.       | NJSA 4:24–39, ET SEQ. REQUIRES THAT NO CERTIFICATE OF OCCUPANCY, TEMPORARY OR PERMANENT, BE ISSUED<br>BEFORE ALL PROVISIONS OF THE CERTIFIED SOIL EROSION AND SEDIMENT CONTROL PLAN HAVE BEEN COMPLIED<br>WITH PERMANENT MEASURES. ALL SITE WORK FOR THE PROJECT MUST BE COMPLETED PRIOR TO THE DISTRICT<br>ISSUING A REPORT OF COMPLIANCE AS A PREREQUISITE TO THE ISSUANCE OF A CERTIFICATE OF OCCUPANCY BY<br>THE MUNICIPALITY. INSPECTION FOR THE CERTIFICATE OF OCCUPANCY MUST BE SCHEDULED AT LEAST A WEEK IN                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.<br><u>TEN</u> | requi                          | EST REPORT OF COMPLIANCE FROM TH<br>CARY AND PERMANENT STAL                                                                                                                                                                                                          |
| 16.      | ADVANCE.<br>NJSA 4:24–39, ET SEQ., REQUIRES THAT UPON PERMANENT SITE STABILIZATION AND COMPLETION OF THE<br>CONTRACTOR SHALL APPLY TO THE DISTRICT FOR FINAL COMPLIANCE INSPECTION TO CHECK THAT ALL THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51A               |                                | SITE PREPARATION                                                                                                                                                                                                                                                     |
|          | PROVISIONS OF THE CERTIFIED SOIL EROSION AND SEDIMENT CONTROL PLAN HAVE BEEN COMPLIED WITH FOR<br>PERMANENT MEASURES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                | I) PREPARE SUBGRADE AS NEEDED<br>TOPSOILING, SEEDBED PREPARATIO                                                                                                                                                                                                      |
| 17.      | ANY CONVEYANCE OF THIS PROJECT, OR PORTION THEREOF, PRIOR TO ITS COMPLETION WILL TRANSFER FULL<br>RESPONSIBILITY FOR COMPLIANCE WITH THE CERTIFIED PLAN TO ANY SUBSEQUENT OWNERS. THE DISTRICT MUST<br>BE NOTIFIED IN WRITING OF ANY CHANGE IN OWNERSHIP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | :                              | 2) INSTALL NEEDED SOIL EROSION<br>STABILIZATION STRUCTURES, CHAN                                                                                                                                                                                                     |
| 18.      | A CRUSHED STONE, TIRE CLEANING PAD WILL BE INSTALLED WHEREVER A CONSTRUCTION ACCESS EXISTS. THE STABILIZED PAD WILL BE INSTALLED ACCORDING TO THE STANDARD FOR STABILIZED CONSTRUCTION ACCESS. THE PAD MUST BE 100 FEET IN LENGTH AND THE STONE MUST BE 1.5 – 4 INCHES IN 5IZE, PLACED 12" THICK AND THE FULL WIDTH OF THE ENTRANCE. THE PAD SHALL BE UNDERLAIN WITH A SUITABLE SYNTHETIC FILTER FABRIC AND MAINTAINED. IF A CONSTRUCTION ACCESS IS TO BE USED AS AN EXIT ONTO A MAJOR HIGHWAY, A THIRTY (30) PAVED TRANSITION AREA SHALL BE INSTALLED. CONSTRUCTION ACCESS ONTO INDIVIDUAL LOTS MUST BE STABILIZED WITH 2.5" CRUSHED STONE OR SUBBASE.                                                                                                                                                                                                                                                                                                |                   |                                | 3) THE SUBGRADE SHALL BE FREE C<br>ESTABLISHMENT OF VEGETATIVE (<br>SUBGRADE SHALL BE DE-COMP<br>TOPSOIL. THE SUBGRADE SHALL<br>EXCESSIVE SOIL COMPACTION. TH<br>DANGER TO UNDERGROUND UTILITI                                                                       |
| 19.      | PAVED ROADWAYS MUST BE KEPT CLEAN AT ALL TIMES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                | 4) THE SUBGRADE SHALL BE TES<br>THRESHOLDS INDICATED FOR THE<br>ONE-HALF ACRE INTERVALS FOR                                                                                                                                                                          |
| 21.      | ALL CATCH BASIN INLETS WILL BE PROTECTED ACCORDING TO THE CERTIFIED PLAN.<br>ALL STORM DRAINAGE OUTLETS SHALL BE STABILIZED AS REQUIRED BEFORE THE DISCHARGE POINT BECOMES<br>OPERATION.<br>NATURAL VEGETATION AND SPECIES SHALL BE RETAINED WHERE SPECIFIED ON THE LANDSCAPE PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                | LEAST TWO TESTS ARE REQUIRED<br>OR LESS ARE EXEMPT FROM TES<br>(1) PROBING WIRE TEST, (2) HAN<br>NUCLEAR DENSITY TEST. THE M<br>15 GAGE WIRE BENDS WHEN INS                                                                                                          |
|          | ADJOINING PROPERTIES SHALL BE PROTECTED FROM EXCAVATION AND FILLING OPERATIONS ON THE CONSTRUCTION SITE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                | PENETROMETER TEST IF THE PL<br>COMPACTION EXCEEDS THE MAX<br>PERFORM EITHER (1) COMPACTIO<br>ADDITIONAL MORE DETAILED TEST                                                                                                                                           |
| 24.      | THE DEVELOPER SHALL BE RESPONSIBLE FOR ANY EROSION OR SEDIMENTATION THAT MAY OCCUR BELOW STORMWATER OUTFALLS OR OFFSITE AS A RESULT OF CONSTRUCTION OF THE PROJECT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                | ONLY THE EXCESSIVELY COMPAC<br>DETAILED TESTING SHALL BE PERF                                                                                                                                                                                                        |
| 25.      | IMMEDIATELY AFTER THE COMPLETION OF STRIPPING AND STOCKPILING OF TOPSOIL, THE STOCKPILE MUST BE<br>STABILIZED ACCORDING TO THE STANDARD FOR TEMPORARY VEGETATIVE COVER. STABILIZE TOPSOIL PILE WITH<br>STRAW MULCH FOR PROTECTION IF THE SEASON DOES NOT PERMIT THE APPLICATION AND ESTABLISHMENT OF<br>TEMPORARY SEEDING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                | STRIPPING AND STOCKPILING<br>I) FIELD EXPLORATION SHOULD BE N<br>SOIL JUSTIFIES STRIPPING.                                                                                                                                                                           |
|          | ALL SOIL STOCKPILES ARE NOT TO BE LOCATED WITHIN FIFTY (50) FEET OF A FLOODPLAIN, SLOPE, ROADWAY OR DRAINAGE FACILITY AND THE BASE MUST BE PROTECTED WITH SEDIMENT BARRIER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                | <ol> <li>STRIPPING SHOULD BE CONFINED</li> <li>WHERE FEASIBLE, LIME MAY BE A</li> </ol>                                                                                                                                                                              |
|          | MAXIMUM SIDE SLOPES OF ALL EXPOSED SURFACES SHALL NOT BE CONSTRUCTED STEEPER THAN 3:1 UNLESS OTHERWISE APPROVED BY THE SOIL CONSERVATION DISTRICT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ,                              | BRING THE SOIL PH TO APPROXIN<br>PREPARATION.                                                                                                                                                                                                                        |
| 28.      | ALL CRITICAL AREAS SUBJECT TO SOIL EROSION WILL RECEIVE A TEMPORARY SEEDING IN COMBINATION WITH<br>STRAW MULCH AT A RATE OF 92 POUNDS PER 1000 SQUARE FEET ACCORDING TO THE NEW JERSEY STANDARDS<br>IMMEDIATELY FOLLOWING ROUGH GRADING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                | 4) A 4 TO 6 INCH STRIPPING DEPTH                                                                                                                                                                                                                                     |
| 29.      | TEMPORARY AND PERMANENT SEEDING MEASURES MUST BE APPLIED ACCORDING TO THE NEW JERSEY STANDARDS,<br>AND MULCHED WITH SALT HAY OR EQUIVALENT AND ANCHORED IN ACCORDANCE WITH THE NEW JERSEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                | 5) STOCKPILES OF TOPSOIL SHOULD<br>OFF-SITE ENVIRONMENTAL DAMAG                                                                                                                                                                                                      |
| 30.      | STANDARDS (I.E. PEG AND TWINE, MULCH NETTING OR LIQUID MULCH BINDER)<br>MAXIMUM SIDE SLOPES OF ALL EXPOSED SURFACES SHALL NOT BE CONSTRUCTED STEEPER THAN 3:1 UNLESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | (                              | <ol> <li>STOCKPILES OF TOPSOIL SHOULD<br/>TEMPORARY STABILIZATION. WEEL</li> </ol>                                                                                                                                                                                   |
| 31.      | OTHERWISE APPROVED BY THE SOIL CONSERVATION DISTRICT.<br>ANY DISTURBED AREA THAT IS TO BE LEFT EXPOSED FOR MORE THAN THIRTY (30) DAYS AND NOT SUBJECT TO<br>CONSTRUCTION TRAFFIC SHALL IMMEDIATELY RECEIVE A TEMPORARY SEEDING AND FERTILIZATION IN ACCORDANCE<br>WITH THE NEW JERSEY STANDARDS AND THEIR RATES SHOULD BE IN ACCORDANCE WITH THE TEMPORARY SEEDING<br>SPECIFICATION. IF THE SEASON PROHIBITS TEMPORARY SEEDING, THE DISTURBED AREAS WILL BE MULCHED WITH<br>SALT HAY OR THE EQUIVALENT AND ANCHORED IN ACCORDANCE WITH THE NEW JERSEY STANDARDS (I.E. PEG<br>AND TWINE, MULCH NETTING OR LIQUID MULCH BINDER).                                                                                                                                                                                                                                                                                                                         |                   | (<br>F<br>(<br>E<br>I<br>N     | TOPSOILING – THE CONTRACTOR SHA<br>COVER BY APPLYING TOPSOIL TO A<br>FREE OF DEBRIS, OBJECTIONABLE WE<br>CHEMICAL OR PHYSICAL CONDITION TH<br>BE EXCESSIVE (CONDUCTIVITY LESS TH<br>DESICATE SEEDLINGS AND ADVERSELY<br>MINIMUM ORGANIC MATTER CONTENT<br>ADDITIVES. |
| 32.      | MULCHING IS REQUIRED ON ALL SEEDED AREAS TO ENSURE AGAINST SOIL EROSION BEFORE GRASS IS ESTABLISHED TO PROMOTE EARLIER VEGETATION COVER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | -                              | TOPSOIL SUBSTITUTES MAY BE UTILIZE                                                                                                                                                                                                                                   |
|          | IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER TO PROVIDE CONFIRMATION OF LIME, FERTILIZER AND SEED APPLICATION AND RATES OF APPLICATION AT THE REQUEST OF THE SOIL CONSERVATION DISTRICT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | (<br>5<br>F                    | VEGETATION. TOPSOIL SUBSTITUTE IS<br>CLAY, ORGANIC MATTER, FERTILIZER<br>SUBSTITUTE MATERIALS SHALL MEET<br>PERFORMED TO DETERMINE THE COMP<br>PH LEVEL.                                                                                                             |
| 35       | STOCK OF THE AMERICAN ASSOCIATION OF THE NURSERYMEN AND IN ACCORDANCE WITH THE NEW JERSEY<br>STANDARDS.<br>ALL DEWATERING OPERATIONS MUST DISCHARGE DIRECTLY INTO A SEDIMENT FILTER AREA. THE SEDIMENT FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | (                              | SEEDBED PREPARATION – APPLY LIM<br>OFFERED BY RUTGERS UNIVERSITY SO                                                                                                                                                                                                  |
|          | SHOULD BE COMPOSED OF A SUITABLE FILTER FABRIC. (SEE DETAIL) THE SEDIMENT FILTER MUST BE CAPABLE OF FILTERING THE SEDIMENT AND BE PLACED SO AS NOT TO CAUSE EROSION OF THE DOWNSTREAM AREA. FIELD PLACEMENT AND USE OF THE STRUCTURE MUST BE APPROVED BY THE DISTRICT PRIOR TO COMMENCEMENT OF DEWATERING ACTIVITIES. THE WATER QUALITY BASIN MUST BE DEWATERED TO NORMAL POOL WITHIN 10 DAYS OF THE DESIGN STORM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | L<br>E                         | THE LOCAL COOPERATIVE EXTENSION<br>VARIABLE SITES, OR WHERE TIMING<br>IMESTONE AT THE RATE OF 90 P<br>EQUIVALENT AT THE RATE OF 11 POU<br>ACRE OR EQUIVALENT OF SLOW RE<br>IMESTONE (EQUIVALENT TO 50 PERCE                                                          |
| 36.      | DUST IS TO BE CONTROLLED BY AN APPROVED METHOD ACCORDING TO THE NEW JERSEY STANDARDS AND INCLUDE WATERING WITH A SOLUTION OF CALCIUM CHLORIDE AND WATER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | -                              | SOIL TEXTURE                                                                                                                                                                                                                                                         |
| 37.      | METHODS FOR THE MANAGEMENT OF HIGH ACID PRODUCING SOILS SHALL BE IN ACCORDANCE WITH THE NEW JERSEY STANDARDS. HIGH ACID PRODUCING SOILS ARE THOSE FOUND TO CONTAIN IRON SULFIDES OR HAVE A PH OF 4 OR LESS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | e<br>L                         | CLAY, CLAY LOAM & HIGH ORGANIC SO<br>SANDY LOAM, LOAM & SILT LOAM<br>LOAMY SAND, SAND                                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                | THE LIME AND FERTILIZER SHALL THEN<br>SPRINGTOOTH HARROW OR OTHER SUIT                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 7<br>1<br>7                    | TEMPORARY VEGETATION SEEDING –<br>PERIODS OF TWO TO SIX MONTHS WH<br>NOT SCHEDULED FOR PERMANENT S<br>RYEGRASS APPLIED AT THE RATE OF<br>LOVEGRASS AT 5 LBS. PER ACRE DUR                                                                                            |
|          | 1. EXISTING UTILITY INFORMATION SHOWN ON THESE PLANS IS FURNISHED BY<br>THE UTILITY COMPANIES AND/OR THE SURVEYOR AND THE ACCURACY<br>THEREOF IS NOT THE RESPONSIBILITY OF SCIULLO ENGINEERING SERVICES,<br>LLC. IT IS THE RESPONSIBILITY OF THE OWNERS AND/OR CONTRACTOR<br>TO CALL 1-800-272-1000 FOR FIELD LOCATION OF UNDERGROUND<br>UTILITIES PRIOR TO CONSTRUCTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                | PERMANENT VEGETATION SEEDING — I<br>AT THE SITE, THE CONTRACTOR SHAL                                                                                                                                                                                                 |

Know what's **below**. Call before you dig.

2. THESE PLANS ARE NOT FOR CONSTRUCTION UNTIL "ISSUED FOR CONSTRUCTION" APPEARS IN THE TITLEBLOCK.

# DISE CONTROL

Y: 7:00AM-6:00PM

SHALL BE ADHERED TO UNLESS DUE TO WEATHER AND OR SCHEDULE CHANGES. THE HALL BE NOTIFIED OF ALL TIME CHANGES.

NT TO BE UTILIZED SHALL BE STANDARD EARTH MOVING EQUIPMENT, CRANES, MIXERS, ARDS ESTABLISHED BY STATE AND FEDERAL LAWS REGARDING THE AMOUNT OF NOISE

# ION SEQUENCE

. EROSION AND SEDIMENT CONTROL MEASURES. ONSTRUCTION ENTRANCE WHERE INDICATED ON PLAN. ND INLET PROTECTION FOR EXISTING INLETS WHERE INDICATED ON PLAN.

- CKPILE AREAS WHERE INDICATED ON PLANS.
- ND INSTALL FILTER FABRIC IN BOTTOM.
- AREA BED AND BUILDING PADS
- ITILITIES AND COMMENCE BUILDING CONSTRUCTION
- SUBBASE FOR PAVEMENT AREAS.
- PERMANENT VEGETATIVE COVER AND FINAL BASIN CLEAN-UP. ADD K5 SAND MATERIAL

#### S IS NOT REQUIRED IF/WHEN SUBSOIL COMPACTION REMEDIATION (SCARIFICATION/TILLAGE SIMILAR) IS PROPOSED AS PART OF THE SEQUENCE OF CONSTRUCTION.

ION MEASURES WHEN CONSTRUCTION IS COMPLETED AND/OR SITE IS STABILIZED. IPLIANCE FROM THE SOIL CONSERVATION DISTRICT.

# MANENT STABILIZATION

E ACCOMPLISHED BY THE FOLLOWING METHODS AND MATERIALS:

RADE AS NEEDED AND FEASIBLE TO ALLOW USE OF CONVENTIONAL EQUIPMENT FOR DBED PREPARATION, SEEDING, MULCH APPLICATION, AND MULCH ANCHORING.

SOIL EROSION CONTROL PRACTICES OR MEASURES SUCH AS DIVERSIONS, GRADE TRUCTURES, CHANNEL STABILIZATION MEASURES, SEDIMENT BASINS, AND WATERWAYS.

SHALL BE FREE OF EXCESSIVE COMPACTION TO A DEPTH OF 6 INCHES TO ENHANCE THE OF VEGETATIVE COVER. IF TESTING INDICATES EXCESSIVE SUBGRADE COMPACTION, THE LL BE DE-COMPACTED TO A DEPTH OF 6 INCHES PRIOR TO THE APPLICATION OF SUBGRADE SHALL BE SCARIFIED TO A DEPTH OF 6" TO 12" WHERE THERE HAS BEEN COMPACTION. THIS PRACTICE IS PERMISSIBLE ONLY IN AREAS WHERE THERE IS NO DERGROUND UTILITIES (CABLES, IRRIGATION SYSTEMS, ETC.).

SHALL BE TESTED TO DETERMINE WHETHER COMPACTION EXCEEDS THE MAXIMUM DICATED FOR THE SIMPLIFIED TESTING METHODS. THE TEST SHALL BE PREFORMED AT INTERVALS FOR SITES ONE ACRE OR MORE. FOR SITES LESS THAN ONE ACRE, AT IS ARE REQUIRED REGARDLESS OF THE SIZE. CONTIGUOUS AREAS OF 500 SQUARE FEET EXEMPT FROM TESTING OR REMEDIATION. COMPACTION TESTING METHODS SHALL INCLUDE RE TEST, (2) HAND-HELD PENETROMETER TEST, (3) TUBE BULK DENSITY TEST, OR (4) TY TEST. THE MAXIMUM THRESHOLD FOR THE PROBING WIRE TEST IS DETERMINED IF / BENDS WHEN INSERTED INTO THE SUBGRADE TO A DEPTH OF 6 INCHES OR FOR THE TEST IF THE PRESSURE AT A DEPTH OF 6 INCHES IS 300 PSI OR MORE. XCEEDS THE MAXIMUM THRESHOLD, THE CONTRACTOR SHALL HAVE THE OPTION TO (1) COMPACTION MITIGATION OVER THE ENTIRE MITIGATION AREA, OR (2) PERFORM E DETAILED TESTING TO ESTABLISH THE LIMITS OF EXCESSIVE COMPACTION WHEREUPON ESSIVELY COMPACTED AREAS WOULD REQUIRE COMPACTION MITIGATION. ADDITIONAL NG SHALL BE PERFORMED BY A TRAINED, LICENSED PROFESSIONAL.

TION SHOULD BE MADE TO DETERMINE WHETHER QUANTITY AND/OR QUALITY OF SURFACE

JLD BE CONFINED TO THE IMMEDIATE CONSTRUCTION AREA.

LIME MAY BE APPLIED BEFORE STRIPPING AT A RATE DETERMINED BY SOIL TEST TO . PH TO APPROXIMATELY 6.5. IN LIEU OF SOIL TEST, SEE LINE RATE GUIDE IN SEEDBED

STRIPPING DEPTH IS COMMON, BUT MAY VARY DEPENDING ON THE PARTICULAR SOIL.

TOPSOIL SHOULD BE SITUATED SO AS NOT TO OBSTRUCT NATURAL DRAINAGE OR CAUSE ONMENTAL DAMAGE.

TOPSOIL SHOULD BE VEGETATED IN ACCORDANCE WITH STANDARDS FOR PERMANENT OR ABILIZATION. WEEDS SHOULD NOT BE ALLOWED TO GROW ON STOCKPILES.

CONTRACTOR SHALL PREPARE AREAS TO BE STABILIZED WITH PERMANENT VEGETATIVE TOPSOIL TO A UNIFORM DEPTH OF 6 INCHED. TOPSOIL SHOULD BE FRIABLE, LOAMY, 3JECTIONABLE WEEDS AND STONES, AND CONTAIN NO TOXIC SUBSTANCE OR ADVERSE CAL CONDITION THAT MAY BE HARMFUL TO PLANT GROWTH. SOLUBLE SALTS SHOULD NOT DUCTIVITY LESS THAN 0.5 MILLIMHOS PER CENTIMETER. MORE THAN 0.5 MILLIMHOS MAY AND ADVERSELY IMPACT GROWTH ). TOPSOIL HAULED IN FROM OFFSITE SHOULD HAVE A MATTER CONTENT OF 2.75 PERCENT. ORGANIC MATTER CONTENT MAY BE RAISED BY

MAY BE UTILIZED ON SITES WITH INSUFFICIENT TOPSOIL FOR ESTABLISHING PERMANENT SUBSTITUTE IS A SOIL MATERIAL WHICH MAY HAVE BEEN AMENDED WITH SAND, SILT, TTER, FERTILIZER OR LIME AND HAS THE APPEARANCE OF TOPSOIL. ALL TOPSOIL. ALS SHALL MEET THE REQUIREMENTS OF TOPSOIL NOTED ABOVE. SOIL TESTS SHALL BE ERMINE THE COMPONENTS OF SAND, SILT, CLAY, ORGANIC MATTER, SOLUBLE SALTS AND

ION – APPLY LIMESTONE AND FERTILIZER ACCORDING TO SOIL TESTS SUCH AS THOSE S UNIVERSITY SOIL TESTING LABORATORY. SOIL SAMPLE MAILERS ARE AVAILABLE FROM ATIVE EXTENSION SERVICE OFFICE. IF SOIL TESTING IS NOT FEASIBLE ON SMALL OR WHERE TIMING IS CRITICAL. THE CONTRACTOR MAY APPLY PULVERIZED DOLOMITIC RATE OF 90 POUNDS PER 1000 SQUARE FEET. APPLY 10-20-10 FERTILIZER OR RATE OF 11 POUNDS PER 1000 SQUARE FEET. IN ADDITION, 300 POUNDS 38-0-0 PER INT OF SLOW RELEASE NITROGEN MAY BE USED IN LIEU OF TOPDRESSING. APPLY ENT TO 50 PERCENT CALCIUM PLUS MAGNESIUM OXIDES) AS FOLLOWS:

|      | Ī        | <u>'ONS</u> | / <u>AC</u> | <u>re</u> |    |   |       |    |    |   |
|------|----------|-------------|-------------|-----------|----|---|-------|----|----|---|
| SOIL |          |             | 4           |           |    |   |       |    |    |   |
|      |          |             | 3           |           |    |   |       |    |    |   |
|      |          | 2           |             |           |    |   |       |    |    |   |
| N BE | "WORKED" | INTO        | THE         | SOIL      | TO | A | DEPTH | OF | 4" | W |

LIZER SHALL THEN WITH A DISC, W OR OTHER SUITABLE EQUIPMENT.

TION SEEDING - ESTABLISH TEMPORARY VEGETATIVE COVER ON SOILS EXPOSED FOR ) SIX MONTHS WHICH ARE NOT BEING GRADED. NOT UNDER ACTIVE CONSTRUCTION OR DR PERMANENT SEEDING WITHIN 60 DAYS. SEEDING SHALL CONSIST OF PERENNIAL AT THE RATE OF 1 POUND PER 1000 SQUARE FEET DURING COOL SEASON OR WEEPING E. PER ACRE DURING WARM SEASON PLANTING.

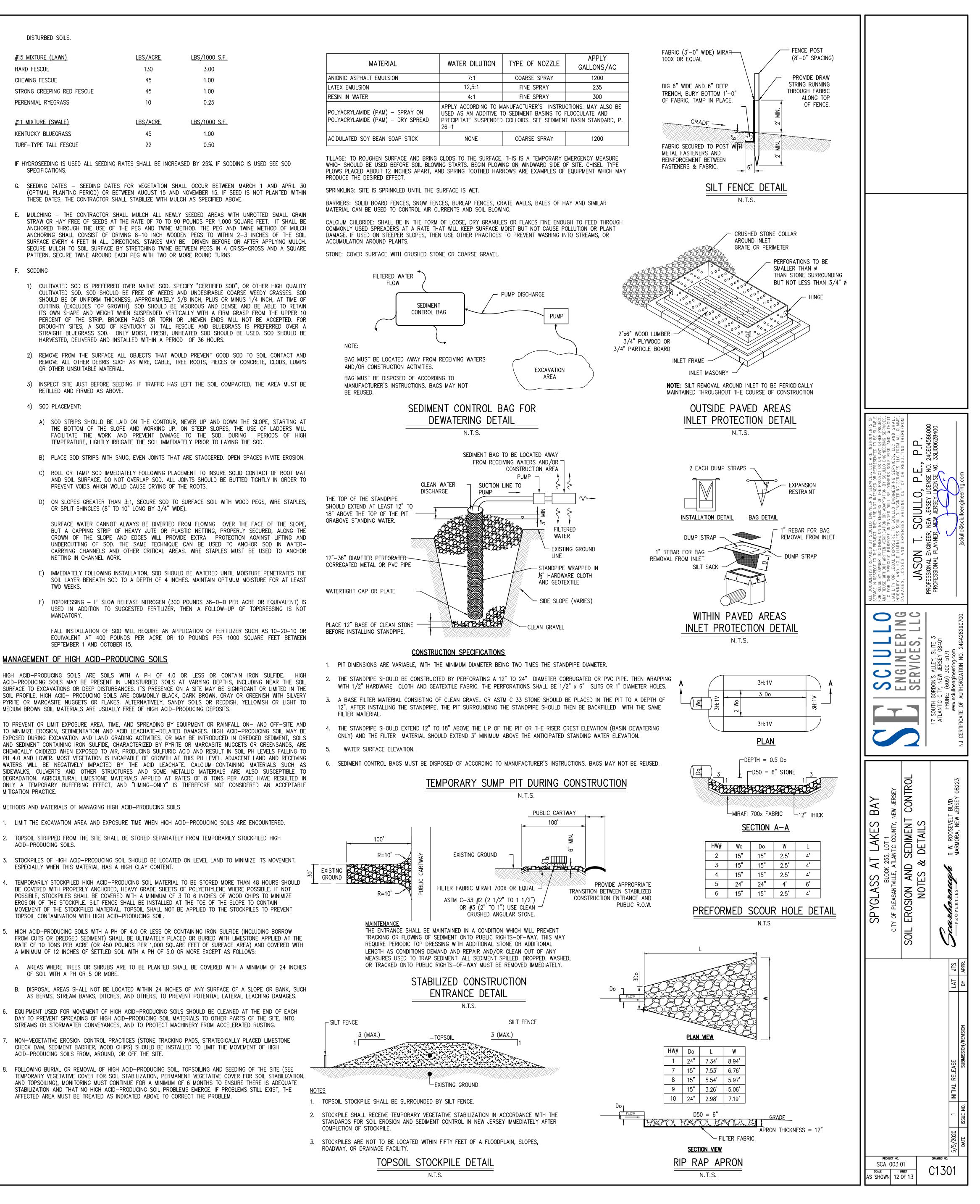
TION SEEDING - IMMEDIATELY FOLLOWING THE COMPLETION OF CONSTRUCTION ACTIVITIES CONTRACTOR SHALL STABILIZE WITH PERMANENT VEGETATIVE COVER, ALL EXPOSED AND DISTURBED SOILS.

| <u>#15 MIXTURE (LAWN)</u>  | LBS/ACRE | LBS/1000 S.F.        |
|----------------------------|----------|----------------------|
| HARD FESCUE                | 130      | 3.00                 |
| CHEWING FESCUE             | 45       | 1.00                 |
| STRONG CREEPING RED FESCUE | 45       | 1.00                 |
| PERENNIAL RYEGRASS         | 10       | 0.25                 |
|                            |          |                      |
| <u>#11 MIXTURE (SWALE)</u> | LBS/ACRE | <u>LBS/1000 S.F.</u> |
| KENTUCKY BLUEGRASS         | 45       | 1.00                 |
| TURF-TYPE TALL FESCUE      | 22       | 0.50                 |

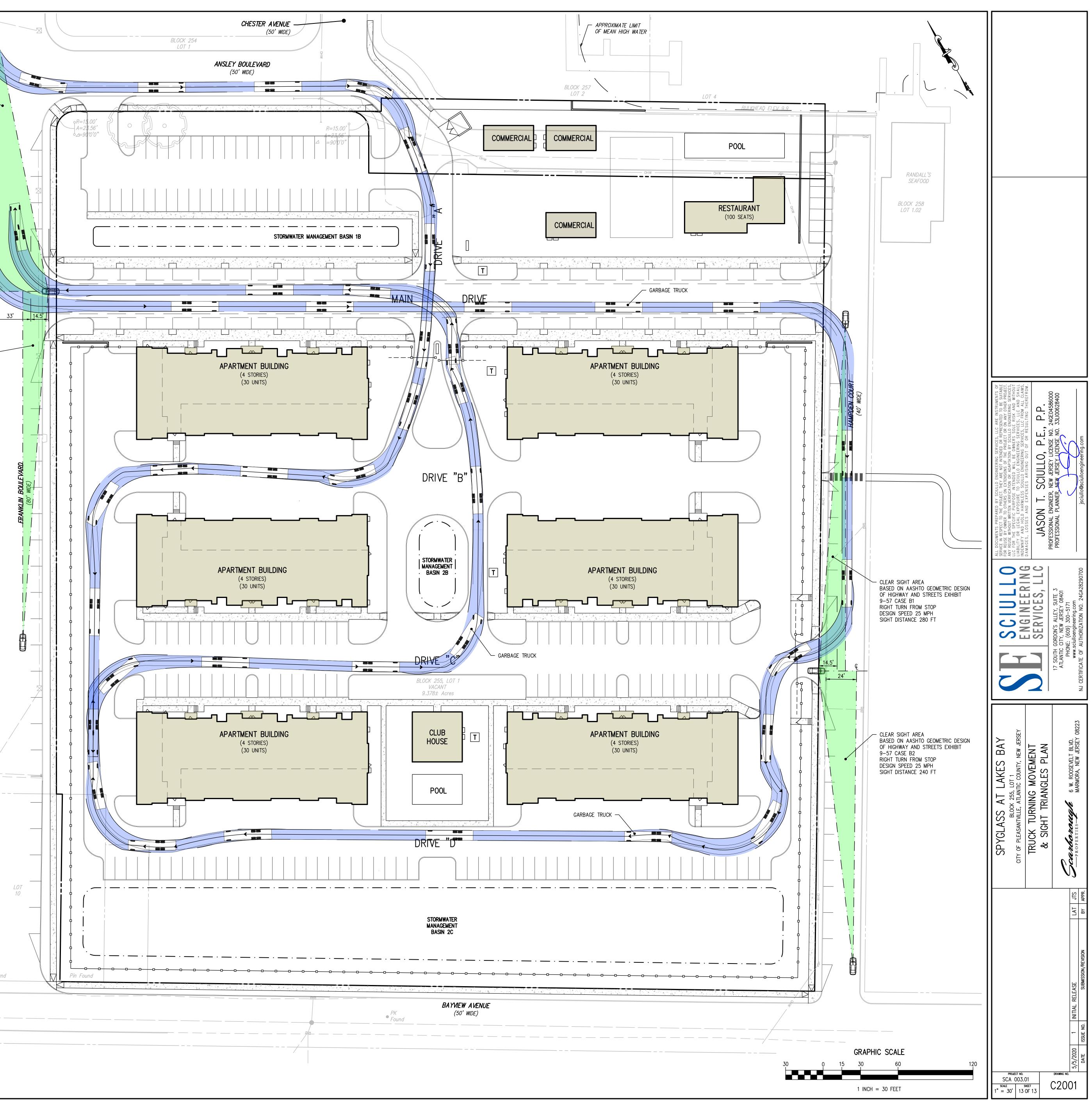
IF HYDROSEEDING IS USED ALL SEEDING RATES SHALL BE INCREASED BY 25%. IF SODDING IS USED SEE SOD SPECIFICATIONS.

- G. SEEDING DATES SEEDING DATES FOR VEGETATION SHALL OCCUR BETWEEN MARCH 1 AND APRIL 30 (OPTIMAL PLANTING PERIOD) OR BETWEEN AUGUST 15 AND NOVEMBER 15. IF SEED IS NOT PLANTED WITHIN THESE DATES, THE CONTRACTOR SHALL STABILIZE WITH MULCH AS SPECIFIED ABOVE.
- MULCHING THE CONTRACTOR SHALL MULCH ALL NEWLY SEEDED AREAS WITH UNROTTED SMALL GRAIN STRAW OR HAY FREE OF SEEDS AT THE RATE OF 70 TO 90 POUNDS PER 1,000 SQUARE FEET. IT SHALL BE ANCHORED THROUGH THE USE OF THE PEG AND TWINE METHOD. THE PEG AND TWINE METHOD OF MULCH ANCHORING SHALL CONSIST OF DRIVING 8-10 INCH WOODEN PEGS TO WITHIN 2-3 INCHES OF THE SOIL SURFACE EVERY 4 FEET IN ALL DIRECTIONS. STAKES MAY BE DRIVEN BEFORE OR AFTER APPLYING MULCH. SECURE MULCH TO SOIL SURFACE BY STRETCHING TWINE BETWEEN PEGS IN A CRISS-CROSS AND A SQUARE
- PATTERN. SECURE TWINE AROUND EACH PEG WITH TWO OR MORE ROUND TURNS. F. SODDING
- 1) CULTIVATED SOD IS PREFERRED OVER NATIVE SOD. SPECIFY "CERTIFIED SOD". OR OTHER HIGH QUALITY CULTIVATED SOD. SOD SHOULD BE FREE OF WEEDS AND UNDESIRABLE COARSE WEEDY GRASSES. SOD SHOULD BE OF UNIFORM THICKNESS. APPROXIMATELY 5/8 INCH. PLUS OR MINUS 1/4 INCH. AT TIME OF CUTTING. (EXCLUDES TOP GROWTH). SOD SHOULD BE VIGOROUS AND DENSE AND BE ABLE TO RETAIN ITS OWN SHAPE AND WEIGHT WHEN SUSPENDED VERTICALLY WITH A FIRM GRASP FROM THE UPPER 10 PERCENT OF THE STRIP. BROKEN PADS OR TORN OR UNEVEN ENDS WILL NOT BE ACCEPTED. FOR DROUGHTY SITES. A SOD OF KENTUCKY 31 TALL FESCUE AND BLUEGRASS IS PREFERRED OVER A STRAIGHT BLUEGRASS SOD. ONLY MOIST, FRESH, UNHEATED SOD SHOULD BE USED. SOD SHOULD BE HARVESTED, DELIVERED AND INSTALLED WITHIN A PERIOD OF 36 HOURS.
- 2) REMOVE FROM THE SURFACE ALL OBJECTS THAT WOULD PREVENT GOOD SOD TO SOIL CONTACT AND REMOVE ALL OTHER DEBRIS SUCH AS WIRE, CABLE, TREE ROOTS, PIECES OF CONCRETE, CLODS, LUMPS OR OTHER UNSUITABLE MATERIAL.
- 3) INSPECT SITE JUST BEFORE SEEDING. IF TRAFFIC HAS LEFT THE SOIL COMPACTED, THE AREA MUST BE RETILLED AND FIRMED AS ABOVE.
- 4) SOD PLACEMENT:
- A) SOD STRIPS SHOULD BE LAID ON THE CONTOUR, NEVER UP AND DOWN THE SLOPE, STARTING AT THE BOTTOM OF THE SLOPE AND WORKING UP. ON STEEP SLOPES, THE USE OF LADDERS WILL FACILITATE THE WORK AND PREVENT DAMAGE TO THE SOD. DURING PERIODS OF HIGH TEMPERATURE, LIGHTLY IRRIGATE THE SOIL IMMEDIATELY PRIOR TO LAYING THE SOD.
- B) PLACE SOD STRIPS WITH SNUG, EVEN JOINTS THAT ARE STAGGERED. OPEN SPACES INVITE EROSION.
- C) ROLL OR TAMP SOD IMMEDIATELY FOLLOWING PLACEMENT TO INSURE SOLID CONTACT OF ROOT MAT AND SOIL SURFACE. DO NOT OVERLAP SOD. ALL JOINTS SHOULD BE BUTTED TIGHTLY IN ORDER TO PREVENT VOIDS WHICH WOULD CAUSE DRYING OF THE ROOTS.
- D) ON SLOPES GREATER THAN 3:1, SECURE SOD TO SURFACE SOIL WITH WOOD PEGS, WIRE STAPLES, OR SPLIT SHINGLES (8" TO 10" LONG BY 3/4" WIDE).
- SURFACE WATER CANNOT ALWAYS BE DIVERTED FROM FLOWING OVER THE FACE OF THE SLOPE BUT A CAPPING STRIP OF HEAVY JUTE OR PLASTIC NETTING, PROPERLY SECURED, ALONG THE CROWN OF THE SLOPE AND EDGES WILL PROVIDE EXTRA PROTECTION AGAINST LIFTING AND UNDERCUTTING OF SOD. THE SAME TECHNIQUE CAN BE USED TO ANCHOR SOD IN WATER-CARRYING CHANNELS AND OTHER CRITICAL AREAS. WIRE STAPLES MUST BE USED TO ANCHOR NETTING IN CHANNEL WORK.
- E) IMMEDIATELY FOLLOWING INSTALLATION, SOD SHOULD BE WATERED UNTIL MOISTURE PENETRATES THE SOIL LAYER BENEATH SOD TO A DEPTH OF 4 INCHES. MAINTAIN OPTIMUM MOISTURE FOR AT LEAST TWO WEEKS
- F) TOPDRESSING IF SLOW RELEASE NITROGEN (300 POUNDS 38-0-0 PER ACRE OR EQUIVALENT) IS USED IN ADDITION TO SUGGESTED FERTILIZER, THEN A FOLLOW-UP OF TOPDRESSING IS NOT MANDATORY.

FALL INSTALLATION OF SOD WILL REQUIRE AN APPLICATION OF FERTILIZER SUCH AS 10-20-10 OR EQUIVALENT AT 400 POUNDS PER ACRE OR 10 POUNDS PER 1000 SQUARE FEET BETWEEN SEPTEMBER 1 AND OCTOBER 15.


MANAGEMENT OF HIGH ACID-PRODUCING SOILS

ACID-PRODUCING SOILS MAY BE PRESENT IN UNDISTURBED SOILS AT VARYING DEPTHS, INCLUDING NEAR THE SOIL SURFACE TO EXCAVATIONS OR DEEP DISTURBANCES. ITS PRESENCE ON A SITE MAY BE SIGNIFICANT OR LIMITED IN THE SOIL PROFILE. HIGH ACID- PRODUCING SOILS ARE COMMONLY BLACK, DARK BROWN, GRAY OR GREENISH WITH SILVERY PYRITE OR MARCASITE NUGGETS OR FLAKES. ALTERNATIVELY, SANDY SOILS OR REDDISH, YELLOWISH OR LIGHT TO MEDIUM BROWN SOIL MATERIALS ARE USUALLY FREE OF HIGH ACID-PRODUCING DEPOSITS.

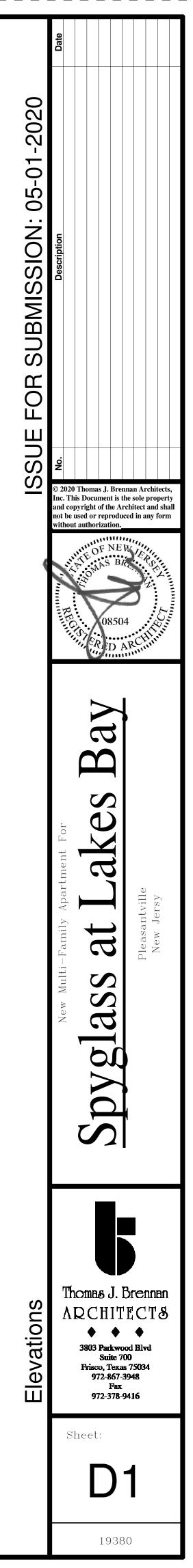

TO PREVENT OR LIMIT EXPOSURE AREA, TIME, AND SPREADING BY EQUIPMENT OR RAINFALL ON- AND OFF-SITE AND O MINIMIZE EROSION, SEDIMENTATION AND ACID LEACHATE-RELATED DAMAGES. HIGH ACID-PRODUCING SOIL MAY BE EXPOSED DURING EXCAVATION AND LAND GRADING ACTIVITIES, OR MAY BE INTRODUCED IN DREDGED SEDIMENT, SOILS AND SEDIMENT CONTAINING IRON SULFIDE, CHARACTERIZED BY PYRITE OR MARCASITE NUGGETS OR GREENSANDS, ARE CHEMICALLY OXIDIZED WHEN EXPOSED TO AIR, PRODUCING SULFURIC ACID AND RESULT IN SOIL PH LEVELS FALLING TO PH 4.0 AND LOWER. MOST VEGETATION IS INCAPABLE OF GROWTH AT THIS PH LEVEL. ADJACENT LAND AND RECEIVING WATERS WILL BE NEGATIVELY IMPACTED BY THE ACID LEACHATE. CALCIUM-CONTAINING MATERIALS SUCH AS SIDEWALKS, CULVERTS AND OTHER STRUCTURES AND SOME METALLIC MATERIALS ARE ALSO SUSCEPTIBLE TO DEGRADATION. AGRICULTURAL LIMESTONE MATERIALS APPLIED AT RATES OF 8 TONS PER ACRE HAVE RESULTED IN ONLY A TEMPORARY BUFFERING EFFECT, AND "LIMING-ONLY" IS THEREFORE NOT CONSIDERED AN ACCEPTABLE MITIGATION PRACTICE.

METHODS AND MATERIALS OF MANAGING HIGH ACID-PRODUCING SOILS

- LIMIT THE EXCAVATION AREA AND EXPOSURE TIME WHEN HIGH ACID-PRODUCING SOILS ARE ENCOUNTERED.
- TOPSOIL STRIPPED FROM THE SITE SHALL BE STORED SEPARATELY FROM TEMPORARILY STOCKPILED HIGH ACID-PRODUCING SOILS.
- STOCKPILES OF HIGH ACID-PRODUCING SOIL SHOULD BE LOCATED ON LEVEL LAND TO MINIMIZE ITS MOVEMENT, ESPECIALLY WHEN THIS MATERIAL HAS A HIGH CLAY CONTENT.
- TEMPORARILY STOCKPILED HIGH ACID-PRODUCING SOIL MATERIAL TO BE STORED MORE THAN 48 HOURS SHOULD BE COVERED WITH PROPERLY ANCHORED, HEAVY GRADE SHEETS OF POLYETHYLENE WHERE POSSIBLE. IF NOT POSSIBLE, STOCKPILES SHALL BE COVERED WITH A MINIMUM OF 3 TO 6 INCHES OF WOOD CHIPS TO MINIMIZE EROSION OF THE STOCKPILE. SILT FENCE SHALL BE INSTALLED AT THE TOE OF THE SLOPE TO CONTAIN MOVEMENT OF THE STOCKPILED MATERIAL. TOPSOIL SHALL NOT BE APPLIED TO THE STOCKPILES TO PREVENT TOPSOIL CONTAMINATION WITH HIGH ACID-PRODUCING SOIL.
- HIGH ACID-PRODUCING SOILS WITH A PH OF 4.0 OR LESS OR CONTAINING IRON SULFIDE (INCLUDING BORROW FROM CUTS OR DREDGED SEDIMENT) SHALL BE ULTIMATELY PLACED OR BURIED WITH LIMESTONE APPLIED AT THE RATE OF 10 TONS PER ACRE (OR 450 POUNDS PER 1.000 SQUARE FEET OF SURFACE AREA) AND COVERED WITH A MINIMUM OF 12 INCHES OF SETTLED SOIL WITH A PH OF 5.0 OR MORE EXCEPT AS FOLLOWS:
- A. AREAS WHERE TREES OR SHRUBS ARE TO BE PLANTED SHALL BE COVERED WITH A MINIMUM OF 24 INCHES OF SOIL WITH A PH OR 5 OR MORE.
- B. DISPOSAL AREAS SHALL NOT BE LOCATED WITHIN 24 INCHES OF ANY SURFACE OF A SLOPE OR BANK, SUCH AS BERMS, STREAM BANKS, DITCHES, AND OTHERS, TO PREVENT POTENTIAL LATERAL LEACHING DAMAGES.
- 6. EQUIPMENT USED FOR MOVEMENT OF HIGH ACID-PRODUCING SOILS SHOULD BE CLEANED AT THE END OF EACH DAY TO PREVENT SPREADING OF HIGH ACID-PRODUCING SOIL MATERIALS TO OTHER PARTS OF THE SITE, INTO STREAMS OR STORMWATER CONVEYANCES, AND TO PROTECT MACHINERY FROM ACCELERATED RUSTING.
- NON-VEGETATIVE EROSION CONTROL PRACTICES (STONE TRACKING PADS, STRATEGICALLY PLACED LIMESTONE CHECK DAM, SEDIMENT BARRIER, WOOD CHIPS) SHOULD BE INSTALLED TO LIMIT THE MOVEMENT OF HIGH ACID-PRODUCING SOILS FROM, AROUND, OR OFF THE SITE.
- FOLLOWING BURIAL OR REMOVAL OF HIGH ACID-PRODUCING SOIL, TOPSOILING AND SEEDING OF THE SITE (SEE TEMPORARY VEGETATIVE COVER FOR SOIL STABILIZATION. PERMANENT VEGETATIVE COVER FOR SOIL STABILIZATION. AND TOPSOILING). MONITORING MUST CONTINUE FOR A MINIMUM OF 6 MONTHS TO ENSURE THERE IS ADEQUATE STABILIZATION AND THAT NO HIGH ACID-PRODUCING SOIL PROBLEMS EMERGE. IF PROBLEMS STILL EXIST, THE AFFECTED AREA MUST BE TREATED AS INDICATED ABOVE TO CORRECT THE PROBLEM.



| <image/> <image/> <section-header><section-header><text></text></section-header></section-header>                                                                                                                                                                                                                                                                                              | BLOCK 250<br>LOT 3<br>CLEAR SIGHT AREA<br>BASED ON AASHTO GEOMETRIC DESIGN OF HIGHWAY<br>AND STREETS EXHIBIT 9–57 CASE B2<br>RIGHT TURN FROM STOP<br>DESIGN SPEED 25 MPH<br>SIGHT DISTANCE 240 FT<br>ANSLEY<br>BOULEVARD |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                | BLOCK 251<br>LOT 1<br>CLEAR SIGHT AREA<br>BASED ON AASHTO GEOMETRIC DESIGN OF HIGHWAY<br>AND STREETS EXHIBIT 9–57 CASE B1<br>RIGHT TURN FROM STOP<br>DESIGN SPEED 25 MPH<br>SIGHT DISTANCE 280 FT                        |
|                                                                                                                                                                                                                                                                                                                                                                                                | LOT<br>1                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                | BLOCK 248<br>LOT 2                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                | E. WRIGHT STREET                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                | LOT<br>8                                                                                                                                                                                                                 |
| <ol> <li>EXISTING UTILITY INFORMATION SHOWN ON THESE P<br/>THE UTILITY COMPANIES AND/OR THE SURVEYOR<br/>THEREOF IS NOT THE RESPONSIBILITY OF SCIULLO<br/>LLC. IT IS THE RESPONSIBILITY OF THE OWNERS<br/>TO CALL 1-800-272-1000 FOR FIELD LOCATION<br/>UTILITIES PRIOR TO CONSTRUCTION.</li> <li>THESE PLANS ARE NOT FOR CONSTRUCTION<br/>CONSTRUCTION" APPEARS IN THE TITLEBLOCK.</li> </ol> | PLANS IS FURNISHED BY<br>R AND THE ACCURACY<br>ENGINEERING SERVICES,<br>S AND/OR CONTRACTOR<br>ON OF UNDERGROUND                                                                                                         |

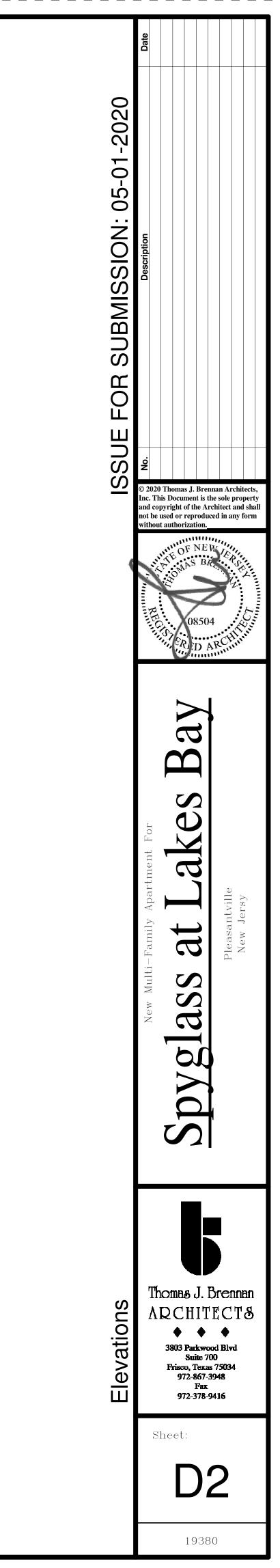


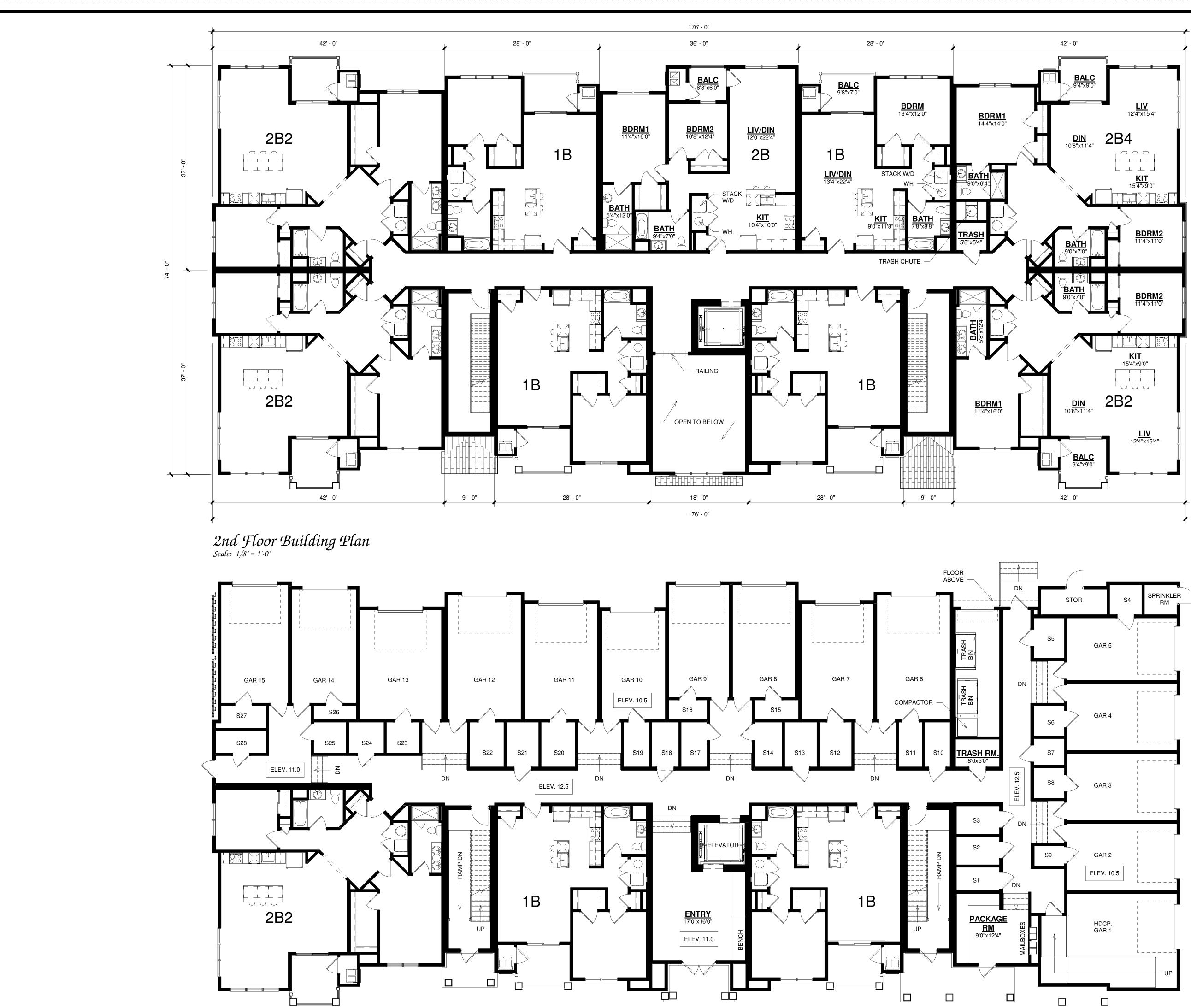



Front Elevation Scale: 1/8" = 1'-0"



Left Elevation
Scale: 1/8" = 1'-0"



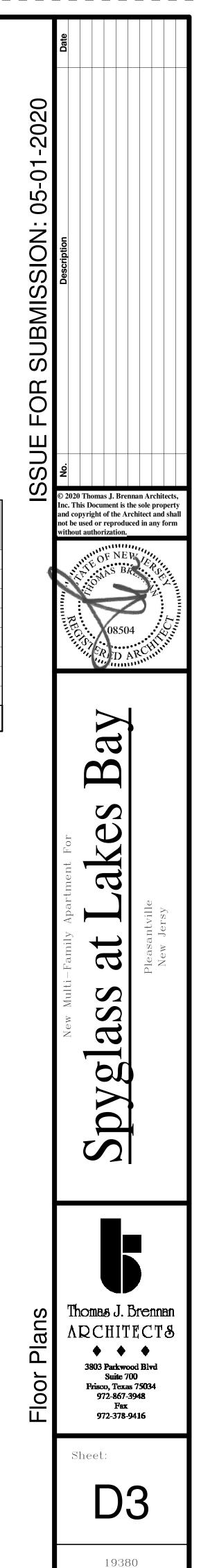



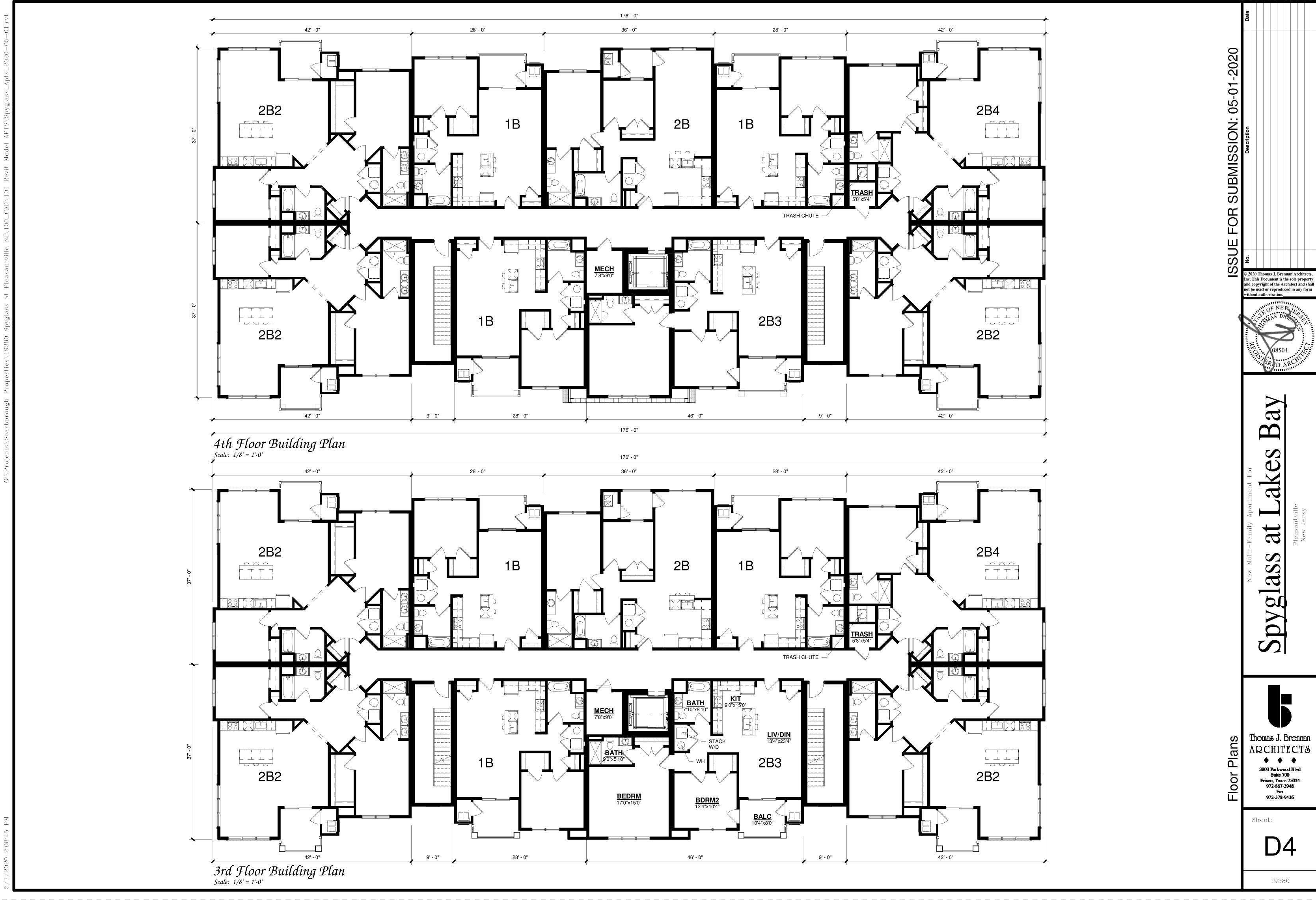

**Rear Elevation** Scale: 1/8" = 1'-0"



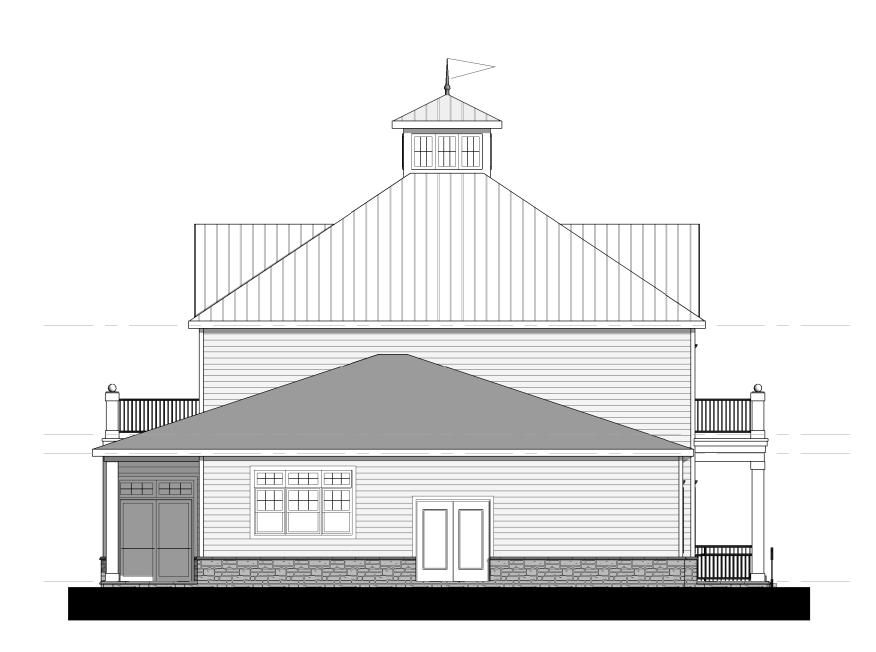
**Right Elevation** Scale: 1/8" = 1'-0"





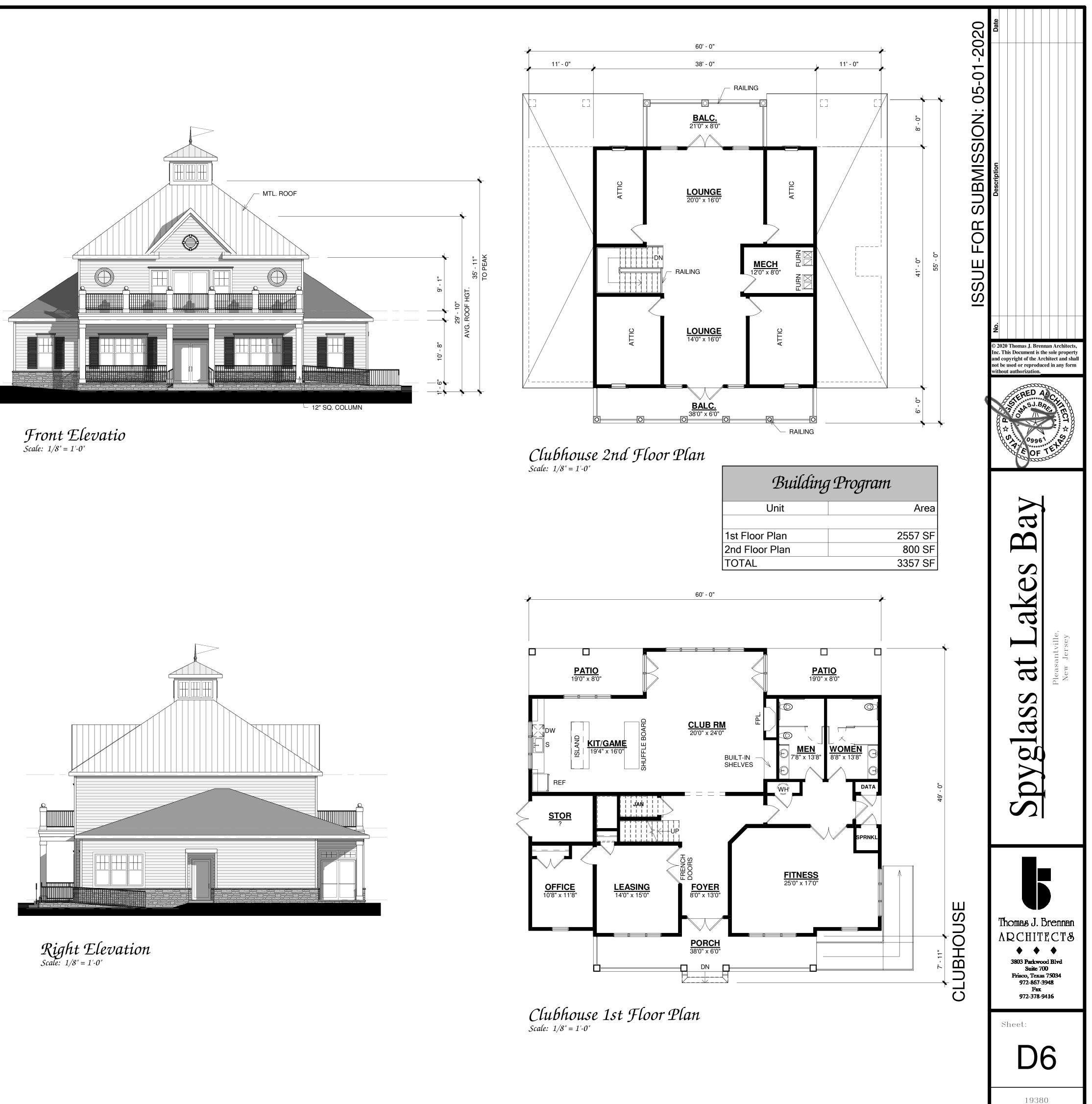

1/2020 2·08·38 PM


jects\Scarborough Properties\19380 Spyglass at Pleasantville NJ\100\_CAD\101 Revit Model APTS\Spyglass\_Apts\_2020-05-

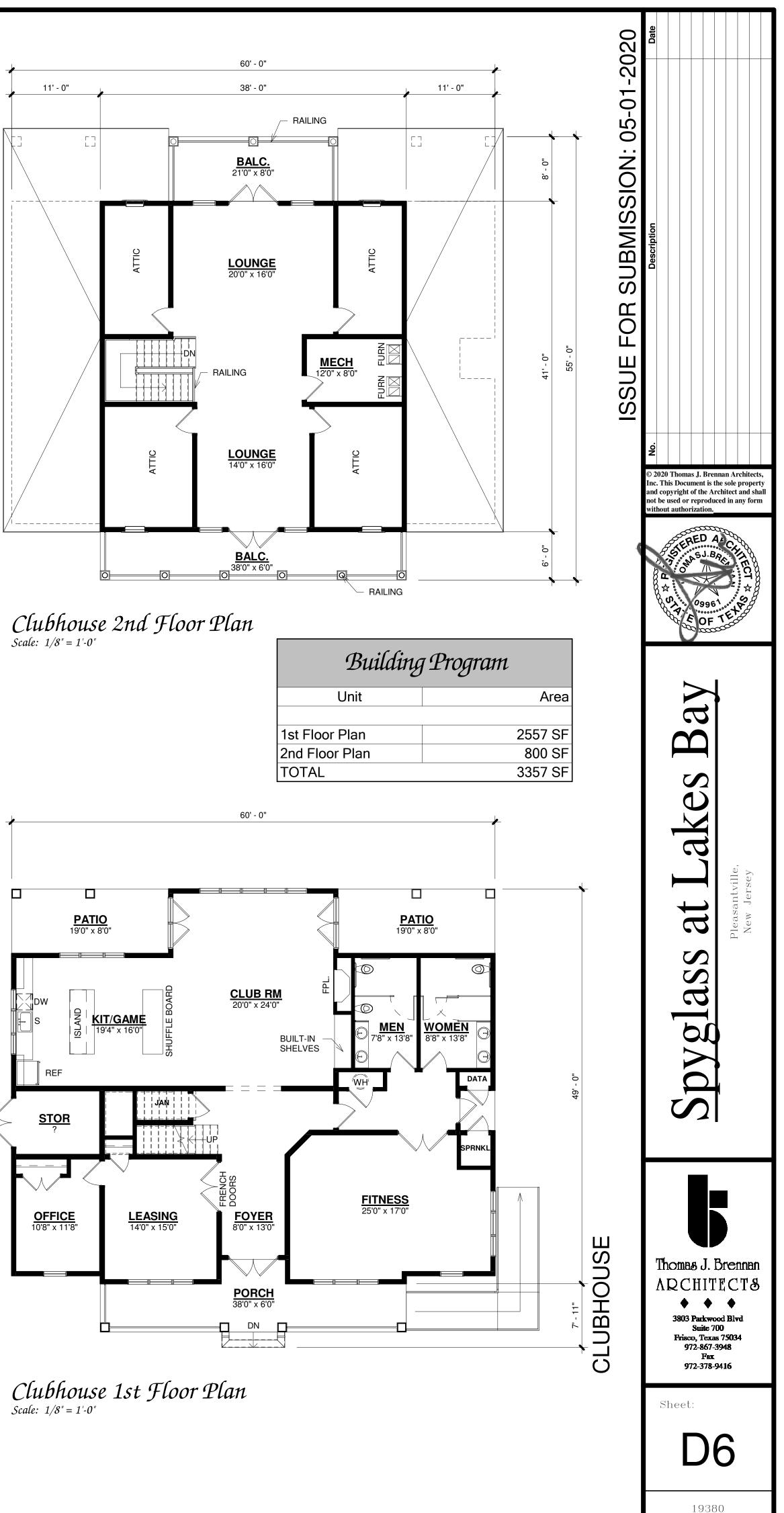
| Building - Unit Count |     |         |  |  |  |  |  |  |
|-----------------------|-----|---------|--|--|--|--|--|--|
| Unit                  | No. | Area    |  |  |  |  |  |  |
|                       |     |         |  |  |  |  |  |  |
| Unit 1B               | 12  | 808 SF  |  |  |  |  |  |  |
| Unit 2B               | 3   | 1096 SF |  |  |  |  |  |  |
| Unit 2B2              | 10  | 1325 SF |  |  |  |  |  |  |
| Unit 2B3              | 2   | 1206 SF |  |  |  |  |  |  |
| Unit 2B4              | 3   | 1293 SF |  |  |  |  |  |  |
|                       | 30  |         |  |  |  |  |  |  |
| GARAGES               | 15  |         |  |  |  |  |  |  |



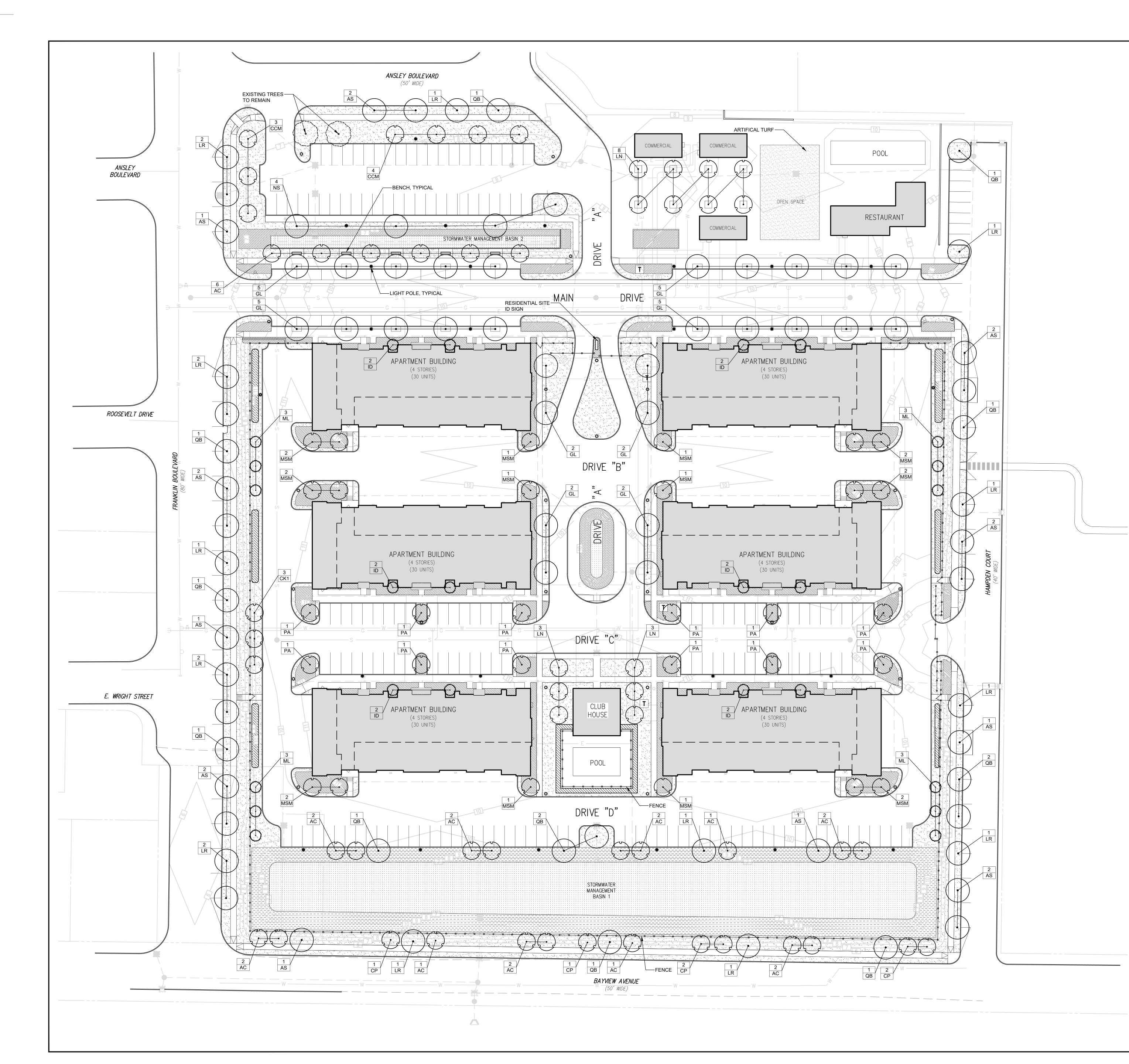


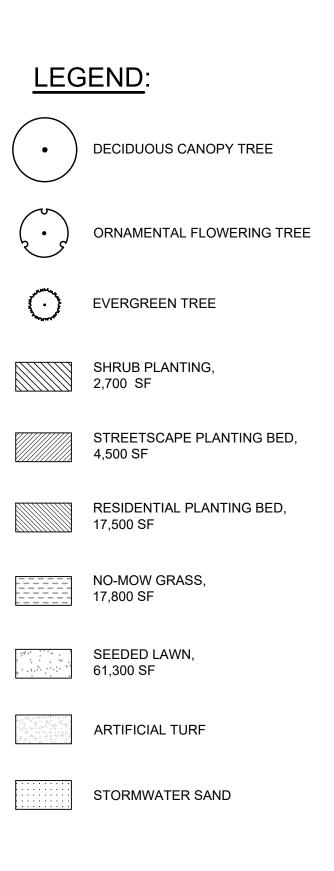






Left Elevation
Scale: 1/8" = 1'-0"

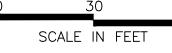


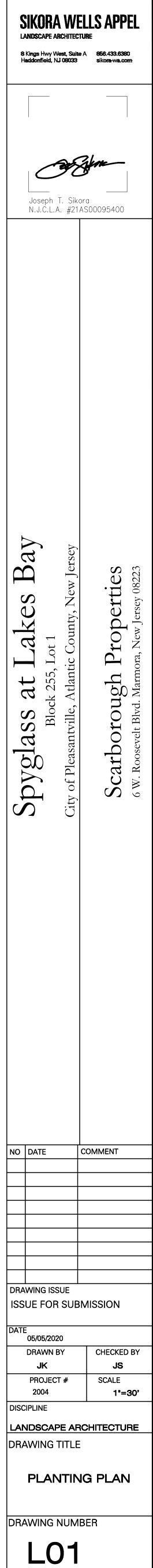

**Rear Elevation** Scale: 1/8" = 1'-0"

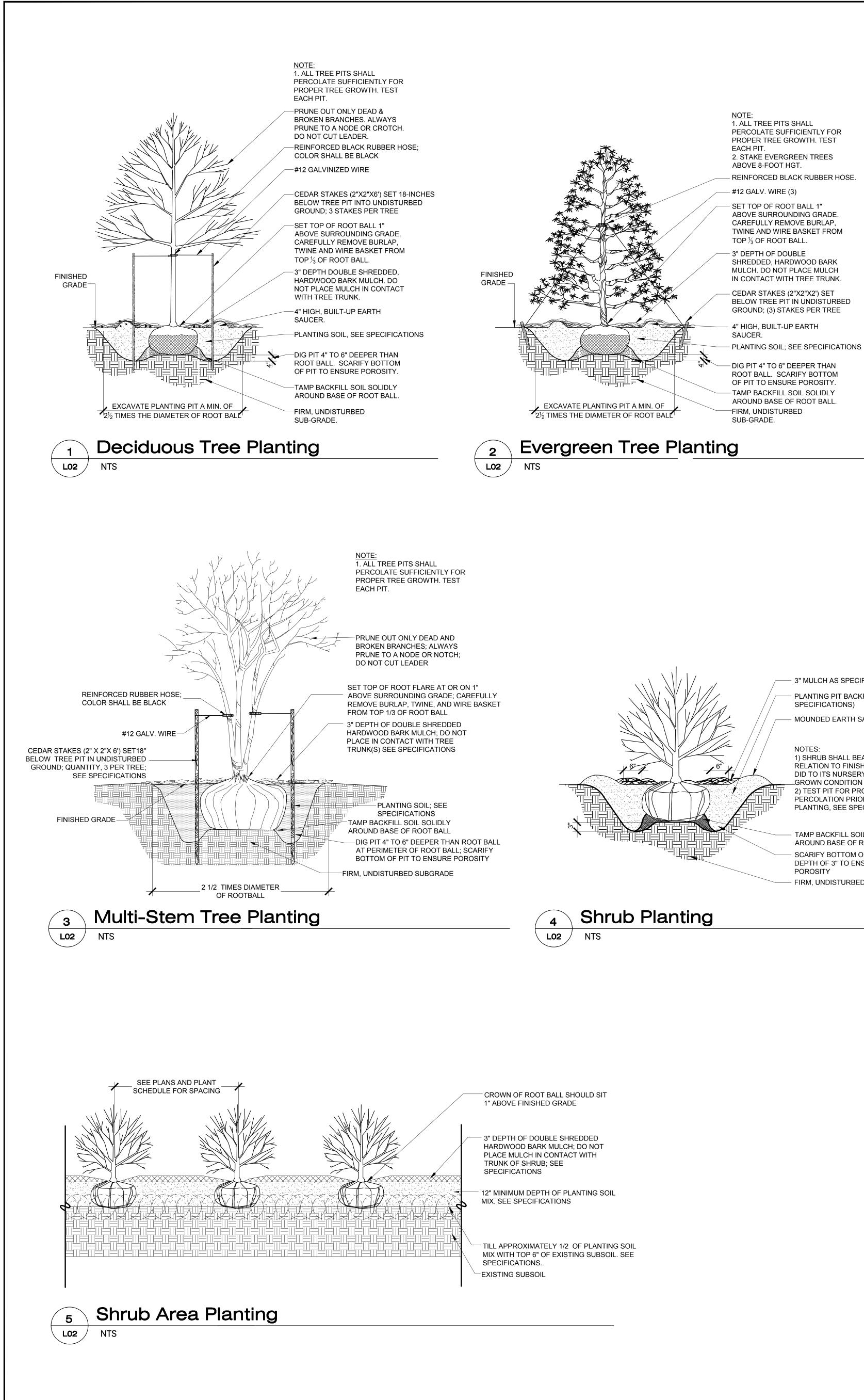






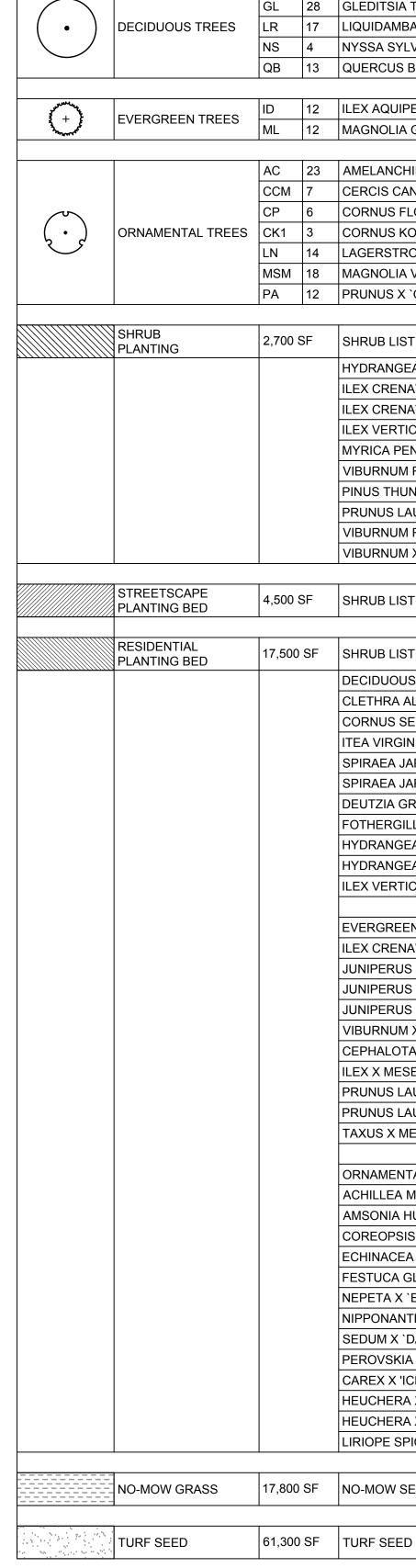




## NOTES:

- 1. REFER TO CIVIL ENGINEERING DRAWINGS FOR ALL HARDSCAPE, GRADING, DRAINAGE, STORMWATER MANAGEMENT, UTILITY, LIGHTING, SITE WALLS, AND
- FENCING INFORMATION. 2. REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL BUILDING INFORMATION.








- 3" MULCH AS SPECIFIED PLANTING PIT BACKFILL (SEE SPECIFICATIONS) MOUNDED EARTH SAUCER

NOTES: 1) SHRUB SHALL BEAR SAME RELATION TO FINISH GRADE AS IT DID TO ITS NURSERY FIELD \_GROWN CONDITION 2) TEST PIT FOR PROPER PERCOLATION PRIOR TO PLANTING, SEE SPECIFICATION.

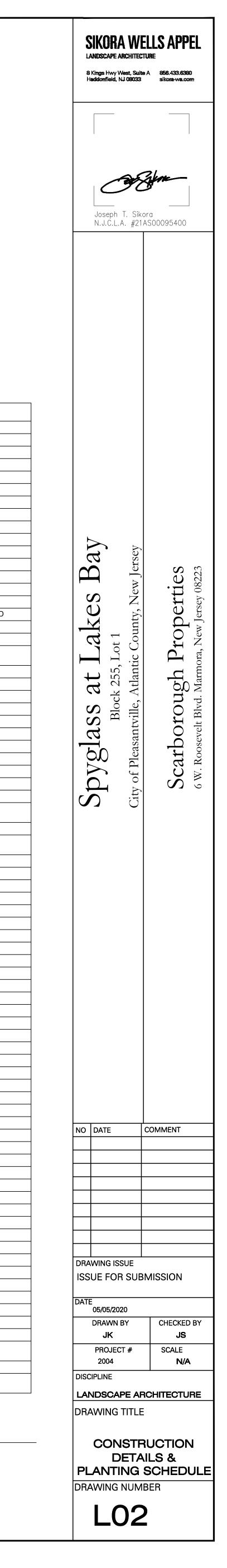
TAMP BACKFILL SOIL SOLIDLY AROUND BASE OF ROOT BALL SCARIFY BOTTOM OF PIT TO A DEPTH OF 3" TO ENSURE POROSITY

- FIRM, UNDISTURBED SUB-GRADE



PLANT SCHEDULE

QTY


AS

KEY SYMBOL DESCRIPTION





| BOTANICAL NAME                                                              | COMMON NAME                                       | CONT           | CAL                        | SIZE               | REMARKS                               |
|-----------------------------------------------------------------------------|---------------------------------------------------|----------------|----------------------------|--------------------|---------------------------------------|
|                                                                             | RED SUNSET MAPLE                                  | B&B            | 3" - 3 1/2"                |                    |                                       |
| GLEDITSIA TRIACANTHOS `SKYLINE`                                             | SKYLINE HONEY LOCUST<br>ROUND-LOBED SWEET GUM     | B & B<br>B & B | 3" - 3 1/2"<br>3" - 3 1/2" |                    |                                       |
| NYSSA SYLVATICA                                                             | SOUR GUM                                          | B&B            | 3" - 3 1/2"                |                    |                                       |
| QUERCUS BICOLOR                                                             | SWAMP WHITE OAK                                   | B & B          | 3" - 3 1/2"                |                    |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |
| ILEX AQUIPERNYI `DRAGON LADY`                                               | `DRAGON LADY` HOLLY                               | B & B          |                            | 6' - 8' HT.        |                                       |
| MAGNOLIA GRANDIFLORA `LITTLE GEM`                                           | DWARF SOUTHERN MAGNOLIA                           | B & B          |                            | 6' - 8' HT.        |                                       |
| AMELANCHIER CANADENSIS                                                      | CANADIAN SERVICEBERRY                             | B & B          | 2" - 2 1/2"                |                    |                                       |
| CERCIS CANADENSIS                                                           | EASTERN REDBUD MULTI-TRUNK                        | B&B            |                            | 8`-10` HT.         | FULL SPECIMENS; MIN. 5 STEMS          |
| CORNUS FLORIDA 'CHEROKEE PRINCESS'                                          | CHEROKEE PRINCESS DOGWOOD                         | B & B          | 2" - 2 1/2"                |                    |                                       |
| CORNUS KOUSA                                                                | KOUSA DOGWOOD                                     | B & B          |                            | 8`-10` HT.         | FULL SPECIMENS                        |
| LAGERSTROEMIA INDICA X FAURIEI `NATCHEZ`                                    | NATCHEZ CRAPE MYRTLE                              | B & B          | 2" - 2 1/2"                |                    |                                       |
| MAGNOLIA VIRGINIANA<br>PRUNUS X `OKAME`                                     | SWEET BAY MULTI-TRUNK<br>OKAME FLOWERING CHERRY   | B & B<br>B & B | 2" - 2 1/2"                | 8`-10` HT.         | SPECIMEN QUALITY; WELL-BRANCHED       |
| PRUNUS & UNAME                                                              | ORAWE FLOWERING CHERRY                            | ΒαΒ            | 2 - 2 1/2                  |                    |                                       |
| SHRUB LIST PER BELOW                                                        |                                                   |                |                            |                    |                                       |
|                                                                             |                                                   |                |                            | 24" HT.            |                                       |
| HYDRANGEA PANICULATA `LIMELIGHT`                                            | LIMELIGHT HYDRANGEA                               | CONT<br>CONT   |                            | 24" HT.            |                                       |
| ILEX CRENATA `STEEDS`                                                       | STEEDS JAPANESE HOLLY                             | CONT           |                            | 24" HT.            |                                       |
| ILEX VERTICILLATA `WINTER RED`                                              | WINTER RED HOLLY                                  | CONT           |                            | 24" HT.            |                                       |
| MYRICA PENSYLVANICA                                                         | NORTHERN BAYBERRY                                 | CONT           |                            | 24" HT.            |                                       |
| VIBURNUM RHYTIDOPHYLLUM                                                     | LEATHERLEAF VIBURNUM                              | CONT           |                            | 24" HT.            |                                       |
|                                                                             |                                                   |                |                            | 24" HT.            |                                       |
| PRUNUS LAUROCERASUS `SCHIPKAENSIS`<br>VIBURNUM RHYTIDOPHYLLUM               | SCHIPKA CHERRY LAUREL                             | CONT<br>CONT   |                            | 24" HT.<br>24" HT. |                                       |
| VIBURNUM X PRAGENSE                                                         | PRAGUE VIBURNUM                                   | CONT           |                            | 24" HT.            |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |
| SHRUB LIST / ORNAMENTAL GRASS AND PERENNIA                                  | L LIST PER BELOW                                  |                |                            |                    |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |
| SHRUB LIST / ORNAMENTAL GRASS AND PERENNIA                                  |                                                   |                |                            |                    |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |
| DECIDUOUS SHRUB<br>CLETHRA ALNIFOLIA `TOM`S COMPACT`                        | SUMMERSWEET CLETHRA                               | CONT           |                            | 24" HT.            | FULL SUN                              |
| CORNUS SERICEA `ARTIC FIRE`                                                 | ARTIC FIRE DOGWOOD                                | CONT           |                            | 24" HT.            | FULL SUN                              |
| ITEA VIRGINICA `LITTLE HENRY` TM                                            | VIRGINIA SWEETSPIRE                               | CONT           |                            | 24" HT.            | FULL SUN                              |
| SPIRAEA JAPONICA `ANTHONY WATERER`                                          | JAPANESE SPIREA                                   | CONT           |                            | 24" HT.            | FULL SUN                              |
| SPIRAEA JAPONICA `LITTLE PRINCESS`                                          | LITTLE PRINCESS JAPANESE SPIREA                   | CONT           |                            | 24" HT.            | FULL SUN                              |
|                                                                             |                                                   |                |                            | 24" HT.            | PART SHADE / SHADE                    |
| FOTHERGILLA GARDENII `MT. AIRY`<br>HYDRANGEA QUERCIFOLIA `RUBY SLIPPERS`    | DWARF WITCHALDER<br>RUBY SLIPPERS HYDRANGEA       | CONT<br>CONT   |                            | 24" HT.<br>24" HT. | PART SHADE / SHADE PART SHADE / SHADE |
| HYDRANGEA QUERCIFOLIA `PEE WEE`                                             | OAKLEAF HYDRANGEA                                 | CONT           |                            | 24" HT.            | PART SHADE / SHADE                    |
| ILEX VERTICILLATA `RED SPRITE`                                              | RED SPRITE WINTERBERRY                            | CONT           |                            | 24" HT.            | PART SHADE / SHADE                    |
|                                                                             |                                                   |                |                            |                    |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |
| ILEX CRENATA `HOOGENDORN`<br>JUNIPERUS CONFERTA `BLUE PACIFIC`              | HOOGENDORN JAPANESE HOLLY<br>BLUE PACIFIC JUNIPER | CONT<br>CONT   |                            | 24" HT.<br>24" HT. | FULL SUN<br>FULL SUN                  |
| JUNIPERUS CONFERTA BLUE PACIFIC                                             | BLUE CHIP JUNIPER                                 | CONT           |                            | 24 HT.<br>24" HT.  | FULL SUN                              |
| JUNIPERUS PROCUMBENS `NANA`                                                 | SHORE JUNIPER                                     | CONT           |                            | 24" HT.            | FULL SUN                              |
| VIBURNUM X PRAGENSE                                                         | PRAGUE VIBURNUM                                   | CONT           |                            | 24" HT.            | FULL SUN                              |
| CEPHALOTAXUS HARRINGTONIA PROSTRATA                                         | PROSTRATE PLUM YEW                                | CONT           |                            | 24" HT.            | PART SHADE / SHADE                    |
|                                                                             | CHINA GIRL HOLLY                                  | CONT           |                            | 24" HT.            | PART SHADE / SHADE                    |
| PRUNUS LAUROCERASUS `OTTO LUYKEN`<br>PRUNUS LAUROCERASUS `SCHIPKAENSIS`     | LUYKENS LAUREL                                    | CONT<br>CONT   |                            | 24" HT.<br>24" HT. | PART SHADE / SHADE PART SHADE / SHADE |
| TAXUS X MEDIA `DENSIFORMIS`                                                 | DENSE YEW                                         | CONT           |                            | 24" HT.            | PART SHADE / SHADE                    |
|                                                                             |                                                   |                |                            |                    |                                       |
| ORNAMENTAL GRASSES AND PERENNIALS                                           |                                                   |                |                            |                    |                                       |
| ACHILLEA MILLEFOLIUM `TERRA COTTA`                                          | TERRA COTTA YARROW                                | 1 Gal.         |                            |                    | FULL SUN                              |
|                                                                             | ARKANSAS BLUE-STAR                                | 1 Gal.         |                            |                    | FULL SUN                              |
| COREOPSIS VERTICILLATA `MOONBEAM`<br>ECHINACEA PURPUREA `POWWOW WILD BERRY` | THREADLEAF COREOPSIS POWWOW WILD BERRY CONEFLOWER | 1 Gal.         |                            |                    | FULL SUN<br>FULL SUN                  |
| FESTUCA GLAUCA `ELIJAH BLUE`                                                | BLUE FESCUE                                       | 1 Gal.         |                            |                    | FULL SUN                              |
| NEPETA X `EARLY BIRD`                                                       | EARLY BIRD CATMINT                                | 1 Gal.         |                            |                    | FULL SUN                              |
| NIPPONANTHEMUM NIPPONICUM                                                   | MANTAUK DAISY                                     | 1 Gal.         |                            |                    | FULL SUN                              |
| SEDUM X `DAZZLEBERRY`                                                       | DAZZELBERRY STONECROP                             | 1 Gal.         |                            |                    | FULL SUN                              |
| PEROVSKIA ATRIPLICIFOLIA `LITTLE SPIRE` TM                                  | LITTLE SPIRE RUSSIAN SAGE                         | 1 Gal.         |                            |                    |                                       |
| CAREX X 'ICE DANCE'<br>HEUCHERA X `SILVER SCROLLS`                          | ICE DANCE SEDGE<br>CORAL BELLS                    | 1 Gal.         |                            |                    | PART SHADE / SHADE PART SHADE / SHADE |
| HEUCHERA X BRIZOIDES 'RASPBERRY REGAL'                                      | CORAL BELLS                                       | 1 Gal.         |                            |                    | PART SHADE / SHADE                    |
| LIRIOPE SPICATA                                                             | CREEPING LILY TURF                                | 1 Gal.         |                            |                    | PART SHADE / SHADE                    |
|                                                                             | ·                                                 |                | •                          | J                  |                                       |
| NO-MOW SEED MIX                                                             |                                                   |                |                            |                    |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |
| TURF SEED                                                                   |                                                   |                |                            |                    |                                       |
|                                                                             |                                                   |                |                            |                    |                                       |



## PLANTING SPECIFICATIONS

## PART 1. GENERAL

#### 1.1 SUMMARY

- A. Work of this Section includes all labor, materials, equipment and services necessary to furnish, deliver, and install the following: 1. Furnishing and installing trees, shrubs, ground covers, and perennials.
- 1. Guying
- 2. Staking
- 3. Mulching
- Fertilizing 5. Guarantee
- 6. Maintenance
- 7. Clean Up
- 1.2 QUALITY ASSURANCE
- A. Landscape Work shall be performed by a single firm specializing in landscape work with a minimum of 5 years of experience on projects of similar scope and size.
- B. Plant Material: Meet or exceed all applicable ANLA standards.
- 1. Plant List: Investigate sources of supply prior to submitting bid. Confirm that size, variety, and quantity of plant material specified on plant list can be supplied. Failure to take this precaution will not relieve the successful bidder from his responsibility for furnishing and installing all plant material in strict accordance with the contract requirements and without additional expense to the Owner.
- 2. All plantings should be healthy and thriving at the end of the warranty period. see written specifications. 3. All plant tags, labels, flagging, and ties should be removed from plantings prior to final acceptance.
- C. Plant substitutions are permitted only with written approval by the Landscape Architect.
- D. Final acceptance is to be given in writing by the landscape architect and/or owner's representative.all plantings shall be healthy and thriving, and be installed and maintained per drawings and specifications for final acceptance to be given.
- E. Contractor is responsible for maintaining healthy plantings until final acceptance. maintenance includes: weeding, watering, mulching, staking, pruning, replacements as required, and other measures; see written specifications. F. Contractor is responsible for maintaining tree staking as shown on details and in written specifications. tree staking is to be done at
- time of planting. G. Contractor is responsible for the use of temporary irrigation as required to ensure plant establishment for final acceptance to be granted. see written specifications.
- H. Contractor is responsible for the replacement of plants that die during the warranty period, unless death is caused by factors outside of the contractor's responsibility or control. replacements should be installed immediately upon notification of dead plant material or in the next immediate approved planting season. see written specifications for information regarding replacements and factors that exclude contractor from being required to replace plant material.
- I. installer: perform work with personnel totally familiar with planting techniques under the supervision of an experience landscape foreman. notify the construction manager of the name and phone number of the foreman five (5) business days in advance of the first day of planting operations.

### 1.3 REGULATORY REQUIREMENTS

- A. Comply with all rules, regulations, laws, and ordinances of local, State, and Federal authorities having jurisdiction. Provide labor, materials, equipment, and services necessary to make Work comply with such requirements without additional cost to the Owner. B. Investigate the conditions of public thoroughfares and roads as to availability, clearances, loads, limits, restrictions, and other
- limitations affecting transportation to and ingress and egress at the site. Conform to all governmental regulations regarding the transportation of materials.
- C. Procure and pay for permits and licenses required for Work.
- D. Plant Material:
- 1. Plants shall be of the quantity and quality indicated, true to name, properly labeled with scientific and common name, and in accordance with the sizes and grades specified. Plants shall be nursery-grown, have a habit of growth that is normal for the species, and shall be sound, healthy, vigorous, free from insect pests, plant diseases and injuries, and shall have normal root systems. All plants shall equal or exceed the measurements specified in the plant list, which are minimum acceptable sizes.
- 2. Upon delivery to the site, all nursery stock shall be planted at once. If this is not feasible, plants shall be heeled in with roots well covered. Protect plants from the sun and wind, and keep roots moist. During the planting operations, the nursery stock shall not be exposed to the sun or to drying wind.
- 3. Dig and handle plants with care to prevent injury to trunks, branches, and roots.
- 4. Plants shall be measured before pruning, with branches in normal position. Any necessary pruning shall be done at time of planting. Requirements for the measurement, branching, grading, quality, balling, and burlapping of plants in the plant list shall follow the code of standards currently recommended by the American Association of Nurserymen, Inc., in the American Standard for Nursery Stock, amended to date.
- 5. Deliver trees and shrubs after preparations of planting areas have been completed and approved and plant immediately. a. If planting is delayed more than 24 hours after delivery, set balled and burlapped plants on the ground well protected with soil, wet peat, or other acceptable materials. Adequately cover all roots of bare root material with soil, wet peat, or other acceptable material. Protect balls and roots and container grown material from freezing, sun, drying winds, and/or mechanical damage. Water as necessary until planted.
- b. Heeling in of plants shall not be allowed for more than 3 days without approval of the Architect. 6. Immediately remove rejected plant material from the site.

### 1.4 PROJECT CONDITIONS

- A. Environmental Requirements: Plant only within the following dates, weather permitting. Do not plant when the ground is frozen or the soil is otherwise in an unsatisfactory condition for planting.
- 1. Plant ground covers and balled and burlapped broadleaf evergreens in the spring only between April 1 and June 30. 2. Plant balled and burlapped deciduous trees and needled evergreen trees and shrubs and container grown trees and shrubs
- between April 1 and June 15 and September 1 and November 15. 3. Plant perennials as soon as the ground is workable in spring until June 15 and between September 1 and November 15.

## B. Existing Conditions

- 1. Carefully examine the site before submitting a bid. Be informed as to the nature and location of the Work, general and local conditions including climate, adjacent properties and utilities, conformation of the ground, the nature of subsurface conditions, the character of equipment, and facilities needed prior to and during execution of the Work.
- 2. Should the Landscape Contractor in the course of Work find any discrepancies between drawings and physical conditions or any omissions or errors in drawings or in layout as furnished by the Landscape Architect, it will be his duty to inform the Construction Manager immediately in writing for clarification. Work done after such discovery unless authorized by the Landscape Architect shall be done at the Landscape Contractor's risk.

PART 2. PRODUCTS 2.1 PLANT MATERIAL

- A. Plants furnished shall be nursery-grown stock and comply with "American Standard by the ANLA (American Nursery & Landscape Association) for Nursery Stock" for sizes shown. Standardized plant names per American Joint Committee on Horticultural Nomenclature. Deviations there from, if indicated, are intentional.
- B. Source of plant materials shall be within the same plant hardiness zone and having similar climate conditions as the Project area. Zone shall be as defined on the U.S. Department of Agriculture Plant Hardiness Zone Map.
- C. Measure plant material when the branches are in their normal position. No pruning shall be done before the plant materials are delivered to the site. Clipped or sheared plants are not acceptable unless otherwise specified. Plant material shall be natural in habit of growth and be full bodied.
- 2.2 MULCH
- A. Mulch shall be course fibrous shredded hardwoods, free of dyes, sufficiently aged to prevent adverse reactions to plant material and subject to approval by the Landscape Architect.
- 2.3 FERTILIZER
- A. Conforming to standards of Association of Official Agricultural Chemists, delivered in sealed and labeled bags, or in bulk with certification as to quality and analysis.

PART 3. EXECUTION

3.1 General

- A. Install plants as promptly as possible, preferably the same day as delivered. Upon delivery to site, unless planted the day of delivery, pile earth or mulch around the earth ball so that water evaporation and soil and root drying are kept to a minimum. Keep plant ball moist. Plant materials will be subject to re-inspection before they are planted.
- B. Installation of plant material shall conform to timetable established in 1.09A of this Section. Out of season planting shall be at Landscape Contractor's own risk. After the plant material is placed in the planting pit, the top one third 1/3 (minimum) of burlap and twine shall be removed from the root ball at the time of installation and removed from the site.
- After the plant material is placed in the planting pit, the top and sides of all wire baskets (if applicable) are to be removed from the root ball and removed from the site. The bottom of the wire basket is not to be removed from the under side of the root ball.
- 3.2 LAYOUT, EXCAVATION, PREPARATION OF TREE PITS AND PLANT BEDS
- A. All tree pits and plant beds shall be located as shown in Contract Drawings and shall be properly excavated and prepared for planting in accordance with the type of plant material in each location, as indicated in 3.6 of this Section.

B. Tree pits:

1. All tree planting pits shall be excavated four-inches (4") deeper than the depth of the tree root ball to allow for sand setting bed upon which to set/stabilize tree. All construction debris such as plaster, concrete, stone, brick and wood shall be removed. 2. All tree pits shall be excavated circular with sloped sides. Diameter of pits for trees shall be at least 2.5 times greater than the diameter of the root ball or spread of roots (with the exception of street tree pits adjacent to street curb). If an impervious, hardpan layer remains in the bottom of the pit after excavation, the pit shall be excavated to a depth of the hardpan or 36 inches below the bottom of the ball. Pit shall then receive a 6-inch layer of AASHTO 57 stone, covered with straw, roofing paper, or similar material prior to installation of tree.

C. Planting Beds

- 1. All shrubs, groundcovers and perennials shall be installed in continuous plant beds excavated in accordance with the planting details and to minimum depths as indicated.
- 2. Inspect tree pits and planting beds to assure that adequate drainage exists. In instances of poor drainage, advise the Design Professional and await instructions before planting.
- 3. Scarify bottom and sides of tree pits and planting beds prior to placing plant material. Place a layer of planting soil mix and tamp to prevent settlement.

3.3 INSTALLATION OF PLANT MATERIAL

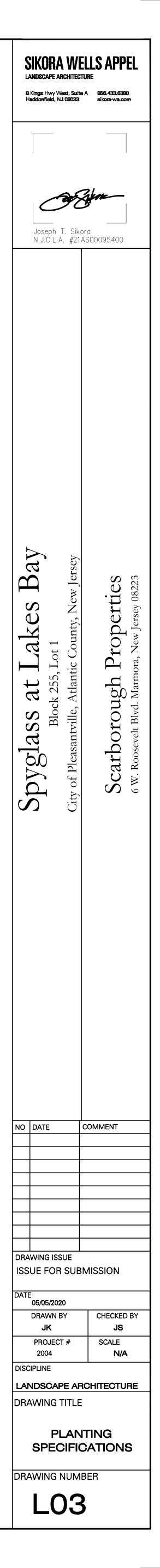
A. Placement of Plants

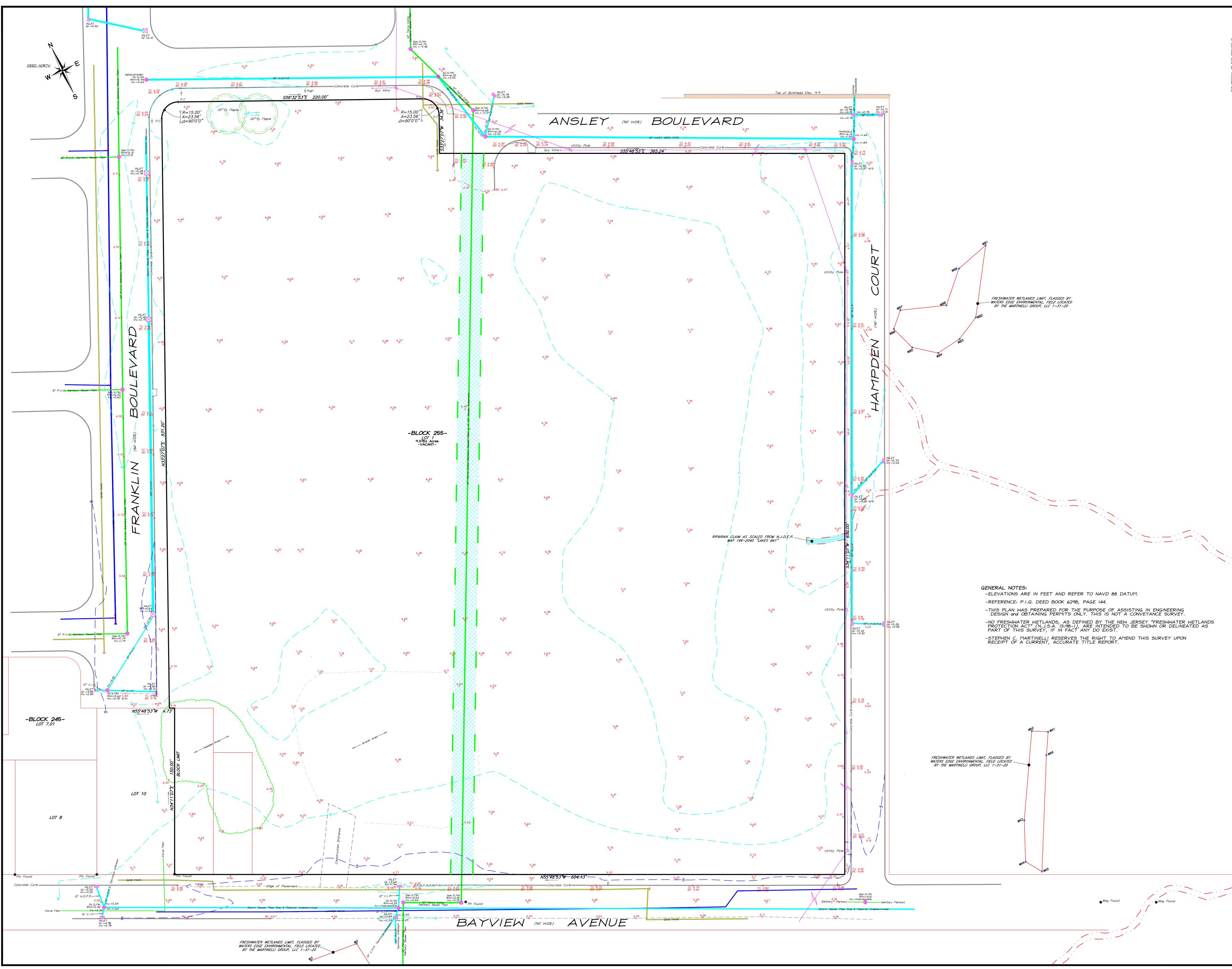
- 1. Plants shall be spaced and set plumb and straight, in accordance with the planting plan and details, and faced to give best appearance and relationship to adjacent plants and structures. Trees shall be centered in all tree pits.
- 2. Plants shall be set to such a depth that the finished grade level, after settlement, will be the same as that at which the plant was grown and so that the root flair is at finished grade.
- 3. All ropes, staves and other bindings shall be cut off the tops and sides of balled and burlapped (B&B) plants and removed from plant pits/beds. Do not pull burlap out from under balls. All rot-proof, rot-resistant, plastic burlap and top half of wire basket (minimum) ball coverings shall be removed prior to planting. Cleanly cut off all broken or frayed roots.
- 4. Remove plants from containers by cutting or inverting the container.

B. Backfilling

- 1. Use planting soil mix- planting soil mix should be a thorough mixture of 1 part peat humus to 3 parts topsoil for all backfilling around plant earth balls and roots. 2. Compact planting soil mix around base of balls and roots of plants to fill all voids. Ensure at this point that all burlap and ropes
- have been removed from tops of root balls and that all non-biodegradable materials have been removed from plant pits/beds. Clip and fold down wire baskets.
- 3. Backfill the planting soil mix in layers of not more than six-inches (6"). Thoroughly compact each layer to not greater than 85%, in order to eliminate all voids, before placing the next layer.
- 4. Continue adding and tamping soil until the planting pit/bed is half full. Add water to partially fill planted area. Let the water soak into the soil and finish backfilling. Place final layer of loose planting soil mix without further packing. Guy and stake trees smaller than 5-inch caliper immediately after planting. Provide a minimum of 3 guys per tree or two 2" x 4" stakes 8-feet long. Attach wire to tree with nylon tree straps, to isolate wire from tree trunks and branches, and tighten wire/cable on all sides to provide stability without restricting natural tree movement. Trees shall stand plumb after staking.

3.4 MULCHING


- A. Provide mulching for all plant beds and tree pits within 48 hours after planting.
- B. Mulch all plant beds with a 3-inch (3") layer of shredded bark. It shall entirely cover the area of the plant bed. Do not mulch next to the main stem of plant.
- C. Groundcover and perennial areas shall be mulched prior to planting.
- D. Mulch tree pits, where noted on Contract Drawings and in accordance with planting details, with 3-inches (3") of shredded, hardwood bark mulch.
- E. Mulch material shall not come in contact with the trunk of trees and shrubs. Keep approximately 3" away from all sides.


### 3.5 PRUNING

- A. Neatly prune plant materials to preserve the natural character of the plants and in a manner appropriate to the particular requirements of each plant. Prune plants after installation.
- B. Remove broken or badly bruised branches with a clean cut. In general, remove at least one-fourth of the wood of deciduous plants by thinning of branches. Remove any dead branches by cutting flush with trunk or main limb.
- C. Do all pruning with clean sharp tools.
- 3.6 CARE OF SITE

A. Maintenance: The Landscape Contractor shall be responsible to provide the following maintenance on all newly planted vegetation for 3-month after final acceptance:

- 1. Watering--During periods of inadequate rainfall, all plant material shall be watered to maintain a constant suitable moisture level for adequate plant growth. Landscape Contractor shall be responsible for providing water hoses. The Owner will supply the water source.
- 2. Weeding Weed control shall be by mechanical means. Herbicide use is acceptable with Owner approval.
- 3. Insect, disease, and weed control--No spraying of herbicides, insecticides, fungicides, nematicides, fumigants or other chemicals shall be done without first submitting a spray program to the Owner for approval. After approval, application will only be permitted by licensed applicators. Applicators should follow Notification Requirements and consult any Chemical Hypersensitivity Registries for the area.
- 3.7 GUARANTEE AND MAINTENANCE
- A. Guarantee. Plants shall be guaranteed for twelve (12) months after planting, and shall be alive and in satisfactory growth at the end of the guarantee period. Plants, which die within the guarantee period, will be removed by the Landscape Contractor within ten (10) days of notice or the Owner will remove the plants and bill the Landscape Contractor accordingly. Replacement material may be installed during the next appropriate planting season. All replacements shall be plants of the same kind and size as specified in the plant list. They shall be furnished and planted as specifications.





|        |                           |                                      |                             |                                                                                                                 | - THE ORIGINAL OF THIS DRAWING IS<br>THE PROPERTY OF STEPHEN C.<br>MARTINELLI, LS, LLC.<br>-ONLY COPIES FROM THE ORIGINAL MAP OF<br>THIS PLAT, CLEARLY TRAKELD WITH THE<br>LAND SURFEYOR'S EMBOSSED SEAL, SHALL<br>BE CONSIDERED TO BE VALID. |
|--------|---------------------------|--------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHEET: | <b>SCALE:</b><br>1" = 30' | REVISIONS                            | TOPOGRAPHIC SURVEY          |                                                                                                                 |                                                                                                                                                                                                                                               |
|        | <b>DATE:</b><br>8-18-17   | -Added Wetlands Offsite Flags1-31-20 |                             |                                                                                                                 |                                                                                                                                                                                                                                               |
| 0F:    | DRAWN BY:<br>JDP          |                                      | _ `                         | LAND SURVEYING, LLC<br>CERTIFICATE OF AUTHORIZATION NUMBER 24GA28136700                                         | STEPHEN C.<br>MARTINELLI                                                                                                                                                                                                                      |
|        | <b>PROJ NO:</b><br>15256  |                                      | ATLANTIC COUNTY, NEN JERSEY | PHONE : (609) 390-9618 FAX : (609) 390-9534<br>1217 South Shore Road -Suite 106<br>Ocean View, New Jersey 08230 | PROFESSIONAL LAND SURVEYOR<br>N.J. LICENSE 30089<br>PROFESSIONAL PLANNER<br>N.J. LICENSE 04653                                                                                                                                                |

# Shropshire Associates LLC

ESBE / SBE Certified

(7 copies via UPS and email: mlucey@watersedgellc.com)

Traffic Engineering, Transportation Planning & Design

277 White Horse Pike, Suite 203, Atco, NJ 08004 P: 609-714-0400 F: 609-714-9944 www.sallc.org David R. Shropshire, PE, PP A Andrew Feranda, PE, PTOE, CME Randal C. Barranger, PE Nathan B. Mosley, PE, CME

May 3, 2020

Mr. Michael Lucey Water's Edge Environmental, LLC 1259A Asbury Avenue Ocean City, New Jersey 08226

Re: Traffic Engineering and Air Quality Assessment Spyglass at Lakes Bay Block 255, Lot 1 Bayview Avenue, Franklin Boulevard, Hampden Court City of Pleasantville, Atlantic County, NJ SA Project No. 20033

Dear Michael:

In response to your request, Shropshire Associates, LLC has prepared a traffic engineering and air quality assessment to evaluate the impact of traffic to be generated by the proposed Spyglass at Lakes Bay residential development which will contain six (6) 4-story buildings containing a total of 180 apartments units and associated parking and amenities. The proposed development is located along Bayview Avenue, Franklin Boulevard, and Hampden Court in the City of Pleasantville, Atlantic County, New Jersey.

Access to the development is proposed via one (1) full-movement driveway along northbound Franklin Boulevard, one (1) full-movement driveway along eastbound Ansley Boulevard, and two (2) full-movement driveways along Hampden Court. It should be noted that the proposed development will re-route Ansley Boulevard and Hampden Court on site and connect the two through a proposed Main Drive. For the purpose of this study, Hampden Court and Ansley Boulevard will be treated as site driveways. Also, the extension of Franklin Boulevard to Bayview Avenue is proposed. Street parking along Franklin Boulevard and Hampden Court is proposed. Currently, the property is primarily vacant.

#### **Existing Conditions**

A field reconnaissance was conducted in the vicinity of the site to determine the features of the adjacent roadway network within the study area. A description of the roadways and intersections are provided below.

In the vicinity of the site, **Black Horse Pike (U.S. 40 and U.S. 322)** is a four-lane roadway that is under the jurisdiction of the New Jersey Department of Transportation (NJDOT) and is classified<sup>1</sup> as an Urban Principal Arterial. The Black Horse Pike consists of two (2) lanes in each direction with an approximate cartway width of 64'. The posted speed limit along Black Horse Pike is 40 MPH. For the purpose of this study, Black Horse Pike is assumed to extend in a general east-west direction.

<sup>&</sup>lt;sup>1</sup> NJDOT Straight Line Diagram

Traffic Impact Studies - Transportation Planning - Access Permitting - Traffic Signal Design - Noise & Air Quality Evaluations - Parking Studies & Design Eminent Domain Consulting - Roadway Improvement Plans - Municipal Traffic Consulting & Reviews - Vehicle Turning Analysis - Safety Evaluations Master Planning - Data Collection - Accident Analysis - Lighting Design - Design Alternatives - Use Variance Analysis - Expert Testimony



In the vicinity of the site, **Main Street (CR 585)** is a two-lane roadway that is under the jurisdiction of Atlantic County and is classified<sup>1</sup> as an Urban Minor Arterial. Main Street consists of one (1) lane in each direction with an approximate cartway width of 30'. The posted speed limit along Main Street goes from 35 MPH between Bayview Avenue and Wright Street to 25 MPH from Wright Street to the Black Horse Pike. For the purpose of this study, Main Street is assumed to extend in a general north-south direction.

In the vicinity of the site, **Franklin Boulevard** is a two-lane roadway that is under the jurisdiction of the City of Pleasantville and is classified as an Urban Major Collector between Roosevelt Drive and Black Horse Pike and a local street south of Roosevelt Drive. Franklin Boulevard consists of one (1) lane in each direction with bike lanes north of Ansley Boulevard with on-street parking and has an approximate cartway width of 55'. The posted speed limit along Franklin Boulevard is 25 MPH. For the purpose of this study, Franklin Boulevard is assumed to extend in a general north-south direction.

**Ansley Boulevard** is two-lane roadway that is under the jurisdiction of the City of Pleasantville and is classified as an Urban Major Collector west of Franklin Boulevard and a local street east of Franklin Boulevard. Ansley Boulevard consists of one (1) lane in each direction with on-street parking and has an approximate cartway width of 60' west of Franklin Boulevard is 25 MPH. For the purpose of this study, Ansley Boulevard is assumed to extend in a general east-west direction.

**Decatur Avenue** is a two-lane local roadway that is under the jurisdiction of the City of Pleasantville. Decatur Avenue consists of one (1) lane in each direction with on-street parking and an approximate cartway width of 38'. The posted speed limit along Decatur Avenue is 25 MPH. For the purpose of this study, Decatur Avenue is assumed to extend in a general eastwest direction.

**Bayview Avenue** is a two-lane local roadway that consists of one (1) lane in each direction with on-street parking and an approximate cartway width of 28'. The posted speed limit along Bayview Avenue is 25 MPH. For the purpose of this study, Bayview Avenue is assumed to extend in a general east-west direction.

**Hampden Court** is a two-lane local roadway that consists of one (1) lane in each direction with bike lanes and on-street parking and has an approximate cartway width of 30'. The posted speed limit along Hampden Court is 25 MPH. For the purpose of this study, Hampden Court is assumed to extend in a general north-south direction.

**Roosevelt Drive** is a one-lane local roadway that consist of a one-way connection between Ansley Boulevard and Franklin Boulevard for eastbound movements. Roosevelt Drive has an approximate cartway width of 38' and has street parking. The posted speed limit along Roosevelt Drive is 25 MPH. For the purpose of this study, Roosevelt Drive is assumed to extend in a general east-west direction.

The **Black Horse Pike/Franklin Boulevard** signalized intersection is controlled by a three-phase semi-actuated traffic signal with a 120-second background cycle length during the weekday AM and weekday PM peak periods. Both the eastbound and westbound Black Horse Pike approaches consist of one (1) left-turn lane, one (1) through lane, and one (1) through/right-turn lane. Both the northbound and southbound Franklin Boulevard approaches consist of one (1) through lane, and one (1) right-turn lane.



The **Main Street/Decatur Avenue** signalized intersection is controlled by a two-phase traffic signal with a 70-second background cycle length during the weekday AM and weekday PM peak periods. All approaches consist of one (1) shared left-turn/through/right-turn lane.

The **Main Street/Ansley Boulevard** intersection is a T-shaped intersection that is stopcontrolled along the westbound Ansley Boulevard approach. All approaches to the intersection consist of one lane for all permitted movements.

The **Main Street/Bayview Avenue** intersection is a four-way intersection that is stop controlled along the eastbound and westbound Bayview Avenue approaches. All approaches consist of one lane for all permitted movements.

The **Ansley Boulevard/Franklin Boulevard** intersection is a four-way intersection that is stop controlled along the westbound Ansley Boulevard approach with a one-way outbound only leg adjacent to the westbound Ansley Boulevard approach. All approaches consist of one lane for all permitted movements.

The **Franklin Boulevard/Roosevelt Drive** intersection is a T-shaped intersection that is stop controlled along the eastbound Roosevelt Drive approach. The eastbound Roosevelt Drive approach is a one-way inbound only approach. The northbound and southbound Franklin Boulevard approaches consist of one lane for through movements.

The **Franklin Boulevard/Hampden Court** intersection is a T-shaped intersection that is stop controlled along the southbound Hampden Court approach. Each approach consists of one lane for all permitted movements.

#### Traffic Counts

To determine the amount of traffic on the adjacent roadway network, manual turning movement counts (MTMC) were conducted at the study intersections on Thursday, March 12, 2020 during the weekday AM (7:00 AM - 9:00 AM) and weekday PM (7:00 AM - 9:00 AM) peak periods. A summary of the traffic counts can be found in the appendix to this assessment and the existing volumes are illustrated on Figure 1.

#### Future Conditions

As indicated above, the proposed Spyglass at Lakes Bay residential development will consist of 180 apartments units and associated parking and amenities. The traffic resulting from the proposed development will not affect the adjacent roadway network until 2024, when the development is expected to be fully built-out and occupied. It can be expected that the traffic volumes along the adjacent roadway network will increase as a result of other developments in the area of the site and general area traffic growth.

Based on the Annual Background Growth Table prepared by the New Jersey Department of Transportation (NJDOT), a 1.00% annual traffic growth is projected along Black Horse Pike, Main Street, Decatur Avenue, Bayview Avenue, Hampden Court, Franklin Boulevard south of Roosevelt Drive, and Ansley drive east of Franklin Boulevard and a 1.75% annual traffic growth is projected along Ansley Boulevard west of Franklin Boulevard, Franklin Boulevard north of Roosevelt Drive, and Roosevelt Drive in the vicinity of the site. By applying a 1.00% and 1.75% annual growth rate to the respective 2020 roadway volumes, the 2024 No-Build volumes were estimated and are indicated on Figure 2.



#### ITE Trip Generation

The amount of traffic to be generated by the proposed Spyglass at Lakes Bay residential development can best be estimated based on data published by the Institute of Transportation Engineers (ITE). ITE has compiled data from thousands of studies for various land uses, independent variables and study periods, and published the results in *Trip Generation, 10th Edition.* The proposed development is most similar to ITE Land Use 221: Multifamily Housing (Mid-Rise). Table 1 below indicates the total traffic to be generated by the development based on the ITE trip generation data (the trip generation worksheets are attached for reference).

| ITE Trip                           | o Generat | Table<br>ion – Lak | e 1<br>es Bay Re | edevelopr | nent      |       |
|------------------------------------|-----------|--------------------|------------------|-----------|-----------|-------|
| Land Use                           | Wee       | kday PM I          | Peak             | Sa        | turday Pe | ak    |
| Lanu Use                           | In        | Out                | Total            | In        | Out       | Total |
| Multifamily Housing<br>(180 units) | 17        | 48                 | 65               | 48        | 30        | 78    |

The traffic to be generated by the proposed residential development during the peak hours must then be distributed to the adjacent street network in a manner which the residents can reasonably be expected to travel. The site traffic was assigned to the street network based on the existing distribution of traffic along the adjacent street network, as illustrated on Figure 3. The resulting site traffic assignment is illustrated on Figure 4 and Figure 4A. The site traffic was then added to the 2024 No-Build traffic volumes (Figure 2) to project the 2024 Build traffic volumes, which are illustrated on Figure 5 and Figure 5A.

#### **Operational Analysis**

In order to measure the quality of the traffic flow for the adjacent roadway, capacity analysis for the study locations were performed based upon the methods outlined in the *Highway Capacity Manual*. Capacity analysis is a procedure used to estimate the ability of the roadway network to carry traffic. Capacity analyses are performed based on a Level of Service methodology. Level of Service (LOS) is a qualitative measure that characterizes the operational conditions of a roadway or intersection based on the perceptions by motorists and passengers. Levels of Service are defined for each type of facility (i.e. freeways, highways, signalized intersections, unsignalized intersections). These Levels of Service range from LOS A to LOS F, with a LOS A representing the best operating conditions and a LOS F representing the worst operating conditions.

The Level of Service for an unsignalized intersection is determined based on the average control delay associated with each minor movement (i.e. yielding left-turn movements from the major roads and stop-controlled movements from the minor approaches). The Levels of Service for signalized intersections are classified in terms of delay, which is based on the extent of driver discomfort and frustration, fuel consumption and lost travel time. The delay experienced by a motorist consists of many factors that relate to control, geometrics, and traffic. Some of these factors include the quality of progression, traffic signal cycle length, the green ratio, and the volume-to-capacity ratio. The Level of Service criteria for unsignalized and signalized intersections is summarized in Table 2.



| L                | Table 2<br>evel of Service Criter | ia               |
|------------------|-----------------------------------|------------------|
| Level of Service | Unsignalized Delay                | Signalized Delay |
|                  | (sec)                             | (sec)            |
| A                | ≤ 10                              | ≤ 10             |
| В                | > 10 and ≤ 15                     | > 10 and ≤ 20    |
| С                | > 15 and ≤ 25                     | > 20 and ≤ 35    |
| D                | > 25 and ≤ 35                     | > 35 and ≤ 55    |
| Ē                | > 35 and ≤ 50                     | > 55 and ≤ 80    |
| F                | > 50                              | > 80             |

The operating conditions at the study intersections and the proposed site access were evaluated using the above-described methodology and the latest Synchro software. The Existing, No-Build, and Build Levels of Service are illustrated on Figures 6, 7, 8 and 8A; respectively. The detailed capacity analyses worksheets for the intersection analyses are attached to this assessment with a description of the operating conditions summarized below.

#### Black Horse Pike (Route 40) and Franklin Boulevard Intersection

Under the existing conditions, the Black Horse Pike and Franklin Boulevard signalized intersection currently operates with an overall LOS C during the weekday AM peak hour and an overall LOS D during the weekday PM peak hour. In addition, the eastbound and westbound Black Horse Pike left-turn movements currently operate at a LOS E during both peak hours, with the exception of the eastbound left-turn movements, which currently operate at a LOS F during the weekday PM peak hour. In addition, the eastbound Route 40 shared through/right-turn movements currently operate at a LOS C or better during both peak hours. The northbound and southbound Franklin Boulevard individual movements currently operate at a LOS D or better during both peak hours with the exception of the southbound left-turn movements, which currently operate at a LOS D or better during both peak hours with the exception of the southbound left-turn movements, which currently operate at a LOS F during both peak hours.

Under the No-Build conditions, the Black Horse Pike and Franklin Boulevard signalized intersection will continue to operate at an overall LOS C during the weekday AM peak hour and an overall LOS D during the weekday PM peak hour. In addition, all individual movements will continue to operate at existing levels of service or better with the exception of the weekday AM Poute 40 through/right-turn movements, which will operate at a LOS C during the weekday AM peak hour.

Under the Build conditions, the traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the individual or overall levels of service at the Black Horse Pike/Franklin Boulevard signalized intersection during the weekday AM and weekday PM peak hours. All individual movements will continue to operate at No-Build levels of service during both peak hours. Overall, the intersection will continue to operate at a LOS C during the weekday AM peak hour and a LOS D during the weekday PM peak hour.

It should be noted that under the Build conditions, the traffic resulting from the proposed residential development will account for 2.0% of the total traffic at the intersection during the weekday AM peak hour and 1.9% of the total traffic at the intersection during the weekday PM peak hour.



#### Main Street (CR 585) and Decatur Avenue Intersection

Under the existing conditions, the Main Street/Decatur Avenue signalized intersection currently operates at an overall LOS A during the weekday AM peak hour and an overall LOS B during the weekday PM peak hour. All individual movements will operate at a LOS C or better during both peak hours.

Under the No-Build conditions, the Main Street and Decatur Avenue signalized intersection will continue to operate with an overall LOS A during the weekday AM peak hour and an overall LOS B during the weekday PM peak hour. The westbound Decatur Avenue shared left-turn/through/right-turn movements will operate with a LOS D during the weekday PM peak hour. All other movements at the intersection will continue to operate with existing levels of service.

In the Build scenario, the traffic resulting from the proposed Lakes Bay residential development will cause no changes in the future individual or overall levels of service at the Main Street/Decatur Avenue signalized intersection during the AM and PM peak hours. Overall, the intersection will continue to operate at a LOS A during the weekday AM peak hour and an overall LOS B during the weekday PM peak hour.

#### Main Street (CR 585) and Ansley Boulevard Intersection

Under the Existing conditions, the southbound Main Street conflicting left-turn movements currently operate at a LOS A during both the weekday AM and PM peak hours. In addition, the westbound Ansley Boulevard stop-controlled movements currently operate at a LOS B during the weekday AM peak hour and a LOS C during the weekday PM peak hour.

Under the No-Build conditions, the westbound stop-controlled Ansley Boulevard approach at its intersection with Main Street will operate at a LOS C during the weekday AM peak hour and a LOS D during the weekday PM peak hour. The southbound Main Street conflicting left-turn will continue to operate at a LOS A during both peak hours.

In the Build scenario, the traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the future levels of service during both the weekday AM and weekday PM peak hours. All stop-controlled and conflicting left-turn movements at the future Main Street/Ansley Boulevard intersection will continue to operate at No-Build levels of service during both peak hours.

#### Main Street (CR 585) and Bayview Avenue Intersection

Under the Existing conditions, the northbound and southbound Main Street conflicting left-turn movements currently operate at a LOS A during both the weekday AM and PM peak hours. The eastbound and westbound Bayview Avenue stop-controlled movements currently operate at a LOS C during the weekday AM peak hour and a LOS E and LOS D during the weekday PM peak hour for the eastbound and westbound approaches, respectively.

Under the No-Build conditions, all stop-controlled and conflicting left-turn movements at the Main Street/Bayview Avenue intersection will continue to operate at existing levels of service during both peak hours.

SA Project No.20033 May 3, 2020 Page 7 of 11



In the Build scenario, the traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the future levels of service during the weekday AM and weekday PM peak hours at the Main Street/Bayview Avenue intersection. All stopcontrolled and conflicting left-turn movements will continue to operate at No-Build levels of service during both peak hours.

#### Franklin Boulevard and Ansley Boulevard Intersection

Under the Existing, No-Build, and Build conditions, all stop-controlled and conflicting leftturn movements at the Ansley Boulevard/Franklin Boulevard intersection will operate at a LOS B or better during both the weekday AM and weekday PM peak hours. The traffic resulting from the proposed Spyglass at Lakes Bay residential development will have a minimal impact on the future study location during the weekday AM and weekday PM peak hours.

#### Franklin Boulevard and Roosevelt Boulevard Intersection

Under the Existing, No-Build, and Build conditions, all stop-controlled and conflicting leftturn movements at the Roosevelt Boulevard/Franklin Boulevard intersection will operate at a LOS B or better during both the weekday AM and weekday PM peak hours. The traffic resulting from the proposed Spyglass at Lakes Bay residential development will have a minimal impact on the future study location during the weekday AM and weekday PM peak hours.

#### Bayview Avenue and Hampden Court Intersection

Under the Existing, No-Build, and Build conditions, all stop-controlled and conflicting leftturn movements at the Bayview Avenue/Hampden Court intersection will operate at a LOS B or better during both the weekday AM and weekday PM peak hours. The traffic resulting from the proposed Spyglass at Lakes Bay residential development will have a minimal impact on the future study location during the weekday AM and weekday PM peak hours. It should be noted that under the future Build conditions, Hampden Court be integrated into the overall residential development.

#### Franklin Boulevard and Primary Site Driveway Intersection

Under the Build conditions, as part of the overall Spyglass at Lakes Bay residential development, one (1) new full-movement site driveway will be constructed along northbound Franklin Boulevard. The proposed site driveway will be stop-controlled at its intersection with Franklin Boulevard. Based upon this configuration, the southbound Franklin Boulevard conflicting left-turn movements will operate with a LOS A during both peak hours, while the westbound site driveway stop-controlled movements will operate at a LOS B during the weekday AM peak hour and a LOS A during the weekday PM peak hour.

#### Bayview Avenue and Franklin Boulevard Intersection

Under the future Build conditions, in conjunction with the proposed Spyglass at Lakes Bay residential development, the proposal is for the extension of Franklin Avenue south to create a new T-shaped intersection with Bayview Avenue. The Franklin Boulevard and Bayview Avenue intersection will be a T-shaped intersection that is stop-controlled along the southbound Franklin Boulevard approach. Based upon this configuration, all stop-controlled and conflicting left-turn movements will operate at a LOS A during both peak hours.

#### Air Quality Analysis



#### NJDEP Protocol

The New Jersey Department of Environmental Protection (NJDEP) outlines an air quality evaluation protocol in *Air Quality Analysis for Intersections*. NJDEP requires dispersion modeling to demonstrate that the National Ambient Air Quality Standards (NAAQS) for carbon monoxide will not be exceeded due to the additional traffic to be generated by a proposed development. As per N.J.A.C. 7:27-13.5, carbon monoxide concentrations shall not exceed 35 ppm for one-hour average concentrations and 9 ppm for eight-hour average concentrations.

Levels of service (LOS) results are the basis for determining whether or not an intersection requires dispersion modeling. Generally, a LOS A, B or C indicates that vehicle delays at an intersection are not significant enough to generate excessive CO concentrations. At signalized intersections, any movement that functions at a LOS D, E or F requires CO dispersion modeling. For unsignalized intersections, a LOS E or F on the stop-controlled approaches, and a LOS D, E or F for the major street left-turn movement indicates the need for CO dispersion modeling.

#### Data Analysis

The intersections to be analyzed for air quality violations are dependent on the levels of service at each intersection. Based on the levels of service presented in this traffic engineering assessment report and the NJDEP protocol, dispersion modeling is required for the Route 40/Franklin Boulevard and Main Street/Decatur Avenue signalized intersections. Dispersion modeling is performed during the peak hour that experiences the highest total volume at the intersection. Based upon this criterion, the study intersections were analyzed during the weekday PM peak hour.

The future No-Build and Build levels of service at the other study locations contained in this report do not require modeling based upon the latest NJDEP Protocol.

#### Data Results

Dispersion modeling was performed for the study intersections using the CAL3QHC program with input variables obtained from the MOBILE6.2 program. The MOBILE6.2 program estimates carbon monoxide emission factors for motor vehicles using default values issued by the NJDEP. These emission factors are calculated for various speeds and the anticipated build-out year. Table 3 summarizes the emission factors for the build year and the various posted speed limits within the study area. It should be noted that idle emission factors are based on a 2.5 MPH speed limit.

|                | Table 3<br>le Emission Fac<br>lms/vehicle-hou |                 |
|----------------|-----------------------------------------------|-----------------|
| Roadway        | Speed Limit                                   | Emission Factor |
| ldle           | 2.5 MPH                                       | 54.87           |
| Route 40       | 40 MPH                                        | 10.11           |
| Other Roadways | 25 MPH                                        | 9.92            |



The above emission factors were utilized to perform dispersion modeling for the required study intersections with the CAL3QHC program. The study intersections were modeled for the future No-Build and Build conditions. The CAL3QHC program yields the maximum one-hour carbon monoxide concentrations at the study intersection for each scenario. The detailed CAL3QHC output files are attached to this report.

To obtain the one-hour average CO concentration, the default background concentration of 5.0 ppm for a suburban area was added to the modeled CO concentrations obtained from the CAL3QHC program. The eight-hour average CO concentration is obtained by multiplying the one-hour average CO concentration by a 0.7 persistence factor. The resulting CO concentrations are provided in Table 4 for the study intersection under the No-Build and Build conditions.

| со с                  | Table 4<br>oncentratior | ns (ppm)            |                       |
|-----------------------|-------------------------|---------------------|-----------------------|
| Study<br>Intersection | Scenario                | One Hour<br>Average | Eight Hour<br>Average |
| Route 40 and Franklin | No-Build                | 6.90                | 4.83                  |
| Boulevard             | Build                   | 6.90                | 4.83                  |
| Main Street and       | No-Build                | 5.90                | 4.13                  |
| Decatur Avenue        | Build                   | 5.90                | 4.13                  |

The results presented in the Table 4 show that the CO concentrations resulting from the dispersion modeling presented in this report do not violate the NAAQS of 35 ppm for one-hour average concentrations and 9 ppm for eight-hour average concentrations. The maximum carbon monoxide concentrations for the Build conditions occur in the northwest quadrant of the Route 40/Franklin Boulevard signalized intersection. The maximum one-hour average CO concentration of 6.90 ppm does not exceed NAAQS standards; therefore, no further improvements are required at the study locations due to air quality conditions.

#### **Conclusion**

Based on the results presented in this traffic engineering and air quality assessment, the traffic resulting from the proposed Spyglass at Lakes Bay 180-unit residential development will have a minimal impact on the adjacent street network based upon the following conclusions:

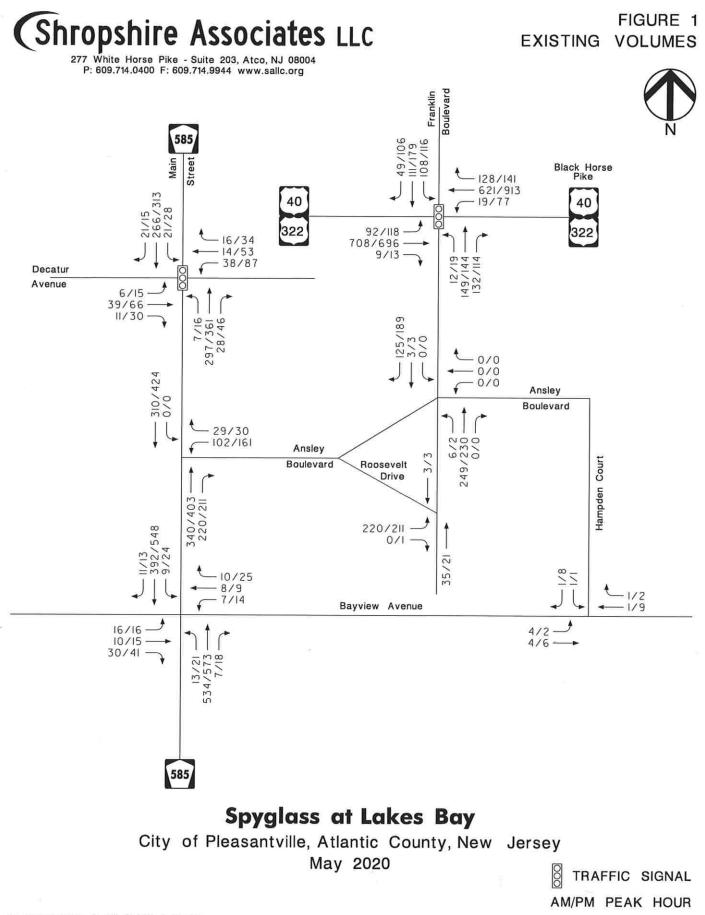
- Based upon the current ITE trip generation rates, the proposed 180-unit apartment complex will generate approximately 65 total trips during the weekday AM peak hour and approximately 78 total trips during the weekday PM peak hour. These trips will be distributed between three main access points.
- The traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the individual or overall levels of service at the Black Horse Pike/Franklin Boulevard signalized intersection during the weekday AM and weekday PM peak hours. Overall, the intersection will continue to operate at a LOS C during the weekday AM peak hour and a LOS D during the weekday PM peak hour.



Under the build conditions, the traffic generated from the proposed development will account for approximately 2.0% of the total traffic at the future Black Horse Pike/Franklin Avenue intersection during the weekday AM peak hour and 1.9% of the total traffic at the intersection during the weekday PM peak hour.

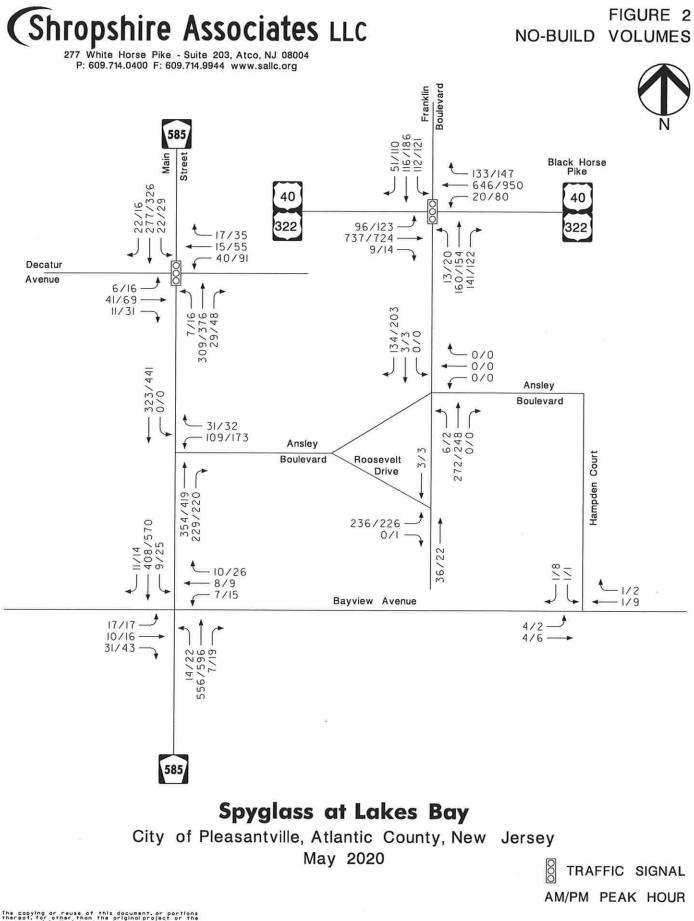
- The traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the future individual or overall levels of service at the Main Street/Decatur Avenue signalized intersection during the AM and PM peak hours. Overall, the intersection will continue to operate at a LOS A during the weekday AM peak hour and an overall LOS B during the weekday PM peak hour.
- The traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the future levels of service during both the weekday AM and weekday PM peak hours. All stop-controlled and conflicting left-turn movements at the future Main Street/Ansley Boulevard intersection will continue to operate at No-Build levels of service during both peak hours.
- The traffic resulting from the proposed Spyglass at Lakes Bay residential development will cause no changes in the future levels of service during the weekday AM and weekday PM peak hours at the Main Street/Bayview Avenue intersection. All stopcontrolled and conflicting left-turn movements will continue to operate at No-Build levels of service during both peak hours.
- The traffic resulting from the proposed Spyglass at Lakes Bay residential development will have a minimal impact on the following future study locations during the weekday AM and weekday PM peak hours.
  - Franklin Boulevard and Ansley Boulevard
  - Franklin Boulevard and Roosevelt Boulevard
  - Bayview Avenue and Hampden Court
- As part of the overall Spyglass at Lakes Bay residential development, one (1) new fullmovement site driveway will be constructed along northbound Franklin Boulevard. The proposed site driveway will be stop-controlled at its intersection with Franklin Boulevard. Based upon this configuration, the southbound Franklin Boulevard conflicting left-turn movements will operate with a LOS A during both peak hours, while the westbound site driveway stop-controlled movements will operate at a LOS B during the weekday AM peak hour and a LOS A during the weekday PM peak hour.
- In conjunction with the proposed Spyglass at Lakes Bay residential development, the proposal is for the extension of Franklin Avenue south to create a new T-shaped intersection with Bayview Avenue. The Franklin Boulevard and Bayview Avenue intersection will be a T-shaped intersection that is stop-controlled along the southbound Franklin Boulevard approach. Based upon this configuration, all stop-controlled and conflicting left-turn movements will operate at a LOS A during both peak hours.




Based upon our air quality analysis, the Route 40/Franklin Boulevard intersection in the vicinity of the proposed development will not exceed NAAQS standards for air quality under the future Build conditions. The maximum one-hour average CO concentration of 6.90 ppm will occur in the northwest quadrant of the signalized intersection. This level does not violate the standards of 35 ppm for one-hour average concentrations and 9 ppm for eight-hour average concentrations. Therefore, no further improvements are required at the study intersections due to air quality conditions.

Should you have any questions or require any additional information, please feel free to contact us.

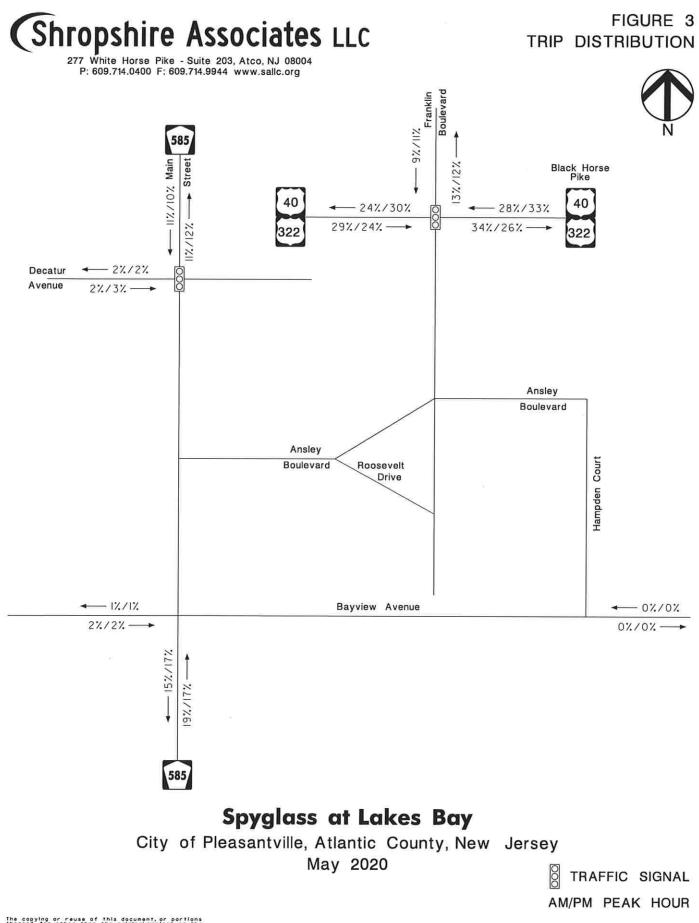
Sincerely, Shropshire Associates LLC


Nathan B. Mosley, P.E., C.M.E Professional Engineer N.J. License No. 48698 *NBM/jab Attachments* 

cc: Sean Scarborough Jay Sciullo (via email: sean@scarboroughproperties.com) (4 copies via UPS and email: jsciullo@sciulloengineering.com)



The copying or reuse of this document, or partions thereof, for other than the original project or the purpose originally intended, without the written permission of Shrapshire Associates LLC, is prohibited.


SA Project No. 20033



The copying or rause of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Snropshire Associates LLC, is prohibited.

SA Project No. 20033

.



The capying or reuse of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shropshire Associatos LLC. is prohibited.

SA Project No. 20033

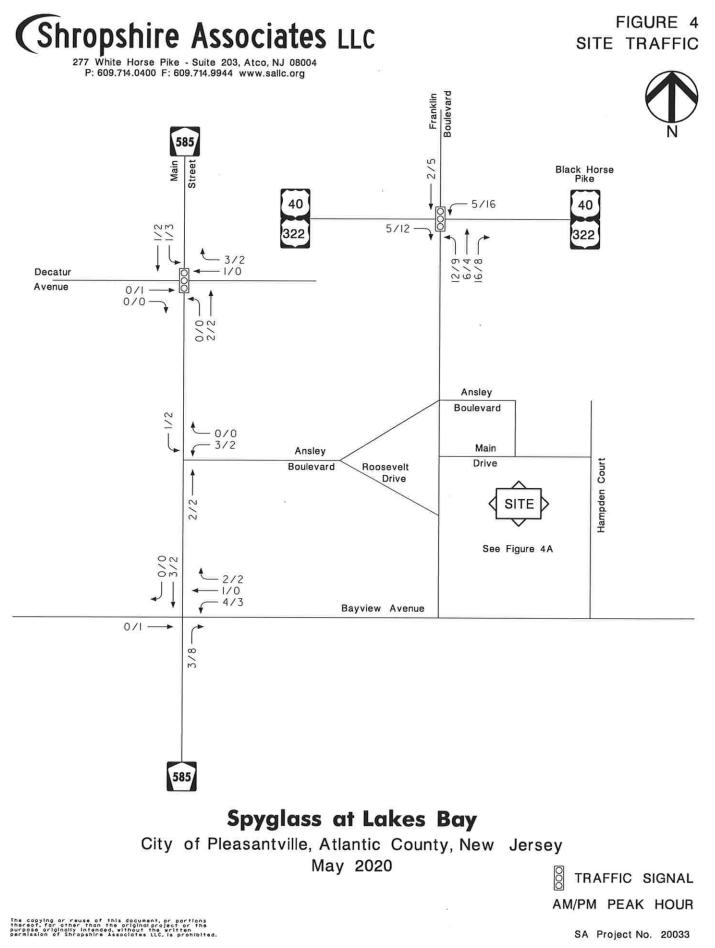
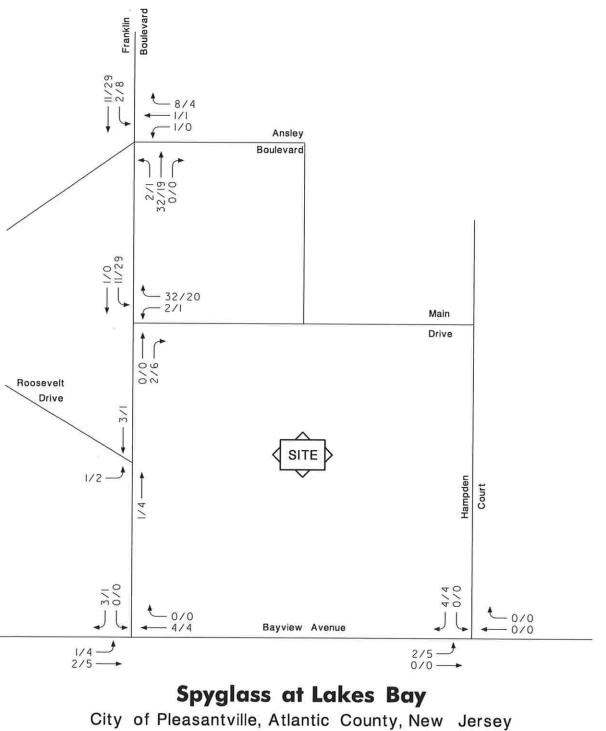
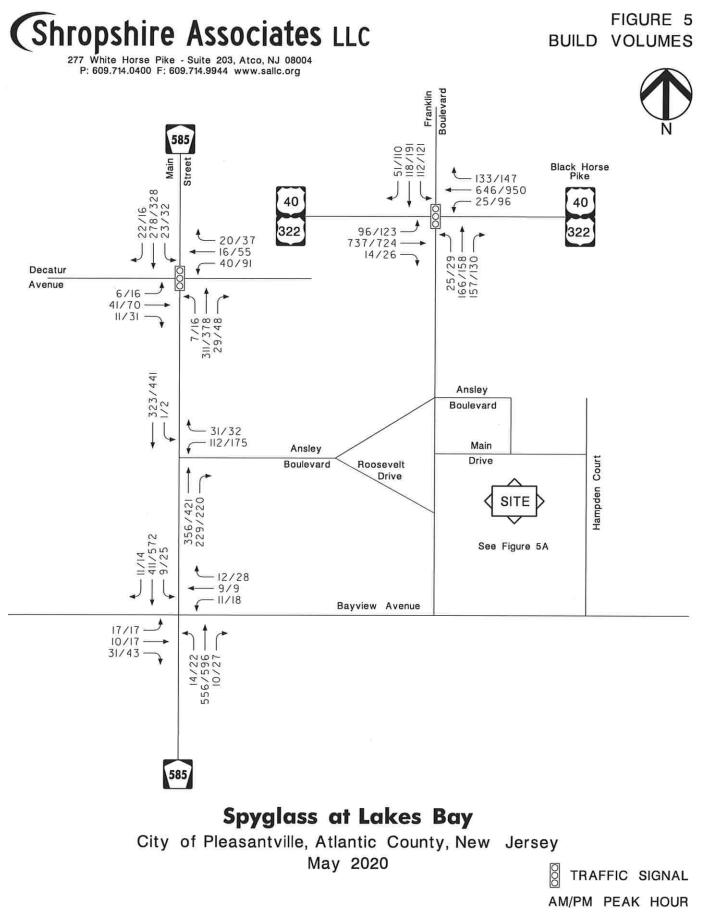






FIGURE 4A SITE TRAFFIC

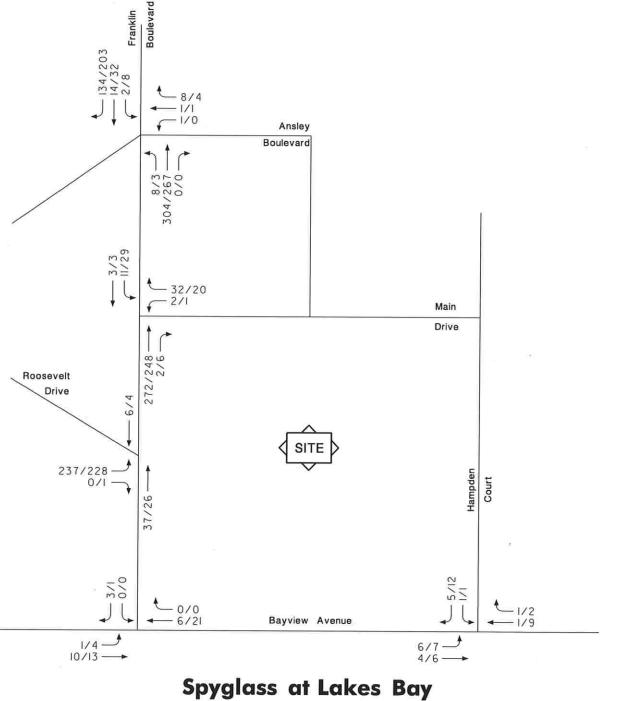


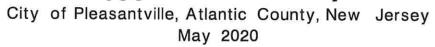

May 2020

The copying or rause of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shropshire Associates LLC, is promibited.

AM/PM PEAK HOUR

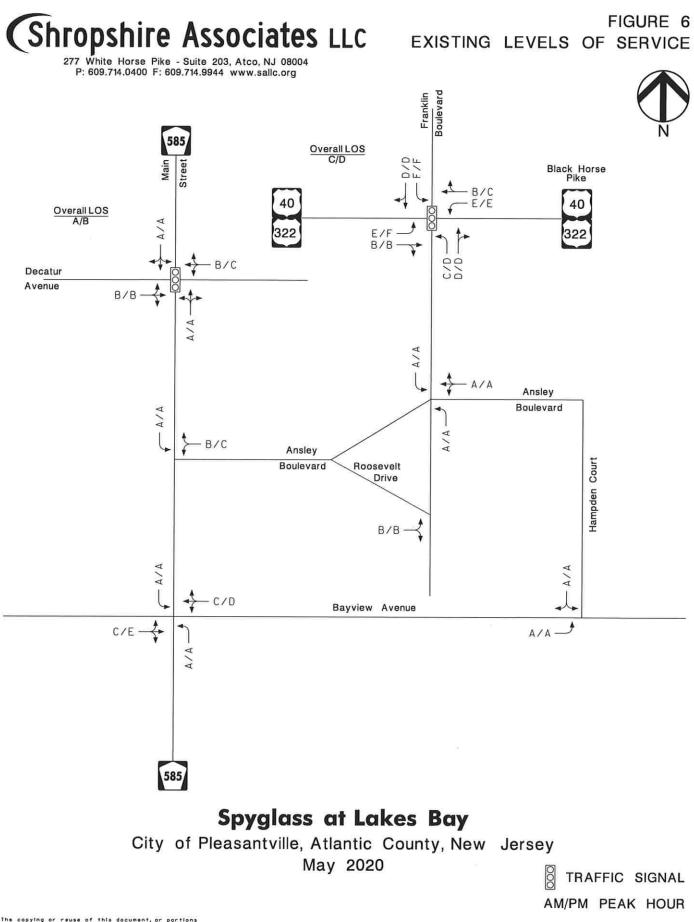
SA Project No. 20033


a,



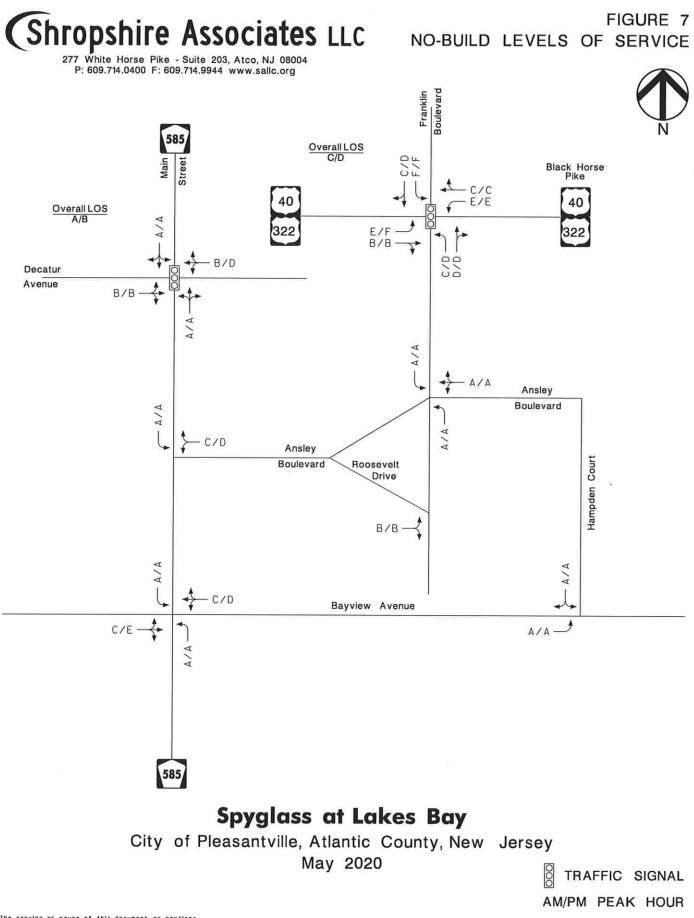

The copying or reuse of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shropshire Associates LLC, is prohibited.

SA Project No. 20033


Chropshire Associates LLC 277 White Horse Pike - Suite 203, Atco, NJ 08004 P: 609.714.0400 F: 609.714.9944 www.sallc.org FIGURE 5A BUILD VOLUMES






The copying or reuse of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shrapshire Associates LLC, is prohibited. AM/PM PEAK HOUR

SA Project No. 20033



The copying or reuse of this document, or portions thereot, for other than the original project or the purpose originally intended, without the written permission of Shrapshire Associates LLC, is prohibited.

.



The capying or reuse of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shropshire Associates LLC, is prohibited.

SA Project No. 20033

Shropshire Associates LLC FIGURE 8 BUILD LEVELS OF SERVICE 277 White Horse Pike - Suite 203, Atco, NJ 08004 P: 609.714.0400 F: 609.714.9944 www.sallc.org Boulevard Franklin 585 **Overall LOS** C/D C/D F/F Street Main Black Horse Pike C/C 40 E/E 40 Overall LOS A/B A/A 4 322 E/F 322 B/C 7 0/0 B/D Decatur Avenue B/B A/A Ansley A/A Boulevard - C/D Main Ansley Drive Hampden Court Boulevard Roosevelt Drive SITE See Figure 8A A/A - C/D 4 Bayview Avenue C/E A/A 585 Spyglass at Lakes Bay City of Pleasantville, Atlantic County, New Jersey May 2020 000 TRAFFIC SIGNAL AM/PM PEAK HOUR

The copying or rause of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shropshire Associates LLC, is prohibited.

SA Project No. 20033

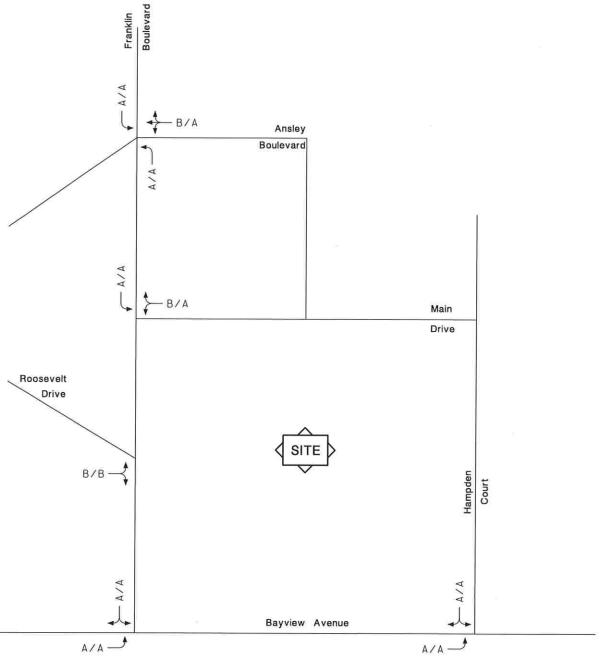

.



FIGURE 8A BUILD LEVELS OF SERVICE

277 White Horse Pike - Suite 203, Atco, NJ 08004 P: 609.714.0400 F: 609.714.9944 www.sallc.org





## Spyglass at Lakes Bay

City of Pleasantville, Atlantic County, New Jersey May 2020

The copying or reuse of this document, or portions thereof, for other than the original project or the purpose originally intended, without the written permission of Shropshire Associates LLC, is prohibited. AM/PM PEAK HOUR

SA Project No. 20033

## Shropshire Associates LLC 277 Whitehorse Pike, Suite 203

Atco, NJ 08004

N/S Route: S, Franklin Blvd E/W Route: Route 40 Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/GH/3142

File Name : 20033003 Site Code : 20033003 Start Date : 3/12/2020 Page No : 1

|             |       |      |         |         |           |       |      | Grou   | ps Pri | nted- U   | nshift | ed - Ba | ank 1  |                                          |           |       |      |        |     |           |            |
|-------------|-------|------|---------|---------|-----------|-------|------|--------|--------|-----------|--------|---------|--------|------------------------------------------|-----------|-------|------|--------|-----|-----------|------------|
|             |       | S.F  | Frankli | in Blvd |           |       |      | Route  |        |           | 1      |         |        | in Blvd                                  |           |       |      | Route  | 40  |           | 1          |
|             |       | S    | outhbo  | bnuc    |           |       | V    | Vestbo | und    |           | 1      |         | orthbo |                                          |           |       |      | Eastbo |     |           |            |
| Start Time  | Right | Thru | Left    | ROR     | App Total | Right | Thru | Left   |        | App Total | Right  | 1       | Left   |                                          | App Total | Right | Thru |        |     | App Total | Int. Total |
| 07:00 AM    | 1     | 8    | 19      | 9       | 37        | 14    | 81   | 1      | 0      | 96        | 0      | -       | 1      | 11                                       | 26        | 0     | 103  |        | 0   | 111       | 270        |
| 07:15 AM    | 3     | 16   | 23      | 13      | 55        | 26    | 89   | 2      | 3      | 120       | 4      | 11      | 3      |                                          | 37        | 2     | 129  |        | ŏ   | 145       | 357        |
| 07:30 AM    | 3     | 26   | 27      | 5       | 61        | 32    | 134  | 4      | 5      | 175       | 14     | 42      | 2      |                                          | 82        | 2     | 184  |        | ŏ   | 217       | 535        |
| 07:45 AM    | 10    | 21   | 31      | 6       | 68        | 36    | 144  | 4      | 3      | 187       | 14     | 40      | 4      |                                          | 76        | 2     | 203  |        | ŏ   | 233       | 564        |
| Total       | 17    | 71   | 100     | 33      | 221       | 108   | 448  | 11     | 11     | 578       |        | 107     | 10     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 221       | 6     | 619  |        | 0   | 706       | 1726       |
| 08:00 AM    | 4     | 33   | 26      | 6       | 69        | 18    | 152  | 5      | 2      | 177       | 7      | 24      | 3      | 22                                       | 56        | 1     | 163  | 18     | 0   | 182       | 484        |
| 08:15 AM    | 8     | 31   | 24      | 7       | 70        | 28    | 191  | 6      | 4      | 229       | 19     | 43      | 3      |                                          | 79        | 4     | 158  |        | õ   | 177       | 555        |
| 08:30 AM    | 13    | 22   | 31      | 5       | 71        | 14    | 170  | 4      | 4      | 192       | 13     | 34      | 1      | 17                                       | 65        | 3     | 166  |        | 0   | 185       | 513        |
| 08:45 AM    | 11    | 37   | 35      | 19      | 102       | 13    | 143  | 8      | 4      | 168       | 8      | 35      | 3      | 23                                       | 69        | 1     | 136  | 0.075  | 1   | 155       | 494        |
| Total       | 36    | 123  | 116     | 37      | 312       | 73    | 656  | 23     | 14     | 766       | 47     | 136     | 10     | 76                                       | 269       | 9     | 623  | 66     | 1   | 699       | 2046       |
| ··· BREAK   | •••   |      |         |         |           |       |      |        |        |           |        |         |        |                                          |           |       |      |        |     |           |            |
| 02:00 PM    | 4     | 22   | 24      | 11      | 61        | 20    | 194  | 3      | 1      | 218       | 19     | 23      | 8      | 16                                       | 66        | 4     | 173  | 20     | 0   | 197       | 542        |
| 02:15 PM    | 8     | 35   | 38      | 7       | 88        | 31    | 163  | 10     | 1      | 205       | 14     | 27      | 7      | 15                                       | 63        | 1     | 159  | 13     | õ   | 173       | 529        |
| 02:30 PM    | 10    | 32   | 25      | 10      | 77        | 31    | 242  | 10     | 0      | 283       | 8      | 24      | 6      | 9                                        | 47        | 3     | 174  | 25     | 0   | 202       | 609        |
| 02:45 PM    | 6     | 28   | 34      | 13      | 81        | 30    | 219  | 8      | 0      | 257       | 10     | 30      | 5      | 11                                       | 56        | 10    | 157  | 27     | 0   | 194       | 588        |
| Total       | 28    | 117  | 121     | 41      | 307       | 112   | 818  | 31     | 2      | 963       | 51     | 104     | 26     | 51                                       | 232       | 18    | 663  | 85     | 0   | 766       | 2268       |
| 03:00 PM    | 19    | 43   | 23      | 12      | 97        | 31    | 198  | 8      | 0      | 237       | 6      | 31      | 5      | 16                                       | 58        | 2     | 124  | 34     | 0   | 160       | 552        |
| 03:15 PM    | 12    | 47   | 36      | 17      | 112       | 30    | 227  | 11     | 0      | 268       | 24     | 38      | 4      | 13                                       | 79        | 1     | 147  | 32     | õ   | 180       | 639        |
| 03:30 PM    | 8     | 52   | 29      | 14      | 103       | 43    | 214  | 9      | 0      | 266       | 18     | 38      | 2      | 15                                       | 73        | 3     | 181  | 21     | 0   | 205       | 647        |
| 03:45 PM    | 8     | 35   | 29      | 10      | 82        | 29    | 209  | 15     | 5      | 258       | 15     | 34      | 7      | 12                                       | 68        | 3     | 180  | 20     | 0   | 203       | 611        |
| Total       | 47    | 177  | 117     | 53      | 394       | 133   | 848  | 43     | 5      | 1029      | 63     | 141     | 18     | 56                                       | 278       | 9     | 632  | 107    | 0   | 748       | 2449       |
| 04:00 PM    | 12    | 27   | 21      | 16      | 76        | 29    | 231  | 7      | 1      | 268       | 8      | 38      | 6      | 21                                       | 73        | 2     | 178  | 16     | 0   | 196       | 613        |
| 04:15 PM    | 12    | 58   | 29      | 19      | 118       | 38    | 223  | 13     | 1      | 275       | 20     | 32      | 4      | 10                                       | 66        | 3     | 189  | 23     | 1   | 216       | 675        |
| 04:30 PM    | 14    | 34   | 22      | 18      | 88        | 31    | 221  | 11     | 0      | 263       | 18     | 32      | 2      | 8                                        | 60        | 1     | 185  | 23     | 0   | 209       | 620        |
| 04:45 PM    | 11    | 46   | 29      | 20      | 106       | 42    | 244  | 14     | 0      | 300       | 19     | 36      | 5      | 5                                        | 65        | 6     | 171  | -19    | 1   | 197       | 668        |
| Total       | 49    | 165  | 101     | 73      | 388       | 140   | 919  | 45     | 2      | 1106      | 65     | 138     | 17     | 44                                       | 264       | 12    | 723  | 81     | 2   | 818       | 2576       |
| 05:00 PM    | 13    | 45   | 31      | 9       | 98        | 33    | 217  | 31     | 1      | 282       | 6      | 33      | 8      | 13                                       | 60        | 4     | 164  | 34     | 0   | 202       | 642        |
| 05:15 PM    | 9     | 54   | 34      | 12      | 109       | 33    | 231  | 21     | 1      | 286       | 22     | 43      | 4      | 23                                       | 92        | 1     | 176  | 42     | 0   | 219       | 706        |
| 05:30 PM    | 7     | 31   | 25      | 12      | 75        | 29    | 199  | 13     | 4      | 245       | 17     | 26      | 7      | 16                                       | 66        | 2     | 189  | 22     | 0   | 213       | 599        |
| 05:45 PM    | 10    | 27   | 31      | 2       | 70        | 19    | 183  | 8      | 2      | 212       | 23     | 26      | 5      | 6                                        | 60        | 5     | 197  | 13     | 0   | 215       | 557        |
| Total       | 39    | 157  | 121     | 35      | 352       | 114   | 830  | 73     | 8      | 1025      | 68     | 128     | 24     | 58                                       | 278       | 12    | 726  | 111    | 0   | 849       | 2504       |
| Grand Total | 216   | 810  | 676     | 272     | 1974      | 680   | 4519 | 226    | 42     | 5467      | 326    | 754     | 105    | 357                                      | 1542      | 66    | 3986 | 531    | 3   | 4586      | 13569      |
| Apprch %    | 10.9  | 41   | 34.2    | 13.8    |           | 12.4  | 82.7 | 4.1    | 0.8    | 1         | 21.1   | 48.9    | 6.8    | 23.2                                     |           | 1.4   | 86.9 | 11.6   | 0.1 | 191021    | 1000000    |
| Total %     | 1.6   | 6    | 5       | 2       | 14.5      | 5     | 33.3 | 1.7    | 0.3    | 40.3      | 2.4    | 5.6     | 0.8    | 2.6                                      | 11.4      | 0.5   | 29.4 | 3.9    | 0   | 33.8      |            |
| Unshifted   | 214   | 809  | 676     | 271     | 1970      | 679   | 4515 |        |        |           |        |         |        |                                          |           |       | 3983 |        |     |           | 13555      |
| % Unshifted | 99.1  | 99.9 | 100     | 99.6    | 99.8      | 99.9  | 99.9 | 100    | 100    | 99.9      | 100    | 100     | 100    | 100                                      | 100       | 100   | 99.9 | 99.6   | 100 | 99.9      | 99.9       |
| Bank 1      | 2     | 1    | 0       | 1       | 4         | 1     | 4    | 0      | 0      | 5         | 0      | 0       | 0      | 0                                        | 0         | 0     | 3    | 2      | 0   | 5         | 14         |
| % Bank 1    | 0.9   | 0.1  | 0       | 0.4     | 0.2       | 0.1   | 0.1  | 0      | 0      | 0.1       | 0      | 0       | 0      | 0                                        | 0         | 0     | 0.1  | 0.4    | 0   | 0.1       | 0.1        |

## Shropshire Associates LLC

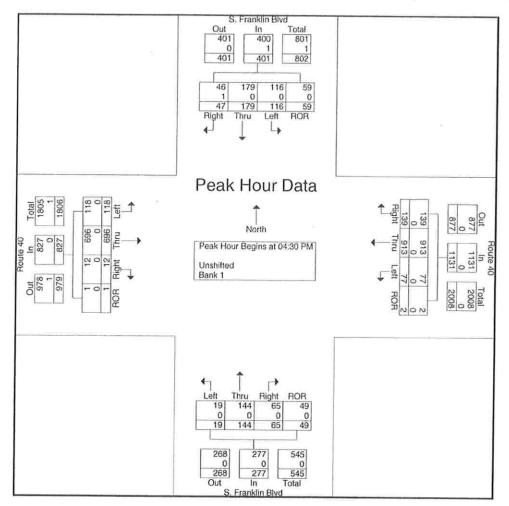
277 Whitehorse Pike, Suite 203 Atco, NJ 08004

N/S Route: S, Franklin Blvd E/W Route: Route 40 Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/GH/3142

File Name : 20033003 Site Code : 20033003 Start Date : 3/12/2020 Page No : 2

|               |         |         | rankli  | n Blvd<br>ound |           |        |        | Route<br>estbo | 1.07 |          |       |      | rankli | n Blvd<br>ound |           |       |      | Route | 1997 - C |           | ]          |
|---------------|---------|---------|---------|----------------|-----------|--------|--------|----------------|------|----------|-------|------|--------|----------------|-----------|-------|------|-------|----------|-----------|------------|
| Start<br>Time | Right   | Thru    | Left    | ROR            | App Total | Right  | Thru   | Left           | ROR  | App Toba | Right | Thru | Left   | ROR            | App Total | Right | Thru | Left  | ROR      | App Total | Int. Total |
| Peak Hour A   | Analysi | is Fron | n 07:0  | 0 AM t         | o 11:45   | AM -   | Peak ' | of 1           |      |          |       | -    |        | L              |           |       |      |       |          |           | I          |
| Peak Hour f   | or Enti | re Inte | rsectio | on Beg         | ins at 0  | 7:30 A | M      |                |      |          |       |      |        |                |           |       |      |       |          |           |            |
| 07:30 AM      | 3       | 26      | 27      | 5              | 61        | 32     | 134    | 4              | 5    | 175      | 14    | 42   | 2      | 24             | 82        | 2     | 184  | 31    | 0        | 217       | 535        |
| 07:45 AM      | 10      | 21      | 31      | 6              | 68        | 36     | 144    | 4              | 3    | 187      | 14    | 40   | 4      | 18             | 76        | 2     | 203  | 28    | 0        | 233       | 564        |
| 08:00 AM      | 4       | 33      | 26      | 6              | 69        | 18     | 152    | 5              | 2    | 177      | 7     | 24   | 3      | 22             | 56        | 1     | 163  | 18    | 0        | 182       | 484        |
| 08:15 AM      | 8       | 31      | 24      | 7              | 70        | 28     | 191    | 6              | 4    | 229      | 19    | 43   | 3      | 14             | 79        | 4     | 158  | 15    | õ        | 177       | 555        |
| Total Voluma  | 25      | 111     | 108     | 24             | 268       | 114    | 621    | 19             | 14   | 768      | 54    | 149  | 12     | 78             | 293       | 9     | 708  | 92    | ő        | 809       | 2138       |
| % App. Total  | 9.3     | 41.4    | 40.3    | 9              |           | 14.8   | 80.9   | 2.5            | 1.8  |          | 18.4  | 50.9 | 4.1    | 26.6           |           | 1.1   | 87.5 | 11.4  | ŏ        | 000       | 2100       |
| PHF           | .625    | .841    | .871    | .857           | .957      | .792   | .813   | .792           | .700 | .838     | .711  | .866 | .750   | .813           | .893      | .563  | .872 | .742  | .000     | .868      | .948       |
| Unshifted     | 25      | 111     | 108     | 23             | 267       | 114    | 620    | 19             | 14   | 767      | 54    | 149  | 12     | 78             | 293       | 9     | 707  | 92    | 0        | 808       | 2135       |
| % Unshifted   |         |         |         | 95.8           | 99.6      | 100    | 99.8   | 100            | 100  | 99.9     | 100   | 100  | 100    | 100            | 100       | 100   | 99.9 | 100   | õ        | 99.9      | 99.9       |
| Bank 1        | 0       | 0       | 0       | 1              | 1         | 0      | 1      | 0              | 0    | 1        | 0     | 0    | 0      | 0              | 0         | 0     | 1    | 0     | õ        | 1         | 3          |
| % Bank 1      | 0       | 0       | 0       | 4.2            | 0.4       | 0      | 0.2    | 0              | 0    | 0.1      | 0     | 0    | 0      | 0              | 0         | 0     | 0.1  | õ     | õ        | 0.1       | 0.1        |




## Shropshire Associates LLC

277 Whitehorse Pike, Suite 203 Atco, NJ 08004

#### N/S Route: S, Franklin Blvd E/W Route: Route 40 Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/GH/3142

File Name : 20033003 Site Code : 20033003 Start Date : 3/12/2020 Page No : 3

|               |         |         | rankli<br>outhbo | n Blvd<br>ound |           |        |        | Route<br>/estbo |      |           |       |      | rankli<br>orthbo | n Blvd<br>und |            |       |      | Route |      |                 |            |
|---------------|---------|---------|------------------|----------------|-----------|--------|--------|-----------------|------|-----------|-------|------|------------------|---------------|------------|-------|------|-------|------|-----------------|------------|
| Start<br>Time | Right   | Thru    | Left             | ROR            | App Total | Right  | Thru   | Left            | ROR  | App Total | Right | Thru | Left             | ROR           | App. Total | Right | Thru | Left  | ROR  | App Total       | Int. Total |
| Peak Hour A   | Analysi | s Fron  | n 12:0           | 0 PM t         | 0 05:45   | PM -   | Peak ' | 1 of 1          |      |           |       |      |                  | L             |            |       | 1    |       |      | And the same of | L          |
| Peak Hour f   | or Enti | re Inte | rsectio          | on Beg         | ins at 0  | 4:30 F | M      |                 |      |           |       |      |                  |               |            |       |      |       |      |                 |            |
| 04:30 PM      | 14      | 34      | 22               | 18             | 88        | 31     | 221    | 11              | 0    | 263       | 18    | 32   | 2                | 8             | 60         | 1     | 185  | 23    | 0    | 209             | 620        |
| 04:45 PM      | 11      | 46      | 29               | 20             | 106       | 42     | 244    | 14              | 0    | 300       | 19    | 36   | 5                | 5             | 65         | 6     | 171  | 19    | 1    | 197             | 668        |
| 05:00 PM      | 13      | 45      | 31               | 9              | 98        | 33     | 217    | 31              | 1    | 282       | 6     | 33   | 8                | 13            | 60         | 4     | 164  | 34    | ò    | 202             | 642        |
| 05:15 PM      | 9       | 54      | 34               | 12             | 109       | 33     | 231    | 21              | 1    | 286       | 22    | 43   | 4                | 23            | 92         | 1     | 176  | 42    | õ    | 219             | 706        |
| Total Volume  | 47      | 179     | 116              | 59             | 401       | 139    | 913    | 77              | 2    | 1131      | 65    | 144  | 19               | 49            | 277        | 12    | 696  | 118   | 1    | 827             | 2636       |
| % App. Total  | 11.7    | 44.6    | 28.9             | 14.7           |           | 12.3   | 80.7   | 6.8             | 0.2  |           | 23.5  | 52   | 6.9              | 17.7          |            | 1.5   |      | 14.3  | 0.1  |                 | 2000       |
| PHF           | .839    | .829    | .853             | .738           | .920      | .827   | .935   | .621            | .500 | .943      | .739  | .837 | .594             | .533          | .753       | .500  | .941 | .702  | .250 | .944            | .933       |
| Unshifted     | 46      | 179     | 116              | 59             | 400       | 139    | 913    | 77              | 2    | 1131      | 65    | 144  | 19               | 49            | 277        | 12    | 696  | 118   | 1    | 827             | 2635       |
| % Unshifted   | 97.9    | 100     | 100              | 100            | 99.8      | 100    | 100    | 100             | 100  | 100       | 100   | 100  | 100              | 100           | 100        | 100   | 100  | 100   | 100  | 100             | 100.0      |
| Bank 1        | 1       | 0       | 0                | 0              | 1         | 0      | 0      | 0               | 0    | 0         | 0     | 0    | 0                | 0             | 0          | 0     | 0    | 0     | 0    | 0               | 1          |
| % Bank 1      | 2.1     | 0       | 0                | 0              | 0.2       | 0      | 0      | 0               | 0    | 0         | 0     | 0    | 0                | 0             | 0          | 0     | 0    | 0     | 0    | 0               | 0.0        |



Shropshire Associates LLC 277 Whitehorse Pike, Suite 203 Atco, NJ 08004

## N/S Route: Main Street E/W Route: Decatur Avenue Pleasantville Twp/Atlantic County/NJ Tuesday/cloudy rain/GH/3142

| File Name  | : 20033001  |
|------------|-------------|
| Site Code  | : 20033001  |
| Start Date | : 3/10/2020 |
| Page No    | : 1         |

| Suth Time         South South         Westbound         North South         Eastbound         Eastbound           Corr         Start Time         Applin         Thu         Left         POR         Applin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          | lain St |       |                                                                                                                 |                       |                       | atur A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | venue        | nted- U                                  | nshifte     | N          | lain St |             |                                         |     |           |     | venue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|---------|-------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-------------|------------|---------|-------------|-----------------------------------------|-----|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|
| 07:00 AM       2       44       2       0       45       0       4       3       2       9       3       35       2       1       14       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< th=""><th><b>0</b></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>and the second se</th><th></th><th></th><th></th><th>F</th><th></th><th>22211222211</th><th></th><th></th><th>1.11</th><th></th><th></th><th></th><th></th></t<> | <b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                          |         |       |                                                                                                                 |                       |                       | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                          |             | F          |         | 22211222211 |                                         |     | 1.11      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| 07:15 AM       1       64       2       0       67       3       1       4       0       8       1       61       3       66       0       7       0       1         07:30 AM       6       62       2       1       1       0       5       8       1       14       4       76       1       0       63       4       5       2       0       11         07:30 AM       6       62       1       1       0       7       2       25       5       12       22       6       45       10       245       8       4       267       10       12       6       1       80       3       3       1       4       10       2       20       5       77       1       8       8       3       1       1       1       14       4       10       2       20       5       77       7       7       332       6       39       6       5       566       2       1       14       14       10       1       14       10       1       30       1       17       1       83       4       14       11       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | and the set of the local |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         | -   | -         |     | ROR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | App. Total  | Int. Total |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 방법을 위해 가격을 내렸어야!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                          |         |       |                                                                                                                 | - C                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1992                                     | 1 1         |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5           | 100        |
| 07:45 AM       3       63       1       1       68       2       2       7       3       14       2       71       4       0       777       2       6       4       0       12         Total       12       230       7       2       251       5       12       22       6       45       10       245       8       4       267       10       12       6       1       280         08:00 AM       6       59       7       0       72       2       3       7       0       12       6       78       0       1       85       5       6       2       1       14         08:15 AM       8       61       1       1       71       4       4       10       2       20       5       77       7       332       6       39       6       5       56         08:45 AM       1       70       4       83       8       5       12       3       28       11       82       3       1       97       5       26       3       3       37         02:00 PM       4       71       7       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - US | 1000                     |         |       | 200                                                                                                             |                       | 1.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          | 1 2         |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 142        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75 |                          |         | 2.    |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 14                                       |             |            | 1       | 0           | 83                                      | 4   | 5         | 2   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11          | 179        |
| 08:00 AM       6       59       7       0       72       2       3       7       0       12       6       78       0       1       85       5       6       2       1       14         08:15 AM       4       70       4       0       776       3       3       10       3       19       4       73       1       3       81       0       8       3       2       13         08:30 AM       8       61       1       1       71       4       4       10       2       20       5       77       2       1       85       1       13       0       12       1       14         Total       19       266       21       2       308       10       14       38       6       68       21       277       7       332       6       39       6       5       56         •***       9       70       4       0       83       4       14       13       2       33       7       81       4       0       92       3       14       5       26       3       3       37       0       92       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07:45 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3    | 63                       |         |       | 68                                                                                                              | 2                     | 2                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3            | 14                                       | 2           | 71         | 4       | 0           | 77                                      | 2   | 6         | 4   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12          | 171        |
| 08:15 AM       4       70       4       0       78       3       3       10       3       19       4       73       1       3       81       0       8       3       2       13         08:30 AM       8       61       1       1       77       4       4       10       2       20       5       77       2       1       85       1       13       0       1       15         08:45 AM       1       76       1       4       11       17       6       9       4       281       0       12       1       1       14         Total       19       266       21       2       308       10       14       38       6       68       21       297       7       7       332       6       39       6       5       56         ****       8       6       68       21       297       7       7       332       6       13       8       0       27       7       7       332       6       13       8       0       27       7       13       14       16       0       37       10       82       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12   | 230                      | 7       | 2     | 251                                                                                                             | 5                     | 12                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6            | 45                                       | 10          | 245        | 8       | 4           | 267                                     | 10  | 12        | 6   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29          | 592        |
| 08:30 AM       8       61       1       1       7       4       4       10       2       20       5       77       2       1       85       1       13       0       1       15         08:30 AM       1       76       9       1       87       1       4       11       1       17       6       69       4       2       81       0       12       1       1       14         Total       19       266       21       2       308       10       14       38       6       68       21       297       7       7       332       6       39       6       5       56         *** BREAK ***       02:00 PM       4       71       7       1       83       4       14       13       2       33       7       81       4       0       92       3       14       5       4       26         02:00 PM       6       99       7       0       112       10       4       13       1       28       3       7       81       4       0       92       3       14       5       26       33       3       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08:00 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                          | 7       | -     | 72                                                                                                              |                       | 3                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0            | 12                                       | 6           | 78         | 0       | 1           | 85                                      | 5   | 6         | 2   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14          | 183        |
| 08:45 AM       1       76       9       1       87       1       4       11       1       17       6       69       4       2       81       0       12       1       1       14         Total       19       266       21       2       308       10       14       38       6       68       21       297       7       7       332       6       39       6       5       56         *** BREAK ***       02:00 PM       4       71       7       1       83       8       5       12       3       28       11       82       3       1       97       5       26       3       3       37         02:30 PM       6       99       7       0       12       1       4       13       128       3       77       3       1       84       8       0       27       7       1       36       1       4       14       16       0       37       10       82       1       0       93       6       13       8       0       22       69       24       9       124         03:00 PM       7       78       5 </td <td>08:15 AM</td> <td>4</td> <td>70</td> <td>4</td> <td>-</td> <td>78</td> <td>3</td> <td>3</td> <td>10</td> <td>3</td> <td>19</td> <td>4</td> <td>73</td> <td>1</td> <td>3</td> <td>81</td> <td>0</td> <td>8</td> <td>3</td> <td>2</td> <td>13</td> <td>191</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08:15 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4    | 70                       | 4       | -     | 78                                                                                                              | 3                     | 3                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3            | 19                                       | 4           | 73         | 1       | 3           | 81                                      | 0   | 8         | 3   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13          | 191        |
| 08:45 AM       1       76       9       1       87       1       4       11       1       17       6       69       4       2       81       0       12       1       1       14         Total       19       266       21       2       308       10       14       38       6       68       21       297       7       7       332       6       39       6       5       566         *** BREAK ***       ***       ***       ***       ***       ***       81       4       0       92       3       14       5       4       26       34       4       4       12       33       7       81       4       0       92       3       14       5       4       26       34       22       31       17       3       18       8       14       16       0       37       10       82       1       0       93       6       13       8       0       22       14       14       14       13       32       11       2       366       12       9       124       1       42       3       83       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08:30 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8    | 61                       | 1       | 1     | 71                                                                                                              | 4                     | 4                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            | 20                                       | 5           | 77         | 2       | 1           | 85                                      | 1   | 13        |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15          | 191        |
| Total         19         266         21         2         308         10         14         38         6         68         21         297         7         7         332         6         39         6         5         56           *** BREAK ***           02:00 PM         4         71         7         1         83         8         5         12         3         28         11         82         3         1         97         5         26         3         3         37           02:15 PM         9         70         4         0         83         4         14         13         2         33         7         81         4         0         92         3         14         5         4         26           02:45 PM         4         65         9         7         1         356         29         37         54         6         126         31         322         11         2         366         22         69         24         9         124           03:00 PM         7         78         5         0         90         8         9         24         1         42<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08:45 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    | 76                       | 9       | 1     | 87                                                                                                              | 1                     | 4                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 17                                       | 6           | 69         |         | 2           | 81                                      | 0   |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·           | 199        |
| 02:00 PM       4       71       7       1       83       8       5       12       3       28       11       82       3       1       97       5       26       3       3       37         02:15 PM       6       99       7       0       112       10       4       13       1       28       377       3       1       84       8       16       8       2       34         02:45 PM       4       65       9       0       78       7       14       16       0       37       10       82       1       0       93       6       13       8       0       227         Total       23       305       27       1       356       29       37       54       6       126       31       322       11       2       366       6       19       6       4       35         03:00 PM       7       78       5       0       90       85       5       13       28       1       47       5       80       4       0       89       7       17       5       1       30         03:15 PM       5       58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19   | 266                      | 21      | 2     | 308                                                                                                             | 10                    | 14                    | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6            | 68                                       | 21          | 297        |         |             |                                         |     |           |     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 764        |
| 02:15 PM       9       70       4       0       83       4       14       13       2       33       7       81       4       0       92       3       14       5       4       26         02:30 PM       6       99       7       0       112       10       4       13       1       28       3       77       3       1       84       8       16       8       2       34         02:45 PM       4       65       9       0       78       7       14       16       0       37       10       82       1       0       93       6       13       8       0       227         Total       23       305       27       1       356       29       37       54       6       126       31       322       11       2       366       22       69       24       9       73       3       0       86       6       19       6       4       35       36       30       30       85       10       18       8       2       38       36       30       30       85       10       18       8       14       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · BREAK ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                          |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| 02:30 PM       6       99       7       0       112       10       4       13       1       28       3       77       3       1       84       8       16       8       2       34         02:45 PM       4       65       9       0       78       7       14       16       0       37       10       82       1       0       93       6       13       8       0       27         Total       23       305       27       1       356       29       37       54       6       126       31       322       11       2       366       22       69       24       9       124         03:00 PM       7       78       5       0       90       8       9       24       1       42       3       83       0       86       6       19       6       4       35         03:30 PM       6       70       9       85       13       12       29       0       54       14       72       6       0       92       7       17       4       2       30         03:30 PM       5       58       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02:00 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4    | 71                       | 7       | 1     | 83                                                                                                              | 8                     | 5                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3            | 28                                       | 11          | 82         | 3       | 1           | 97                                      | 5   | 26        | 3   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37          | 245        |
| 02:30 PM       6       99       7       0       112       10       4       13       1       28       3       77       3       1       0       93       6       13       8       0       27         Total       23       305       27       1       356       29       37       54       6       126       31       322       11       2       366       22       69       24       9       124         03:00 PM       7       78       5       0       90       8       9       24       1       42       3       83       0       0       86       6       19       6       4       35         03:15 PM       1       73       6       1       81       6       17       16       2       41       97       3       0       85       10       18       2       38         03:30 PM       6       70       9       0       85       5       13       28       1       47       5       80       4       0       89       7       17       5       1       30         03:30 PM       5       58       7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02:15 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9    | 70                       | 4       | 0     | 83                                                                                                              | 4                     | 14                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            | 33                                       | 7           | 81         | 4       | 0           | 92                                      | 3   | 14        | 5   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26          | 234        |
| 02:45 PM       4       65       9       0       78       7       14       16       0       37       10       82       1       0       93       6       13       8       0       27         Total       23       305       27       1       356       29       37       54       6       126       31       322       11       2       366       22       69       24       9       124         03:00 PM       7       78       5       0       90       8       9       24       1       42       3       83       0       0       86       6       19       6       4       35         03:00 PM       7       78       5       0       90       85       513       28       1       47       5       80       4       0       89       7       17       5       1       30         03:30 PM       5       58       7       0       70       13       12       29       1       48       31       308       13       0       352       30       71       23       9       133       0       369       8       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02:30 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    | 99                       | 7       | 0     | 112                                                                                                             | 10                    | 4                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 28                                       | 3           | 77         | 3       | 1           | 84                                      |     | 16        |     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 258        |
| Total         23         305         27         1         356         29         37         54         6         126         31         322         11         2         366         22         69         24         9         124           03:00 PM         7         78         5         0         90         8         9         24         1         42         3         83         0         0         86         6         19         6         4         35           03:15 PM         1         73         6         1         81         6         17         16         2         41         9         73         3         0         85         10         18         8         2         38           03:45 PM         5         58         7         0         70         13         12         29         0         54         14         72         6         0         92         7         17         4         2         30           04:00 PM         3         59         8         1         71         6         12         32         2         51         5         94         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02:45 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4    | 65                       | 9       | 0     | 78                                                                                                              | 7                     | 14                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0            | 37                                       | 10          | 82         | 1       | 0           | 93                                      |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 2014 A 10 | 235        |
| 03:15 PM       1       73       6       1       81       6       17       16       2       41       9       73       3       0       85       10       18       8       2       38         03:30 PM       6       70       9       0       85       5       13       28       1       47       5       80       4       0       89       7       17       5       1       30         03:45 PM       5       58       7       0       70       13       12       29       0       54       14       72       6       0       92       7       17       4       2       30         04:00 PM       3       59       8       1       71       6       12       32       2       51       5       94       3       0       102       12       16       6       2       36         04:30 PM       2       87       4       0       93       7       14       22       1       44       31       30       15       90       6       111       5       15       2       0       22         Total       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23   | 305                      | 27      | 1     | 356                                                                                                             | 29                    | 37                    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6            | 126                                      | 31          | 322        | 11      | 2           | 366                                     |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 972        |
| 03:15 PM       1       73       6       1       81       6       17       16       2       41       9       73       3       0       85       10       18       8       2       38         03:30 PM       6       70       9       0       85       5       13       28       1       47       5       80       4       0       89       7       17       5       1       30         03:45 PM       5       58       7       0       70       13       12       29       0       54       14       72       6       0       92       7       17       4       2       30         04:00 PM       3       59       8       1       71       6       12       32       2       51       5       94       3       0       102       12       16       6       2       36         04:30 PM       2       87       4       0       93       7       14       22       1       44       31       30       15       90       6       111       5       15       2       0       22         Total       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03:00 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7    | 78                       | 5       | 0     | 90                                                                                                              | 8                     | 9                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 42                                       | 3           | 83         | 0       | 0           | 86                                      | 6   | 19        | 6   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35          | 253        |
| 03:30 PM       6       70       9       0       85       5       13       28       1       47       5       80       4       0       89       7       17       5       1       30         03:45 PM       5       58       7       0       70       13       12       29       0       54       14       72       6       0       92       7       17       4       2       30         Total       19       279       27       1       326       32       51       97       4       184       31       308       13       0       352       30       71       23       9       133         04:00 PM       3       59       8       1       71       6       12       29       1       48       11       102       6       0       119       7       16       6       2       36         04:00 PM       3       59       8       1       71       6       12       29       1       48       11       102       6       0       119       7       16       6       2       36         04:45 PM       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |                          |         | 1     |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2            |                                          |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 245        |
| 03:45 PM       5       58       7       0       70       13       12       29       0       54       14       72       6       0       92       7       17       4       2       30         Total       19       279       27       1       326       32       51       97       4       184       31       308       13       0       352       30       71       23       9       133         04:00 PM       3       59       8       1       71       6       12       29       1       48       11       102       6       0       119       7       16       6       0       29       0       44       14       13       85       3       1       102       12       16       6       2       36       0       40:30 PM       2       20       4       0       29       1       44       13       85       3       1       102       2       20       4       0       26       0       12       16       6       2       36       0       102       12       16       6       2       36       0       30       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A. SHERE & A. C. S. M. C. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         | S     | 1000 C.                                                                     |                       |                       | 1. State 1. |              | 1.5.14                                   |             |            |         | 100         | 1.22                                    |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 251        |
| Total         19         279         27         1         326         32         51         97         4         184         31         308         13         0         352         30         71         23         9         133           04:00 PM         3         59         8         1         71         6         12         29         1         48         11         102         6         0         119         7         16         6         0         29         04:15 PM         3         77         10         0         90         5         12         32         2         51         5         94         3         0         102         12         16         6         2         36           04:30 PM         2         87         4         0         93         7         14         22         1         44         13         85         3         1         102         2         0         4         22         0         4         22         14         12         13         0         30         15         90         6         0         111         5         15         2         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1997 CARLEY STATES OF THE STAT |      |                          |         | (T.A. |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1000                                     |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 246        |
| 04:00 PM       3       59       8       1       71       6       12       29       1       48       11       102       6       0       119       7       16       6       0       29         04:15 PM       3       77       10       0       90       5       12       32       2       51       5       94       3       0       102       12       16       6       2       36         04:30 PM       2       87       4       0       93       7       14       22       1       44       13       85       3       1       102       2       20       4       0       26         04:45 PM       4       68       7       0       79       11       6       13       0       30       15       90       6       0       111       5       15       2       2       21       14       173       44       371       18       1       434       26       67       18       2       113         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | (175) T. (1              |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 995        |
| 04:15 PM       3       77       10       0       90       5       12       32       2       51       5       94       3       0       102       12       16       6       2       36         04:30 PM       2       87       4       0       93       7       14       22       1       44       13       85       3       1       102       12       16       6       2       36         04:45 PM       4       68       7       0       79       11       6       13       0       30       15       90       6       0       111       5       15       2       0       22         Total       12       291       29       1       333       29       44       96       4       173       44       371       18       1       434       26       67       18       2       113         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27       05       05:0       107       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 00 DU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 50                       |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          | n<br>E sara |            |         | с<br>- С    |                                         |     | - C 2<br> |     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |
| 04:30 PM       2       87       4       0       93       7       14       22       1       44       13       85       3       1       102       2       20       4       0       26         04:45 PM       4       68       7       0       79       11       6       13       0       30       15       90       6       0       111       5       15       2       0       22         Total       12       291       29       1       333       29       44       96       4       173       44       371       18       1       434       26       67       18       2       113         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27       05:0       107       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             | 2012/07/2012                            |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.575       | 267        |
| 04:45 PM       4       68       7       0       79       11       6       13       0       30       15       90       6       0       111       5       15       2       0       22         Total       12       291       29       1       333       29       44       96       4       173       44       371       18       1       434       26       67       18       2       113         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27       0       50       107       6       11       6       4       27       0       50       11       7       11       1       80       29       11       2       27       5       79       2       0       86       8       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.10 7.1 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                          | 1.1     |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | - CR101                                  |             |            |         | - S.A.      | 0.0000000000000000000000000000000000000 |     | 100.00    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 279        |
| Total       12       291       29       1       333       29       44       96       4       173       44       371       18       1       434       26       67       18       2       113         05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27         05:15 PM       4       83       12       0       99       7       14       17       0       38       6       96       5       0       107       6       11       6       4       27         05:30 PM       6       97       10       0       113       7       8       25       1       41       7       77       1       1       86       8       17       4       0       29       05:45 PM       3       67       11       0       81       5       9       11       2       27       5       79       2       0       86       8       12       8       3       31         Total       19       328       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0.0201                                   |             |            |         |             | 1000                                    |     |           |     | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 265        |
| 05:00 PM       6       81       7       0       94       7       21       20       1       49       11       92       4       1       108       5       15       3       4       27         05:15 PM       4       83       12       0       99       7       14       17       0       38       6       96       5       0       107       6       11       6       4       27         05:30 PM       6       97       10       0       113       7       8       25       1       41       7       77       1       1       86       8       17       4       0       29       05:45 PM       3       67       11       0       81       5       9       11       2       27       5       79       2       0       86       8       12       8       3       31         Total       19       328       40       0       387       26       52       73       4       155       29       344       12       2       387       27       55       21       11       114       114         Grand Total       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22          | 242        |
| 05:15 PM       4       83       12       0       99       7       14       17       0       38       6       96       5       0       107       6       11       6       4       27         05:30 PM       6       97       10       0       113       7       8       25       1       41       7       77       1       1       86       8       17       4       0       29         05:45 PM       3       67       11       0       81       5       9       11       2       27       5       79       2       0       86       8       12       8       3       31         Total       19       328       40       0       387       26       52       73       4       155       29       344       12       2       387       27       55       21       11       114       14         Grand Total       104       1699       151       7       1961       131       210       380       30       751       166       1887       69       16       2138       121       313       98       37       569       56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12   | 291                      | 29      | 1     | 333                                                                                                             | 29                    | 44                    | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            | 173                                      | 44          | 371        | 18      | 1           | 434                                     | 26  | 67        | 18  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113         | 1053       |
| 05:15 PM       4       83       12       0       99       7       14       17       0       38       6       96       5       0       107       6       11       6       4       27         05:30 PM       6       97       10       0       113       7       8       25       1       41       7       77       1       1       86       8       17       4       0       29         05:45 PM       3       67       11       0       81       5       9       11       2       27       5       79       2       0       86       8       12       8       3       31         Total       19       328       40       0       387       26       52       73       4       155       29       344       12       2       387       27       55       21       11       114       14         Grand Total       104       1699       151       7       1961       131       210       380       30       751       166       1887       69       16       2138       121       313       98       37       569       569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05:00 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    | 81                       | 7       | 0     | 94                                                                                                              | 7                     | 21                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 49                                       | 11          | 92         | 4       | 1           | 108                                     | 5   | 15        | 3   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27          | 278        |
| 05:30 PM       6       97       10       0       113       7       8       25       1       41       7       77       1       1       86       8       17       4       0       29         05:45 PM       3       67       11       0       81       5       9       11       2       27       5       79       2       0       86       8       12       8       3       31         Total       19       328       40       0       387       26       52       73       4       155       29       344       12       2       387       27       55       21       11       114         Grand Total       104       1699       151       7       1961       131       210       380       30       751       166       1887       69       16       2138       121       313       98       37       569         Appreh %       5.3       86.6       7.7       0.4       17.4       28       50.6       4       7.8       88.3       3.2       0.7       21.3       55       17.2       6.5         Total %       1.9       31.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05:15 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4    |                          |         |       | 1220121-                                                                                                        |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 271        |
| 05:45 PM       3       67       11       0       81       5       9       11       2       27       5       79       2       0       86       8       12       8       3       31         Total       19       328       40       0       387       26       52       73       4       155       29       344       12       2       387       27       55       21       11       114         Grand Total       104       1699       151       7       1961       131       210       380       30       751       166       1887       69       16       2138       121       313       98       37       569         Appreh %       5.3       86.6       7.7       0.4       17.4       28       50.6       4       7.8       88.3       3.2       0.7       21.3       55       17.2       6.5         Total %       1.9       31.4       2.8       0.1       36.2       2.4       3.9       7       0.6       13.9       3.1       34.8       1.3       0.3       39.5       2.2       5.8       1.8       0.7       10.5         Unshifted       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       | 1 C C C C C C C C C C C C C C C C C C C                                                                         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         |     | - C - N - |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 269        |
| Total         19         328         40         0         387         26         52         73         4         155         29         344         12         2         387         27         55         21         11         114           Grand Total         104         1699         151         7         1961         131         210         380         30         751         166         1887         69         16         2138         121         313         98         37         569           Apprch %         5.3         86.6         7.7         0.4         17.4         28         50.6         4         7.8         88.3         3.2         0.7         21.3         55         17.2         6.5           Total %         1.9         31.4         2.8         0.1         36.2         2.4         3.9         7         0.6         13.9         3.1         34.8         1.3         0.3         39.5         2.2         5.8         1.8         0.7         10.5           Unshifted         104         1699         9.7         100         99.9         100         100         100         100         100         100         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         |     |           |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 225        |
| Apprch %         5.3         86.6         7.7         0.4         17.4         28         50.6         4         7.8         88.3         3.2         0.7         21.3         55         17.2         6.5           Total %         1.9         31.4         2.8         0.1         36.2         2.4         3.9         7         0.6         13.9         3.1         34.8         1.3         0.3         39.5         2.2         5.8         1.8         0.7         10.5           Unshifted         104         1699         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       |                                                                                                                 |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |             |            |         |             |                                         |     |           |     | and the second s |             | 1043       |
| Apprch %         5.3         86.6         7.7         0.4         17.4         28         50.6         4         7.8         88.3         3.2         0.7         21.3         55         17.2         6.5           Total %         1.9         31.4         2.8         0.1         36.2         2.4         3.9         7         0.6         13.9         3.1         34.8         1.3         0.3         39.5         2.2         5.8         1.8         0.7         10.5           Unshifted         104         1699         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grand Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104  | 1699                     | 151     | 7     | 1961                                                                                                            | 131                   | 210                   | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30           | 751                                      | 166         | 1887       | 69      | 16          | 2138                                    | 121 | 313       | 98  | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 569         | 5419       |
| Total %         1.9         31.4         2.8         0.1         36.2         2.4         3.9         7         0.6         13.9         3.1         34.8         1.3         0.3         39.5         2.2         5.8         1.8         0.7         10.5           Unshifted         104         1699         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       | 0.000                                                                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1.000                                    |             |            |         |             | ~                                       |     | 1000      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000         | 0110       |
| Unshifted 104 1699<br>%Unshifted 100 100 100 100 100 100 99.7 100 99.9 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Contraction of a second se</li></ul>                                                                                                                                                                                                                                       |      |                          |         |       | 36.2                                                                                                            |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 13.9                                     |             |            |         |             | 30.6                                    |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5        |            |
| % Unshifted 100 100 100 100 100 100 100 99.7 100 99.9 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                          |         | v.,   | 00.1                                                                                                            |                       | 0.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0          | 10.0                                     | . I         | CHARTER !! | 1.5     | 0.0         | 00.0                                    | 6.6 | 3.0       | 1.0 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.3        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . G. 1 / S 0 ( ) ( 0 - 5 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                          | 100     | 100   | 100                                                                                                             | 100                   | 100                   | 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100          | 99 9                                     | 100         |            | 100     | 100         | 100                                     | 100 | 100       | 100 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100         | 100        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                          |         |       | the second se | and the second second | and the second second | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.20.1.00.00 | 2000000000                               |             | - 1000 AND | 1430.5/ |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 100        |
| % Bank 1 0 0 0 0 0 0 0.3 0 0.1 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.78 |                          |         |       |                                                                                                                 |                       | 1.00                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 2                                        |             |            |         |             |                                         |     |           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0          |

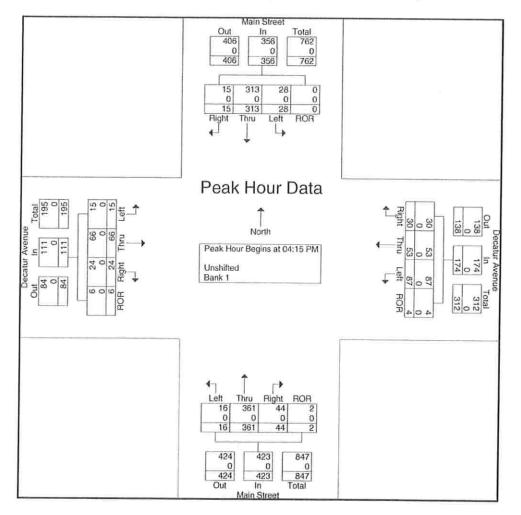
## Shropshire Associates LLC 277 Whitehorse Pike, Suite 203

Atco, NJ 08004

N/S Route: Main Street E/W Route: Decatur Avenue Pleasantville Twp/Atlantic County/NJ Tuesday/cloudy rain/GH/3142

File Name : 20033001 Site Code : 20033001 Start Date : 3/10/2020 Page No : 2

|                      |         |            | ain St<br>outhbo              |        |                                                                                                                                                                                                            |        |        | atur A<br>estbo | venue<br>und                                                                             |                                               |         |              | ain St<br>orthbo |          |                     |           |                                                                                             | atur A<br>astbo | venue<br>und |           | -          |
|----------------------|---------|------------|-------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------------|------------------------------------------------------------------------------------------|-----------------------------------------------|---------|--------------|------------------|----------|---------------------|-----------|---------------------------------------------------------------------------------------------|-----------------|--------------|-----------|------------|
| Start<br>Time        | Right   | Thru       | Left                          | ROR    | App. Tobl                                                                                                                                                                                                  | Right  | Thru   | Left            | ROR                                                                                      | App Total                                     | Right   | Thru         | Left             | ROR      | App Total           | Right     | Thru                                                                                        | Left            | ROR          | App Total | Int. Total |
| Peak Hour A          | nalvsi  | s Fron     | n 07:0                        | 0 AM t |                                                                                                                                                                                                            | AM -   | Peak ' | of 1            |                                                                                          |                                               |         |              |                  |          | 744 1344            |           |                                                                                             |                 |              | App 1008  | ini, istar |
| Peak Hour fe         | or Enti | re Inte    | rsectio                       | on Beg | ins at 0                                                                                                                                                                                                   | 8:00 A | M      |                 |                                                                                          |                                               |         |              |                  |          |                     |           |                                                                                             |                 |              |           |            |
| 08:00 AM             | 6       | 59         | 7                             | 0      | 72                                                                                                                                                                                                         | 2      | 3      | 7               | 0                                                                                        | 12                                            | 6       | 78           | 0                | 1        | 85                  | 5         | 6                                                                                           | 2               | 1            | 14        | 183        |
| 08:15 AM             | 4       | 70         | 4                             | 0      | 78                                                                                                                                                                                                         | 3      | 3      | 10              | 3                                                                                        | 19                                            | 4       | 73           | 1                | 3        | 81                  | 0         | 8                                                                                           | 3               | 2            | 13        | 191        |
| 08:30 AM<br>08:45 AM | 8       | 61         | 1                             | 1      | 71                                                                                                                                                                                                         | 4      | 4      | 10              | 2                                                                                        | 20                                            | 5       | 77           | 2                | 1        | 85                  | 1         | 13                                                                                          | 0               | 1            | 15        | 191        |
| Total Volume         | 1<br>19 | 76<br>266  | 9<br>21                       | 1      | 87<br>308                                                                                                                                                                                                  | 1      | 4      | 11<br>38        | 1                                                                                        | 17<br>68                                      | 6<br>21 | 69<br>297    | 4                | 2        | 81                  | 0         | 12                                                                                          | 1               | 1            | 14        | 199        |
| % App. Total         | 6.2     | 86.4       | 6.8                           | 0.6    | 500                                                                                                                                                                                                        | 14.7   | 20.6   | 55.9            | 8.8                                                                                      | 00                                            | 6.3     | 89.5         | 2.1              | 7<br>2.1 | 332                 | 6<br>10.7 | 39<br>69.6                                                                                  | 6<br>10.7       | 5<br>8.9     | 56        | 764        |
| PHF                  | .594    | .875       | .583                          | .500   | .885                                                                                                                                                                                                       | .625   | .875   | .864            | .500                                                                                     | .850                                          | .875    | .952         | .438             | .583     | .976                | .300      | .750                                                                                        | .500            | .625         | .933      | .960       |
| Unshifted            | 19      | 266        | 21                            | 2      | 308                                                                                                                                                                                                        | 10     | 14     | 38              | 6                                                                                        | 68                                            | 21      | 297          | 7                | 7        | 332                 | 6         | 39                                                                                          | 6               | 5            | 56        | 764        |
| % Unshifted          | 0       | 0          |                               | 0      | ~                                                                                                                                                                                                          |        |        |                 |                                                                                          |                                               |         |              |                  |          |                     |           |                                                                                             |                 |              |           |            |
| Bank 1               | 0       | 0          | 0                             | 0      | 0                                                                                                                                                                                                          | 0      | 0      | 0               | 0                                                                                        | 0                                             | 0       | 0            | 0                | 0        | 0                   | 0         | 0                                                                                           | 0               | 0            | 0         | 0          |
| % Bank 1             | 0       | 0          | 0                             | 0      | 0                                                                                                                                                                                                          | 0      | 0      | 0               | 0                                                                                        | 0                                             | 0       | 0            | 0                | 0        | 0                   | 0         | 0                                                                                           | 0               | 0            | 0         | 0          |
|                      |         | tur Avenue | Out In Total<br>40 56 96<br>9 | 0 20   | 5         6         39         6           5         6         30         6           5         6         30         6           6         3         9         6           8         6         3         6 |        |        | F<br>L<br>E     | Peak Ho<br>Jnshifted<br>lank 1<br>Left<br>7<br>0<br>7<br>310<br>0<br>310<br>0<br>0<br>Ut | 266<br>0<br>266<br>Thru<br>↓<br>CHOU<br>North | at 08:0 | 0 AM<br>0 AM |                  | 1        | Right Thru Left FOR | 14 38     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | In<br>68        |              |           |            |


### Shropshire Associates LLC

277 Whitehorse Pike, Suite 203 Atco, NJ 08004

N/S Route: Main Street E/W Route: Decatur Avenue Pleasantville Twp/Atlantic County/NJ Tuesday/cloudy rain/GH/3142

File Name : 20033001 Site Code : 20033001 Start Date : 3/10/2020 Page No : 3

|                          |         | Main Street<br>Southbound |         |         |           |        | Decatur Avenue Main Street Decatur A<br>Westbound Northbound Eastbo |        |      |            |       |      |      |      |           |       |      |      |        |            |            |
|--------------------------|---------|---------------------------|---------|---------|-----------|--------|---------------------------------------------------------------------|--------|------|------------|-------|------|------|------|-----------|-------|------|------|--------|------------|------------|
| Start Time               | Right   | Thru                      | Left    | ROR     | App Total | Right  | Thru                                                                | Left   | ROR  | App. Total | Right | Thru | Left | ROR  | App Total | Right | Thru | Left | ROR    | Acp. Total | Int. Total |
| Peak Hour /              | Analysi | is Fron                   | n 12:0  | 0 PM to | 05:45     | PM -   | Peak '                                                              | 1 of 1 |      |            |       |      | •    | 4    |           |       |      |      | 1.1011 | C44/. 1998 | L'un toan  |
| Peak Hour f              | or Enti | re Inte                   | rsectio | on Begi | ins at C  | 4:15 F | M                                                                   |        |      |            |       |      |      |      |           |       |      |      |        |            |            |
| 04:15 PM                 | 3       | 77                        | 10      | 0       | 90        | 5      | 12                                                                  | 32     | 2    | 51         | 5     | 94   | 3    | 0    | 102       | 12    | 16   | 6    | 2      | 36         | 279        |
| 04:30 PM                 | 2       | 87                        | 4       | 0       | 93        | 7      | 14                                                                  | 22     | 1    | 44         | 13    | 85   | 3    | 1    | 102       | 2     | 20   | 4    | 0      | 26         | 265        |
| 04:45 PM                 | 4       | 68                        | 7       | 0       | 79        | 11     | 6                                                                   | 13     | 0    | 30         | 15    | 90   | 6    | 0    | 111       | 5     | 15   | 2    | 0      | 22         | 242        |
| 05:00 PM                 | 6       | 81                        | 7       | 0       | 94        | 7      | 21                                                                  | 20     | 1    | 49         | 11    | 92   | 4    | 1    | 108       | 5     | 15   | 3    | 4      | 27         | 278        |
| Total Volume             | 15      | 313                       | 28      | 0       | 356       | 30     | 53                                                                  | 87     | 4    | 174        | 44    | 361  | 16   | 2    | 423       | 24    | 66   | 15   | 6      | 111        | 1064       |
| % App. Total             | 4.2     | 87.9                      | 7.9     | 0       |           | 17.2   | 30.5                                                                | 50     | 2.3  | _          | 10.4  | 85.3 | 3.8  | 0.5  |           | 21.6  | 59.5 | 13.5 | 5.4    |            |            |
| PHF                      | .625    | .899                      | .700    | .000    | .947      | .682   | .631                                                                | .680   | .500 | .853       | .733  | .960 | .667 | .500 | .953      | .500  | .825 | .625 | .375   | .771       | .953       |
| Unshifted<br>% Unshifted | 15      | 313                       | 28      | 0       | 356       | 30     | 53                                                                  | 87     | 4    | 174        | 44    | 361  | 16   | 2    | 423       | 24    | 66   | 15   | 6      | 111        | 1064       |
| Bank 1                   | 0       | 0                         | 0       | 0       | 0         | 0      | 0                                                                   | 0      | 0    | 0          | 0     | 0    | 0    | 0    | 0         | 0     | 0    | 0    | 0      | 0          | 0          |
| % Bank 1                 | 0       | 0                         | 0       | 0       | 0         | 0      | 0                                                                   | 0      | 0    | 0          | 0     | 0    | 0    | 0    | õ         | õ     | õ    | õ    | ŏ      | õ          | ŏ          |



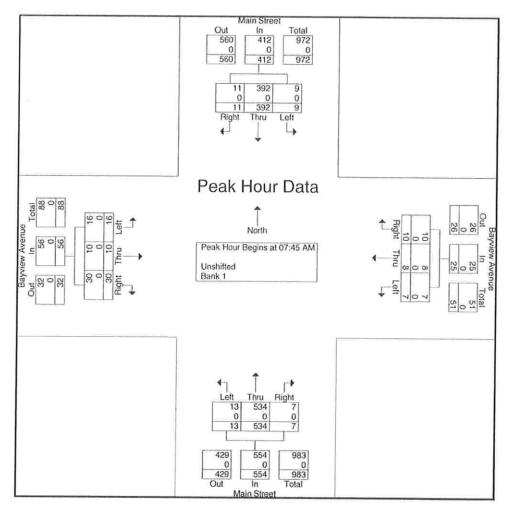
# Shropshire Associates LLC 277 Whitehorse Pike, Suite 203

Atco, NJ 08004

## N/S Route: Main Street E/W Route: Bayview Avenue Pleasantville Twp/Atlantic County/NJ Tuesday/cloudy rainr/ECM/5142

| File Name  | : 2033002   |
|------------|-------------|
| Site Code  | : 20033002  |
| Start Date | : 3/10/2020 |
| Page No    | :1          |

|             | 1        | Main | Street |            |                                            |         |     | inted- Un  | shinted    |      |        |                  |       |        | w Aven |          |           |
|-------------|----------|------|--------|------------|--------------------------------------------|---------|-----|------------|------------|------|--------|------------------|-------|--------|--------|----------|-----------|
|             |          |      | bound  |            | 3                                          | Bayview |     | le         |            |      | Street |                  |       |        |        |          |           |
| Start Time  | mi to mi |      |        | App. Total | Westbound<br>al Right Thru Left App. Total |         |     |            |            | Thru | Left   | and the state    | Disht |        |        |          |           |
| 07:00 AM    | 1        | 58   | 0      | 59         | 0                                          | 1       | 0   | App. 101a) | Right<br>1 | 67   | 2      | App. Total<br>70 | Right | Thru   | Left   |          | Int. Tota |
| 07:15 AM    | 4        |      | 1      | 82         | 3                                          | 2       | 2   | 7          | o          | 92   | 2      | 94               | 4     | 3<br>1 | 1      | 8        | 138       |
| 07:30 AM    | 4        |      | 2      | 96         | 4                                          | 2       | 1   | 7          | 3          | 144  | 2      | 149              | 4     | 1      | 5      | 11       | 194       |
| 07:45 AM    | 6        |      | 5      | 108        | 5                                          | õ       | i   | 6          | 1          | 132  | 4      | 137              | 10    | 0      | 2      | 7        | 259       |
| Total       | 15       | 322  | 8      | 345        | 12                                         | 5       | 4   | 21         | 5          | 435  | 10     | 450              | 23    | 5      | 4      | 14<br>40 | 265       |
|             |          |      |        |            |                                            |         |     | = =1       |            |      |        | 100              | 20    | 0      | 12     | 40       | 000       |
| 08:00 AM    | 4        | 92   | 1      | 97         | 2                                          | 3       | 1   | 6          | 1          | 133  | 2      | 136              | 5     | 6      | 3      | 14       | 253       |
| 08:15 AM    | 1        | 102  | 1      | 104        | 2                                          | 2       | 2   | 6          | 4          | 134  | 4      | 142              | 8     | 1      | 4      | 13       | 265       |
| 08:30 AM    | 0        | 101  | 2      | 103        | 1                                          | з       | з   | 7          | 1          | 135  | 3      | 139              | 7     | 3      | 5      | 15       | 264       |
| 08:45 AM    | 2        | 95   | 4      | 101        | 4                                          | 1       | 0   | 5          | 1          | 117  | 6      | 124              | 13    | 3      | 4      | 20       | 250       |
| Total       | 7        | 390  | 8      | 405        | 9                                          | 9       | 6   | 24         | 7          | 519  | 15     | 541              | 33    | 13     | 16     | 62       | 1032      |
| BREAK ***   |          |      |        |            |                                            |         |     |            |            |      |        |                  |       |        |        |          |           |
| 02:00 PM    | 1        | 114  | 4      | 119        | 2                                          | 0       | 2   | 4          | 2          | 111  | 4      | 117              | 10    | 2      | з      | 15       | 255       |
| 02:15 PM    | 1        | 112  | з      | 116        | 6                                          | 3       | 3   | 12         | 3          | 119  | 4      | 126              | 5     | 2      | 5      | 12       | 266       |
| 02:30 PM    | 3        | 131  | 3      | 137        | 4                                          | 3       | 2   | 9          | 3          | 105  | 3      | 111              | 9     | 5      | 1      | 15       | 272       |
| 02:45 PM    | 4        | 136  | 3      | 143        | 3                                          | 0       | 5   | 8          | 1          | 128  | 2      | 131              | 8     | 2      | 7      | 17       | 299       |
| Total       | 9        | 493  | 13     | 515        | 15                                         | 6       | 12  | 33         | 9          | 463  | 13     | 485              | 32    | 11     | 16     | • 59     | 1092      |
| 03:00 PM    | 3        | 120  | 7      | 130        | 4                                          | 2       | 0   | 6          | 4          | 131  | 6      | 141              | 10    | 3      | 2      | 15       | 292       |
| 03:15 PM    | 1        | 146  | 6      | 153        | 2                                          | 5       | 4   | 11         | 4          | 122  | 3      | 129              | 5     | 6      | 1      | 12       | 305       |
| 03:30 PM    | 2        | 136  | 2      | 140        | 4                                          | 4       | 7   | 15         | 9          | 93   | 2      | 104              | 10    | 2      | 3      | 15       | 274       |
| 03:45 PM    | 6        | 141  | 2      | 149        | 2                                          | 4       | 4   | 10         | 6          | 130  | 2      | 138              | 8     | 4      | 3      | 15       | 312       |
| Total       | 12       | 543  | 17     | 572        | 12                                         | 15      | 15  | 42         | 23         | 476  | 13     | 512              | 33    | 15     | 9      | 57       | 1183      |
| 04:00 PM    | 5        | 97   | 0      | 102        | 4                                          | 5       | 0   | 9          | 5          | 147  | 0      | 152              | 3     | 0      | 8      | 11       | 274       |
| 04:15 PM    | 0        | 135  | 3      | 138        | 1                                          | 1       | 2   | 4          | 0          | 158  | 0      | 158              | 7     | 3      | 1      | 11       | 311       |
| 04:30 PM    | 7        | 157  | 6      | 170        | 10                                         | 4       | 3   | 17         | 9          | 131  | 4      | 144              | 9     | 3      | 9      | 21       | 352       |
| 04:45 PM    | 2        | 125  | 6      | 133        | 8                                          | 3       | 4   | 15         | 1          | 153  | 6      | 160              | 10    | 4      | 3      | 17       | 325       |
| Total       | 14       | 514  | 15     | 543        | 23                                         | 13      | 9   | 45         | 15         | 589  | 10     | 614              | 29    | 10     | 21     | 60       | 1262      |
| 05:00 PM    | 4        | 108  | 3      | 115        | 5                                          | 2       | 3   | 10         | 3          | 151  | 5      | 159              | 15    | 6      | 2      | 23       | 307       |
| 05:15 PM    | 0        | 158  | 9      | 167        | 2                                          | 0       | 4   | 6          | 5          | 138  | 6      | 149              | 7     | 2      | 2      | 11       | 333       |
| 05:30 PM    | 2        | 163  | 6      | 171        | 5                                          | 4       | 12  | 21         | 4          | 103  | 2      | 109              | 3     | 4      | 2      | 9        | 310       |
| 05:45 PM    | 3        | 128  | 8      | 139        | 9                                          | 6       | 0   | 15         | 0          | 144  | 3      | 147              | 2     | 0      | 3      | 5        | 306       |
| Total       | 9        | 557  | 26     | 592        | 21                                         | 12      | 19  | 52         | 12         | 536  | 16     | 564              | 27    | 12     | 9      | 48       | 1256      |
| Grand Total | 66       | 2819 | 87     | 2972       | 92                                         | 60      | 65  | 217        | 71         | 3018 | 77     | 3166             | 177   | 66     | 83     | 326      | 6681      |
| Apprch %    | 2.2      | 94.9 | 2.9    |            | 42.4                                       | 27.6    | 30  |            | 2.2        | 95.3 | 2.4    |                  | 54.3  | 20.2   | 25.5   | 02.0     | 0001      |
| Total %     | 1        | 42.2 | 1.3    | 44.5       | 1.4                                        | 0.9     | 1   | 3.2        | 1.1        | 45.2 | 1.2    | 47.4             | 2.6   | 1      | 1.2    | 4.9      |           |
| Unshifted   | 66       | 2818 | 87     | 2971       | 92                                         | 60      | 65  | 217        | 71         | 3018 | 77     | 3166             | 177   | 66     | 83     | 326      | 6680      |
| & Unshifted | 100      | 100  | 100    | 100        | 100                                        | 100     | 100 | 100        | 100        | 100  | 100    | 100              | 100   | 100    | 100    | 100      | 100       |
| Bank 1      | 0        | 1    | 0      | 1          | 0                                          | 0       | 0   | 0          | 0          | 0    | 0      | 0                | 0     | 0      | 0      | 0        | 1         |
| % Bank 1    | 0        | 0    | 0      | 0          | 0                                          | 0       | 0   | 0          | 0          | 0    | 0      | 0                | 0     | 0      | 0      | 0        | Ó         |

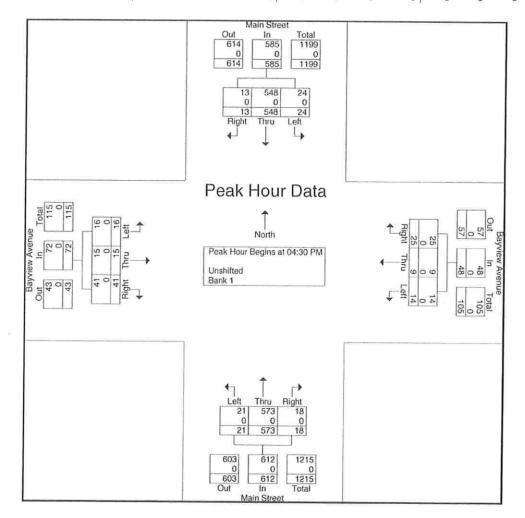

## Shropshire Associates LLC

277 Whitehorse Pike, Suite 203 Atco, NJ 08004

#### N/S Route: Main Street E/W Route: Bayview Avenue Pleasantville Twp/Atlantic County/NJ Tuesday/cloudy rainr/ECM/5142

| File Name  | : 2033002   |
|------------|-------------|
| Site Code  | : 20033002  |
| Start Date | : 3/10/2020 |
| Page No    | :2          |

|               |           | South       | Street<br>bound |            | E       | Bayviev<br>West | v Avenu<br>bound | le         |       | Main Street Bayview Avenue<br>Northbound Eastbound |      |            |       |      |      |               |            |
|---------------|-----------|-------------|-----------------|------------|---------|-----------------|------------------|------------|-------|----------------------------------------------------|------|------------|-------|------|------|---------------|------------|
| Start Time    |           | Thru        | Left            |            | Right   | Thru            | Left             | App. Total | Right | Thru                                               | Left | App. Total | Right | Thru | Left | App. Total    | Int. Total |
| Peak Hour Ana | alysis Fr | om 07:0     | O AM I          | to 11:45 A | M - Pea | ik 1 of         | 1                |            |       |                                                    |      |            |       |      |      | 1 - pp://otal |            |
| Peak Hour for | Entire In | ntersection | on Beg          | ins at 07: | 45 AM   |                 |                  |            |       |                                                    |      |            |       |      |      |               |            |
| 07:45 AM      | 6         | 97          | 5               | 108        | 5       | 0               | 1                | 6          | 1     | 132                                                | 4    | 137        | 10    | 0    | 4    | 14            | 265        |
| 08:00 AM      | 4         | 92          | 1               | 97         | 2       | 3               | 1                | 6          | 1     | 133                                                | 2    | 136        | 5     | 6    | 3    | 14            | 253        |
| 08:15 AM      | 1         | 102         | 1               | 104        | 2       | 2               | 2                | 6          | 4     | 134                                                | 4    | 142        | 8     | 1    | 4    | 13            | 265        |
| 08:30 AM      | 0         | 101         | 2               | 103        | 1       | 3               | 3                | 7          | 1     | 135                                                | 3    | 139        | 7     | 3    | 5    | 15            | 264        |
| Total Volume  | 11        | 392         | 9               | 412        | 10      | 8               | 7                | 25         | 7     | 534                                                | 13   | 554        | 30    | 10   | 16   | 56            | 1047       |
| % App. Total  | 2.7       | 95.1        | 2.2             |            | 40      | 32              | 28               |            | 1.3   | 96.4                                               | 2.3  |            | 53.6  | 17.9 | 28.6 |               |            |
| PHF           | .458      | .961        | .450            | .954       | .500    | .667            | .583             | .893       | .438  | .989                                               | .813 | .975       | .750  | .417 | .800 | .933          | .988       |
| Unshifted     | 11        | 392         | 9               | 412        | 10      | 8               | 7                | 25         | 7     | 534                                                | 13   | 554        | 30    | 10   | 16   | 56            | 1047       |
| % Unshifted   | 100       | 100         | 100             | 100        | 100     | 100             | 100              | 100        | 100   | 100                                                | 100  | 100        | 100   | 100  | 100  | 100           | 100        |
| Bank 1        | 0         | 0           | 0               | 0          | 0       | 0               | 0                | 0          | 0     | 0                                                  | 0    | 0          | 0     | 0    | 0    | 0             |            |
| % Bank 1      | 0         | 0           | 0               | 0          | 0       | 0               | 0                | 0          | 0     | 0                                                  | 0    | 0          | Ō     | ŏ    | õ    | ŏ             | ő          |




277 Whitehorse Pike, Suite 203 Atco, NJ 08004

#### N/S Route: Main Street E/W Route: Bayview Avenue Pleasantville Twp/Atlantic County/NJ Tuesday/cloudy rainr/ECM/5142

File Name : 2033002 Site Code : 20033002 Start Date : 3/10/2020 Page No : 3

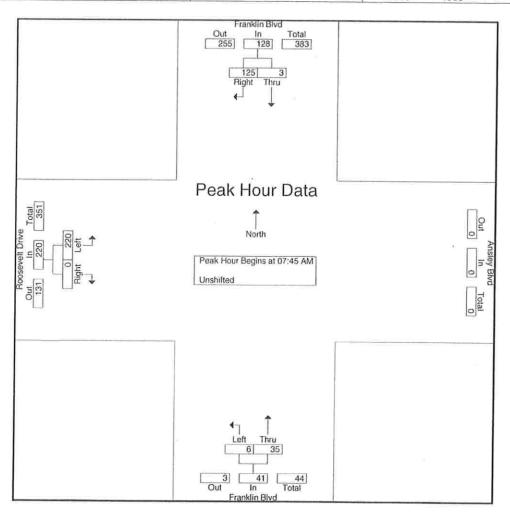
|               |           | South    | Street<br>bound |           |         |         | v Aven<br>Ibound |            |       |      | Street<br>bound |            | 1     | Bayviev<br>East | v Aven<br>bound | ue            |            |
|---------------|-----------|----------|-----------------|-----------|---------|---------|------------------|------------|-------|------|-----------------|------------|-------|-----------------|-----------------|---------------|------------|
| Start Time    |           | Thru     | Left            |           |         |         | Left             | App. Total | Right | Thru | Left            | App. Total | Right | Thru            | Left            | App. Total    | Int. Total |
| Peak Hour Ana | alysis Fr | om 12:0  | 0 PM 1          | o 05:45 F | M - Pea | ak 1 of | 1                |            |       |      |                 |            |       |                 |                 | - apple fordi | 1          |
| Peak Hour for | Entire Ir | tersecti | on Beg          | ins at 04 | 30 PM   |         |                  |            |       |      |                 |            |       |                 |                 |               |            |
| 04:30 PM      | 7         | 157      | 6               | 170       | 10      | 4       | 3                | 17         | 9     | 131  | 4               | 144        | 9     | 3               | 9               | 21            | 352        |
| 04:45 PM      | 2         | 125      | 6               | 133       | 8       | 3       | 4                | 15         | 1     | 153  | 6               | 160        | 10    | 4               | 3               | 17            | 325        |
| 05:00 PM      | 4         | 108      | 3               | 115       | 5       | 2       | 3                | 10         | 3     | 151  | 5               | 159        | 15    | 6               | 2               | 23            | 307        |
| 05:15 PM      | 0         | 158      | 9               | 167       | 2       | 0       | 4                | 6          | 5     | 138  | 6               | 149        | 7     | 2               | 2               | 11            | 333        |
| Total Volume  | 13        | 548      | 24              | 585       | 25      | 9       | 14               | 48         | 18    | 573  | 21              | 612        | 41    | 15              | 16              | 72            | 1317       |
| % App. Total  | 2.2       | 93.7     | 4.1             |           | 52.1    | 18.8    | 29.2             |            | 2.9   | 93.6 | 3.4             |            | 56.9  | 20.8            | 22.2            | /             | 1017       |
| PHF           | .464      | .867     | .667            | .860      | .625    | .563    | .875             | .706       | .500  | .936 | .875            | .956       | .683  | .625            | .444            | .783          | .935       |
| Unshifted     | 13        | 548      | 24              | 585       | 25      | 9       | 14               | 48         | 18    | 573  | 21              | 612        | 41    | 15              | 16              | 72            | 1317       |
| % Unshifted   | 100       | 100      | 100             | 100       | 100     | 100     | 100              | 100        | 100   | 100  | 100             | 100        | 100   | 100             | 100             | 100           | 100        |
| Bank 1        | 0         | 0        | 0               | 0         | 0       | 0       | 0                | 0          | 0     | 0    | 0               | Ő          | 0     | 0               | 0               |               | 100        |
| % Bank 1      | 0         | 0        | 0               | 0         | 0       | 0       | 0                | 0          | 0     | 0    | 0               | 0          | õ     | õ               | ŏ               | õ             | 0          |



Shropshire Associates LLC 277 Whitehorse Pike, Suite 203 Atco, NJ 08004

N/S Route: Franklin Blvd E/W Route: Roosevelt Drive/Ansley Blvd Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/ECM/5142

File Name : 20033004 Site Code : 20033004 Start Date : 3/12/2020 Page No : 1

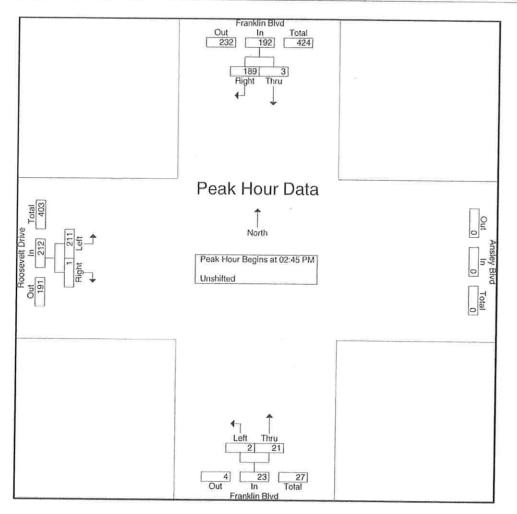

| 07:00 AM         15         0         15         4         0         4         0         17         17           07:30 AM         27         0         27         9         0         9         0         62         62           07:30 AM         27         0         27         9         0         9         0         62         62           07:30 AM         27         0         27         9         0         2         64         64         64           08:00 AM         32         0         33         1         34         0         176         176         1           08:00 AM         32         0         32         2         0         2         0         43         43           08:15 AM         32         2         34         9         2         11         0         52         52           08:45 AM         22         0         22         5         1         6         0         210         210         210           02:00 PM         15         0         15         4         2         6         1         34         35           02:30 PM                                                                                                                                            |              |      |     |      | Groups Prir |                                        |            |       |           |            |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-----|------|-------------|----------------------------------------|------------|-------|-----------|------------|-----------|
| Start Time         Flight         Thru         App. Total         Thru         Left         App. Total         Nut. T           07:00 AM         15         0         15         4         0         4         0         17         17           07:15 AM         15         0         15         5         0         33         33           07:30 AM         27         0         27         9         0         9         62         62           07:45 AM         33         0         33         1         34         0         176         176           08:05 AM         32         0         32         2         0         2         0         43         43           08:15 AM         32         0         32         2         0         2         0         61         61           08:30 AM         28         1         29         9         3         12         0         61         61           02:00 PM         15         0         15         4         2         6         1         34         35           02:00 PM         43         1         44         5         1                                                                                                                                |              |      |     |      |             |                                        |            | Ro    | osevelt D | rive       |           |
| 07:00 AM         15         0         15         4         0         4         0         17         17         17         17           07:16 AM         15         0         15         5         0         5         0         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         31         34                                                                              |              |      |     |      |             | - The first and the first side billing |            |       | Eastbound | t          |           |
| 07:00 AM         15         0         15         4         0         4         0         17         17           07:15 AM         15         0         15         5         0         5         0         33         33           07:30 AM         27         0         27         9         0         9         0         62         62           07:45 AM         33         0         33         1         34         0         176         176         1           08:00 AM         32         0         32         2         0         2         0         43         43           08:00 AM         32         0         32         2         0         2         0         43         43           08:00 AM         32         0         32         5         1         6         0         54         54           08:45 AM         22         0         22         5         6         31         0         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210                                                                                                                     |              |      |     |      |             |                                        | App. Total | Right | Left      | App. Total | Int. Tota |
| 07:30 AM         27         0         27         9         0         0         62         62           07:45 AM         33         0         33         15         1         16         0         64         64         64           Total         90         0         90         33         1         34         0         176         176         3           08:00 AM         32         2         34         9         2         11         0         52         52           08:00 AM         32         2         34         9         2         11         0         52         52           08:00 AM         22         0         22         5         1         6         0         54         54           08:45 AM         22         0         22         5         0         38         38         33         10         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210                                                                                                              |              |      |     |      |             | 0                                      |            | 0     | 17        | 17         | 30        |
| 07:30 AM         27         0         27         9         0         62         62         62           07:45 AM         33         0         33         1         16         0         64         64           Total         90         0         90         33         1         34         0         176         176         1           08:00 AM         32         2         34         9         2         11         0         52         52           08:30 AM         22         0         22         5         1         6         0         54         54           08:45 AM         22         0         22         5         1         6         0         54         54           Total         114         3         117         25         6         31         0         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210                                                                                                           |              |      |     | 15   |             |                                        | 5          | 0     | 33        | 33         | 53        |
| 07:45 AM         33         0         33         15         1         16         0         64         64           Total         90         0         90         33         1         34         0         176         176         176         1           08:00 AM         32         0         32         2         0         2         0         43         43         0         0         52         52         0         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61                                                                                      |              |      |     |      | 9           | 0                                      | 9          | 0     |           |            | 98        |
| Total         90         0         90         33         1         34         0         176         176         136           06:00 AM         32         0         32         2         0         2         0         43         43           06:15 AM         32         2         34         9         2         11         0         52         52           08:30 AM         22         0         22         5         1         6         0         54         54           08:45 AM         22         0         22         5         1         6         0         54         54           02:00 PM         114         3         117         25         6         31         0         210         210         2           02:00 PM         43         1         44         5         1         6         0         27         27           02:05 PM         38         0         38         4         1         5         1         43         44           02:05 PM         43         1         44         5         1         6         0         42         42                                                                                                                                                    | 07:45 AM     | 33   | 0   | 33   | 15          | 1                                      | 16         | 0     |           |            | 113       |
| 08:15 AM         32         2         34         9         2         11         0         52         52           08:30 AM         28         1         29         9         3         12         0         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61                                                                                       | Total        | 90   | 0   | 90   | 33          | 1                                      |            |       |           |            | 300       |
| 08:15 AM         32         2         34         9         2         11         0         52         52           08:30 AM         22         0         22         5         1         6         0         54         54           Total         114         3         117         25         6         31         0         210         20         5           "*BREAK ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |      |     | 32   | 2           |                                        | 2          | 0     | 43        | 43         | 77        |
| 08:30 AM         28         1         29         9         3         12         0         61         61           08:45 AM         22         0         22         5         1         6         0         54         54           Total         114         3         117         25         6         31         0         210         210         3           ***         BREAK ***           02:00 PM         15         0         15         4         2         6         1         34         35           02:00 PM         43         1         44         5         1         6         0         27         27           02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         144         5           03:00 PM         43         1         44         5         1         6         0         42         42           03:05 PM         46         1         47         5         2         7         <                                                                                                                                             | 08:15 AM     | 32   | 2   | 34   | 9           | 2                                      | 11         | 0     |           |            | 97        |
| 08:45 AM         22         0         22         5         1         6         0         54         54           Total         114         3         117         25         6         31         0         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         210         211                                          | 08:30 AM     | 28   |     | 29   | 9           |                                        | 12         |       |           |            | 102       |
| Total         114         3         117         25         6         31         0         210         210         2           *** BREAK ***           02:00 PM         15         0         15         4         2         6         1         34         35           02:15 PM         39         0         39         5         0         5         0         38         38           02:30 PM         43         1         44         5         1         6         0         27         27           02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         44         3           03:00 PM         43         1         44         5         1         6         0         42         42         4         3         1         14         14         3         14         14         3         14         3         14         3         14         3         14         3         14         3         14         3                                                                                                                                       | 08:45 AM     | 22   | 0   | 22   |             |                                        |            |       |           |            | 82        |
| 02:00 PM         15         0         15         4         2         6         1         34         35           02:15 PM         39         0         39         5         0         5         0         38         38           02:30 PM         43         1         44         5         1         6         0         27         27           02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         144         3           03:00 PM         43         1         44         5         1         6         0         42         42         4           03:30 PM         62         1         63         8         0         8         0         65         65         1           03:30 PM         62         1         63         8         0         4         0         49         49           04:00 PM         33         0         33         4         0         4         0         49         49                                                                                                                                                 | Total        | 114  |     |      |             | 6                                      |            |       |           |            | 358       |
| 02:15 PM         39         0         39         5         0         5         0         38         38           02:30 PM         43         1         44         5         1         6         0         27         27           02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         144         5           03:00 PM         43         1         44         5         1         6         0         42         42           03:00 PM         43         1         44         5         1         6         0         42         42           03:00 PM         62         1         63         8         0         8         0         65         65         1           03:30 PM         62         1         63         8         0         4         0         49         49           04:00 PM         33         0         33         4         0         4         0         49         49           04                                                                                                                                              | ** BREAK *** |      |     |      |             |                                        |            |       |           |            |           |
| 02:15 PM         39         0         39         5         0         5         0         38         38           02:30 PM         43         1         44         5         1         6         0         27         27           02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         144         3           03:00 PM         43         1         44         5         1         6         0         42         42           03:00 PM         43         1         44         5         1         6         0         42         42           03:30 PM         62         1         63         8         0         8         0         65         65         1           03:30 PM         62         1         63         8         0         8         0         65         65         1           03:30 PM         30         1         31         1         0         1         217         218         4                                                                                                                                               | 02:00 PM     | 15   | . 0 | 15   | 4           | 2                                      | 6          | 1     | 34        | 35         | 56        |
| 02:30 PM         43         1         44         5         1         6         0         27         27           02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         144         3           03:00 PM         43         1         44         5         1         6         0         42         42         44         3           03:00 PM         46         1         47         4         0         4         0         61         61         1         65         1         1         149         50         5         5         1         1         149         50         5         5         5         1         1         149         50         5         5         5         1         1         149         50         1         1         149         50         5         5         5         1         1         14         14         14         14         14         14         14         14         14         14                                                                                                                        | 02:15 PM     | 39   | 0   | 39   | 5           |                                        |            |       |           |            | 82        |
| 02:45 PM         38         0         38         4         1         5         1         43         44           Total         135         1         136         18         4         22         2         142         144         5           03:00 PM         43         1         44         5         1         6         0         42         42           03:00 PM         46         1         47         4         0         4         0         61         61         1           03:00 PM         62         1         63         8         0         8         0         65         65         1           03:45 PM         30         1         31         1         0         1         149         50         50           Total         181         4         185         18         1         19         1         217         218         4           04:00 PM         33         0         33         4         0         4         0         49         49         49         44         44         44         44         44         44         44         44         44 <t< td=""><td>02:30 PM</td><td>43</td><td>1</td><td>44</td><td>5</td><td>1</td><td></td><td></td><td></td><td></td><td>77</td></t<> | 02:30 PM     | 43   | 1   | 44   | 5           | 1                                      |            |       |           |            | 77        |
| Total         135         1         136         18         4         22         2         142         144         3           03:00 PM         43         1         44         5         1         6         0         42         42           03:15 PM         46         1         47         4         0         4         0         61         61         1           03:30 PM         62         1         63         8         0         8         0         65         65         1           03:30 PM         62         1         63         8         0         8         0         65         65         1           03:45 PM         30         1         31         1         0         1         1         49         50           Total         181         4         185         18         1         19         1         217         218         4           04:00 PM         33         0         33         4         0         4         0         49         49         49         44         0         44         0         49         49         4         4         4 <td>02:45 PM</td> <td>38</td> <td>0</td> <td>38</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>87</td>    | 02:45 PM     | 38   | 0   | 38   |             | 1                                      |            |       |           |            | 87        |
| 03:15 PM         46         1         47         4         0         4         0         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61                                                                      | Total        | 135  | 1   | 136  |             | 4                                      |            |       |           |            | 302       |
| 03:15 PM         46         1         47         4         0         4         0         61         61         1           03:30 PM         62         1         63         8         0         8         0         65         65         1           03:45 PM         30         1         31         1         0         1         1         49         50           Total         181         4         185         18         1         19         1         217         218         4           04:00 PM         33         0         33         4         0         4         0         49         49         4           04:00 PM         33         0         33         4         0         4         0         49         49         4           04:00 PM         38         1         39         1         1         2         0         69         69         1           04:30 PM         38         1         39         1         1         2         0         69         69         1           04:45 PM         50         0         5         0         5         0 <td>03:00 PM</td> <td>43</td> <td>1</td> <td>44</td> <td>5</td> <td>1</td> <td>6</td> <td>0</td> <td>42</td> <td>42</td> <td>92</td>     | 03:00 PM     | 43   | 1   | 44   | 5           | 1                                      | 6          | 0     | 42        | 42         | 92        |
| 03:30 PM         62         1         63         8         0         8         0         65         65         1           03:45 PM         30         1         31         1         0         1         1         49         50           Total         181         4         185         18         1         19         1         217         218         4           04:00 PM         33         0         33         4         0         4         0         49         49           04:15 PM         46         1         47         5         2         7         0         39         39           04:30 PM         38         1         39         1         1         2         0         69         69         1           04:45 PM         50         0         50         5         0         35         35         5         3         18         0         192         192         3           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         49         0         49 <td< td=""><td>03:15 PM</td><td>46</td><td>1</td><td>47</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>112</td></td<>        | 03:15 PM     | 46   | 1   | 47   |             | 0                                      |            |       |           |            | 112       |
| 03:45 PM         30         1         31         1         0         1         1         49         50           Total         181         4         185         18         1         19         1         217         218         4           04:00 PM         33         0         33         4         0         4         0         49         49           04:00 PM         33         0         33         4         0         4         0         49         49           04:15 PM         46         1         47         5         2         7         0         39         39           04:30 PM         38         1         39         1         1         2         0         69         69         1           04:45 PM         50         0         50         5         0         35         35         5         3         18         0         192         192         33           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:15 PM         46         0         46         7 <t< td=""><td>03:30 PM</td><td>62</td><td>1</td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td>136</td></t<>           | 03:30 PM     | 62   | 1   |      | 8           |                                        |            |       |           |            | 136       |
| Total         181         4         185         18         1         19         1         217         218         4           04:00 PM         33         0         33         4         0         4         0         49         49           04:00 PM         46         1         47         5         2         7         0         39         39           04:30 PM         38         1         39         1         1         2         0         69         69         1           04:45 PM         50         0         50         5         0         35         35         5           Total         167         2         169         15         3         18         0         192         192         3           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         49         0         49         6         2         8         0         52                                                                                                                                               | 03:45 PM     | 30   | 1   | 31   |             |                                        |            |       |           |            | 82        |
| 04:15 PM         46         1         47         5         2         7         0         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         30         30         30         35         35         35         35         35         35         35         35         35         35         35         35         36         36         36         36         36         36         36                                                                      | Total        | 181  | 4   | 185  | 18          |                                        |            |       |           |            | 422       |
| 04:15 PM         46         1         47         5         2         7         0         39         39           04:30 PM         38         1         39         1         1         2         0         69         69         1           04:30 PM         38         1         39         1         1         2         0         69         69         1           04:45 PM         50         0         50         5         0         55         0         35         35           Total         167         2         169         15         3         18         0         192         192         3           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:30 PM         46         0         46         7         3         10         0         68         68         1           05:30 PM         49         0         35         5         0         5         0<                                                                                                                                      | 04:00 PM     | 33   | 0   | 33   | 4           | 0                                      | 4          | 0     | 49        | 49         | 86        |
| 04:30 PM         38         1         39         1         1         2         0         69         69         1           04:45 PM         50         0         50         5         0         55         0         35         35         1           Total         167         2         169         15         3         18         0         192         192         3           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:15 PM         46         0         46         7         3         10         0         68         68         1           05:30 PM         49         0         49         6         2         8         0         52         52         1           05:45 PM         35         0         35         5         0<                                                                                                                                      | 04:15 PM     | 46   | 1   | 47   |             |                                        |            |       |           |            | 93        |
| 04:45 PM         50         0         50         5         0         5         0         35         35           Total         167         2         169         15         3         18         0         192         192         3           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:15 PM         46         0         46         7         3         10         0         68         68         1           05:30 PM         49         0         49         6         2         8         0         52         52         1           05:45 PM         35         0         35         5         0         5         0         47         47           Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151                                                                                                                                    | 04:30 PM     | 38   | 1   |      |             |                                        |            |       |           |            | 110       |
| Total         167         2         169         15         3         18         0         192         192         3           05:00 PM         51         1         52         3         1         4         0         47         47         1           05:15 PM         46         0         46         7         3         10         0         68         68         1           05:30 PM         49         0         49         6         2         8         0         52         52         1           05:30 PM         49         0         35         5         0         5         0         47         47           05:45 PM         35         0         35         5         0         5         0         47         47           Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151         3         1151         1154         21                                                                                                                                                                                                                | 04:45 PM     |      | 0   |      |             |                                        | 5          |       |           |            | 90        |
| 05:15 PM         46         0         46         7         3         10         0         68         68         1           05:30 PM         49         0         49         6         2         8         0         52         52         1           05:45 PM         35         0         35         5         0         5         0         47         47           Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151         3         1151         1154         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |      |     |      |             |                                        |            |       |           |            | 379       |
| 05:15 PM         46         0         46         7         3         10         0         68         68         1           05:30 PM         49         0         49         6         2         8         0         52         52         1           05:30 PM         35         0         35         5         0         5         0         47         47           Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151         3         1151         1154         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05:00 PM     | 51   | 1   | 52   | 3           | 1                                      | 4          | 0     | 47        | 47         | 103       |
| 05:30 PM         49         0         49         6         2         8         0         52         52         1           05:45 PM         35         0         35         5         0         5         0         47         47           Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151         3         1151         1154         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05:15 PM     | 46   | 0   |      |             |                                        |            |       |           |            | 124       |
| 05:45 PM         35         0         35         5         0         5         0         47         47           Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151         3         1151         1154         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |     |      |             |                                        |            |       |           |            | 109       |
| Total         181         1         182         21         6         27         0         214         214         4           Grand Total         868         11         879         130         21         151         3         1151         1154         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |      |     |      |             | õ                                      |            |       |           | 17         | 87        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |     |      |             |                                        |            |       |           |            | 423       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grand Total  |      | 11  | 879  | 130         | 21                                     | 151        | 3     | 1151      | 1154       | 2184      |
| 001 1010 003 997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apprch %     | 98.7 | 1.3 |      | 86.1        | 13.9                                   |            | 0.3   | 99.7      | 1.07       | 2104      |
| Total % 39.7 0.5 40.2 6 1 6.9 0.1 52.7 52.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |      |     | 40.2 |             |                                        | 6.9        |       |           | 52.8       |           |

277 Whitehorse Pike, Suite 203 Atco, NJ 08004

N/S Route: Franklin Blvd E/W Route: Roosevelt Drive/Ansley Blvd Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/ECM/5142

File Name : 20033004 Site Code : 20033004 Start Date : 3/12/2020 Page No : 2

|                          |             | anklin Blv<br>outhboun |                  |      | anklin Blv<br>Iorthbound | 21 I I I I I I I I I I I I I I I I I I I |       | sevelt Dr<br>astbound |             |            |
|--------------------------|-------------|------------------------|------------------|------|--------------------------|------------------------------------------|-------|-----------------------|-------------|------------|
| Start Time               | Right       | Thru                   | App. Total       | Thru | Left                     | App. Total                               | Right | Left                  | App. Total  | Int. Total |
| eak Hour Analysis Fron   | n 07:00 AM  | to 11:45 A             | AM - Peak 1 of 1 |      |                          |                                          |       | mon                   | ripp. rotar | int. Total |
| eak Hour for Entire Inte | rsection Be | gins at 07             | :45 AM           |      |                          |                                          |       |                       |             |            |
| 07:45 AM                 | 33          | 0                      | 33               | 15   | 1                        | 16                                       | 0     | 64                    | 64          | 113        |
| 08:00 AM                 | 32          | 0                      | 32               | 2    | 0                        | 2                                        | 0     | 43                    | 43          | 77         |
| 08:15 AM                 | 32          | 2                      | 34               | 9    | 2                        | 11                                       | Ō     | 52                    | 52          | 97         |
| 08:30 AM                 | 28          | 1                      | 29               | 9    | 3                        | 12                                       | 0     | 61                    | 61          | 102        |
| Total Volume             | 125         | 3                      | 128              | 35   | 6                        | 41                                       | 0     | 220                   | 220         | 389        |
| % App. Total             | 97.7        | 2.3                    |                  | 85.4 | 14.6                     |                                          | 0     | 100                   |             | 000        |
| PHF                      | .947        | .375                   | .941             | .583 | .500                     | .641                                     | .000  | .859                  | .859        | .861       |




277 Whitehorse Pike, Suite 203 Atco, NJ 08004

N/S Route: Franklin Blvd E/W Route: Roosevelt Drive/Ansley Blvd Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/ECM/5142

File Name : 20033004 Site Code : 20033004 Start Date : 3/12/2020 Page No : 3

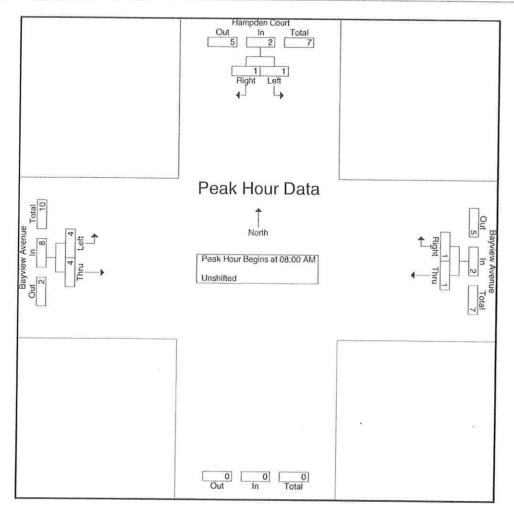
|                           | S            | ranklin Blv | 15 I            |      | ranklin Blv<br>Iorthbound |            |           | sevelt Dr |             |            |
|---------------------------|--------------|-------------|-----------------|------|---------------------------|------------|-----------|-----------|-------------|------------|
| Start Time                | Right        | Thru        | App. Total      | Thru | Left                      | App. Total | Right     | Left      | App. Total  | Int. Total |
| Peak Hour Analysis From   | n 12:00 PM   | to 05:45 F  | M - Peak 1 of 1 |      |                           |            | - ingitit | Lon       | ripp. rotai | nic rola   |
| Peak Hour for Entire Inte | ersection Be | gins at 02: | 45 PM           |      |                           |            |           |           |             |            |
| 02:45 PM                  | 38           | 0           | 38              | 4    | 1                         | 5          | 1         | 43        | 44          | 87         |
| 03:00 PM                  | 43           | 1           | 44              | 5    | 1                         | 6          | 0         | 42        | 42          | 92         |
| 03:15 PM                  | 46           | 1           | 47              | 4    | 0                         | 4          | õ         | 61        | 61          | 112        |
| 03:30 PM                  | 62           | 1           | 63              | 8    | 0                         | 8          | 0         | 65        | 65          | 136        |
| Total Volume              | 189          | 3           | 192             | 21   | 2                         | 23         | 1         | 211       | 212         | 427        |
| % App. Total              | 98.4         | 1.6         |                 | 91.3 | 8.7                       | 1.2.3      | 0.5       | 99.5      | 616         | 421        |
| PHF                       | .762         | .750        | .762            | .656 | .500                      | .719       | .250      | .812      | .815        | .785       |



277 Whitehorse Pike, Suite 203 Atco, NJ 08004

#### N/S Route: Hampden Court E/W Route: Bayview Avenue Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/SP/4607

File Name : Not Named 3 Site Code : 20033005 Start Date : 3/12/2020 Page No : 1

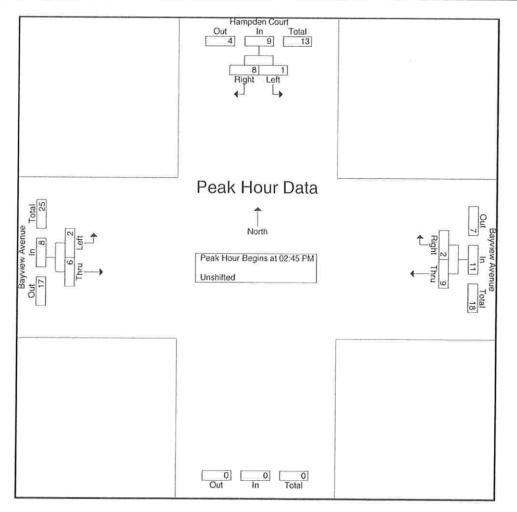

|              | Har   | npden Co  | urt                                                                                                             | Groups Print<br>Bay | view Aven |                           | Bay  | view Aver | nue        |                  |
|--------------|-------|-----------|-----------------------------------------------------------------------------------------------------------------|---------------------|-----------|---------------------------|------|-----------|------------|------------------|
|              |       | outhbound | the second se | V                   | Vestbound |                           |      | astbound  |            |                  |
| Start Time   | Right | Left      | App. Total                                                                                                      | Right               | Thru      | App. Total                | Thru | Left      | App. Total | Int. Total       |
| 07:00 AM     | 0     | 0         | 0                                                                                                               | 0                   | 0         | 0                         | 1    | 1         | 2          | 2                |
| 07:15 AM     | 0     | 0         | 0                                                                                                               | 0                   | 0         | 0                         | 0    | 2         | 2          | 2                |
| 07:30 AM     | 0     | 0         | 0                                                                                                               | 0                   | 0         | 0                         | 0    | 1         | 1          | 1                |
| ** BREAK *** |       |           |                                                                                                                 |                     |           |                           |      |           |            |                  |
| Total        | 0     | 0         | 0                                                                                                               | 0                   | 0         | 0                         | 1    | 4         | 5          | 5                |
| 08:00 AM     | 0     | 0         | 0                                                                                                               | 0                   | 1         | 1                         | 2    | 1         | 3          | 4                |
| 08:15 AM     | 0     | 0         | 0                                                                                                               | 1                   | 0         | 1                         | 1    |           | 3          | 4                |
| 08:30 AM     | 1     | 1         | 2                                                                                                               | 0                   | 0         | 0                         | 0    | 2<br>1    | 1          | 3                |
| 08:45 AM     | 0     | 0         | 0                                                                                                               | 0                   | 0         | 0                         | 1    | 0         | - i        | 3                |
| Total        | 1     | 1         | 2                                                                                                               | 1                   | 1         | 2                         | 4    | 4         | 8          | 12               |
| BREAK ***    |       |           |                                                                                                                 |                     |           |                           |      |           | - (        |                  |
| 02:00 PM     | 0     | 1         | 11                                                                                                              | 0                   | 1         | 1                         | 3    | 2         | r l        | -                |
| 02:15 PM     | 0     | 0         | ò                                                                                                               | õ                   | i         | i                         | 2    | 2         | 5          | 7                |
| 02:30 PM     | 2     | 0         | 2                                                                                                               | õ                   | ò         | ò                         | 2    | 1         | 4          | 5                |
| 02:45 PM     | 2     | õ         | 2                                                                                                               | 1                   | 1         | 2                         | 2    | 1         | 3          | 5<br>7           |
| Total        | 4     | 1         | 5                                                                                                               | 1                   | 3         | 4                         | - 2  | 6         | 3          | 24               |
| 00.00 044    |       |           | 2.0                                                                                                             |                     |           |                           |      |           | 101        | 24               |
| 03:00 PM     | 4     | 0         | 4                                                                                                               | 1                   | 1         | 2                         | 1    | 0         | 1          | 7                |
| 03:15 PM     | 1     | 0         | 1                                                                                                               | 0                   | 1         |                           | 2    | 0         | 2          | 4                |
| 03:30 PM     | 1     | 1         | 2                                                                                                               | 0                   | 6         | 6                         | 1    | 1         | 2          | 10               |
| 03:45 PM     |       | 0         | 1                                                                                                               | 0                   | 0         | 0                         | 0    | 1         | 1          | 2                |
| Total        | 7     | 1         | 8                                                                                                               | 1                   | 8         | 9                         | 4    | 2         | 6          | 23               |
| 04:00 PM     | 0     | 1         | 1                                                                                                               | 1                   |           |                           |      |           | 2          | 4                |
| 04:15 PM     | 1     | 0         | 1                                                                                                               | 0                   |           |                           |      |           | 4          | 5                |
| 04:30 PM     | 0     | 3         | 3                                                                                                               | 0                   |           |                           |      |           | 3          | 7                |
| 04:45 PM     | 1     | 0         | 1                                                                                                               | 2                   | Y         | The work is               |      |           | 5          | 4                |
| Total        | 2     | 4         | 6                                                                                                               | 3                   | A         | 11 TYALS                  | DE   |           | 5          | 20               |
| 05-00 PM     |       |           | - 1                                                                                                             |                     | / `       | I TYAN<br>TRAULE<br>IN BA |      |           | 1          | 20               |
| 05:00 PM     | 0     | 0         | 0                                                                                                               | 0                   |           | TAUE                      | K<   |           | 11         | 2                |
| 05:15 PM     | 2     | 0         | 2                                                                                                               | 0                   |           | a se vic                  |      |           |            | 5                |
| 05:30 PM     | 0     | 2         | 2                                                                                                               | 1                   |           | IN BA                     | KI.  |           |            | 4                |
| 05:45 PM     | 0     | 0         | 0                                                                                                               | 0                   |           | 111 1011                  |      |           |            | 2<br>5<br>4<br>2 |
| Total        | 2     | 2         | 4                                                                                                               | 1                   |           |                           |      |           |            | 13               |
| Grand Total  | 16    | 9         | 25                                                                                                              | 7                   |           |                           |      |           | 1          | 97               |
| Apprch %     | 64    | 36        |                                                                                                                 | 30.4                |           |                           |      |           |            | 57               |
| Total %      | 16.5  | 9.3       | 25.8                                                                                                            | 7.2                 |           |                           |      |           |            |                  |

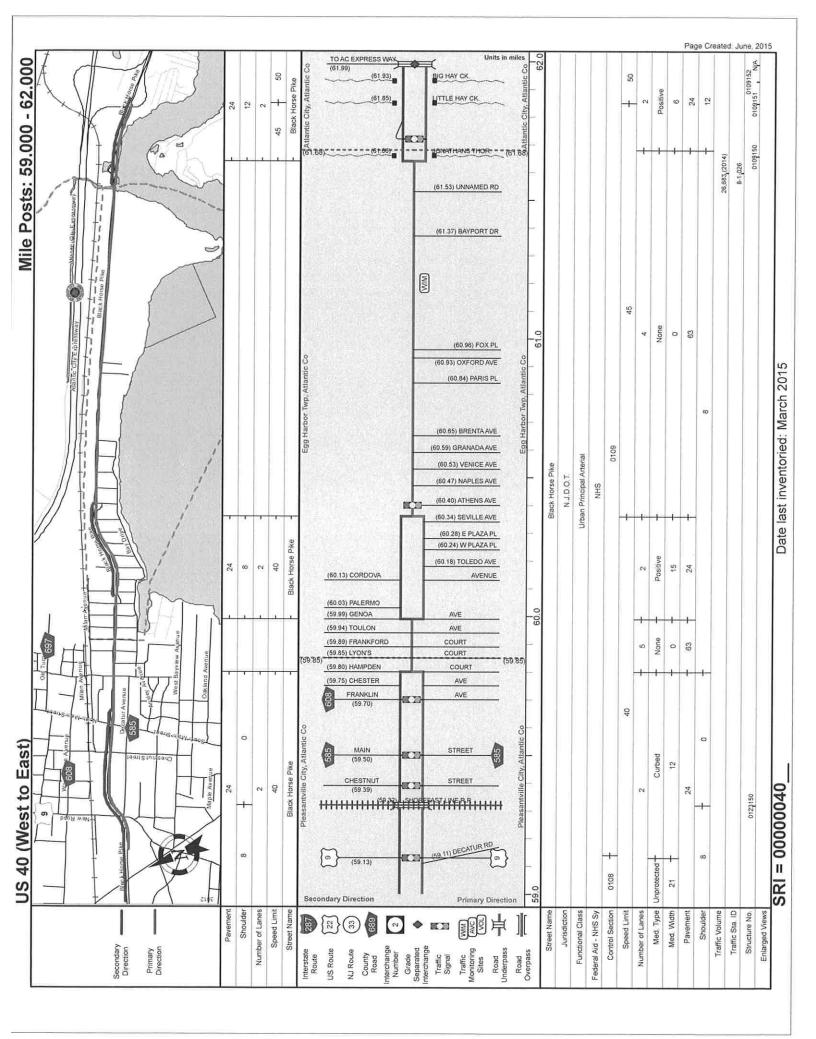
277 Whitehorse Pike, Suite 203 Atco, NJ 08004

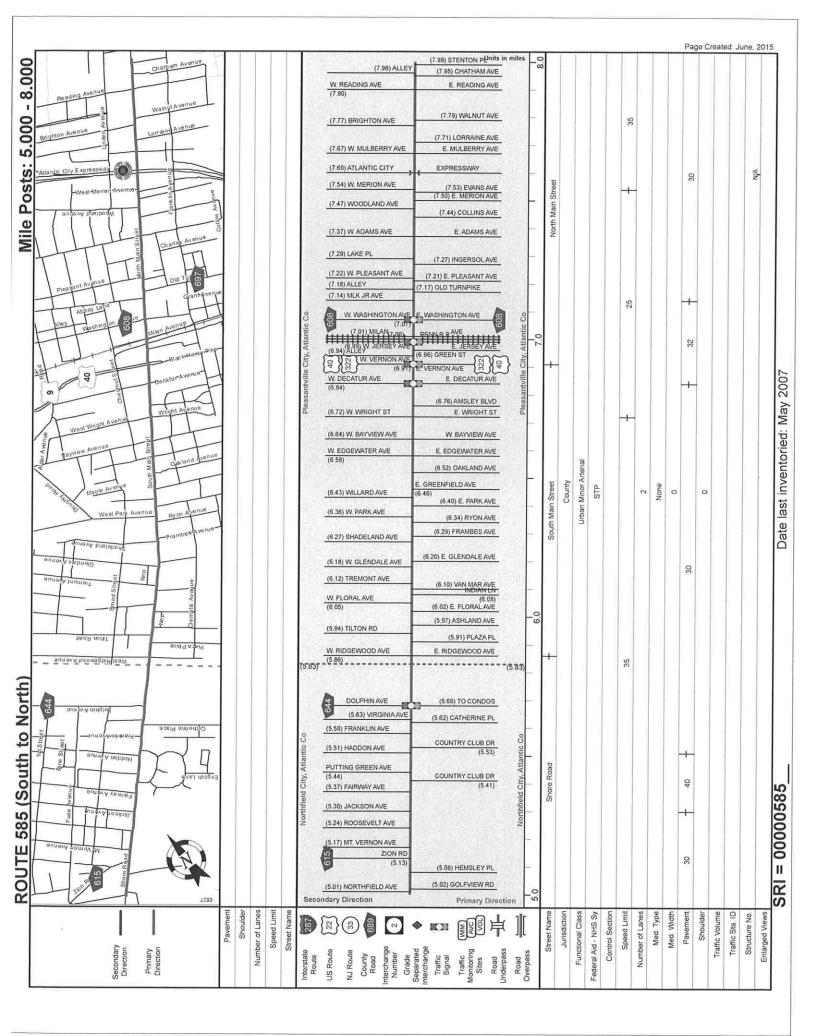
N/S Route: Hampden Court E/W Route: Bayview Avenue Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/SP/4607

File Name : Not Named 3 Site Code : 20033005 Start Date : 3/12/2020 Page No : 2

|                           | S            | npden Co<br>outhboun |                 | 11.11.11.11.11.11.11.11.11.11.11.11.11. | view Aver<br>Vestbound | 0.4752.0   |      | view Aver<br>Eastbound |             |           |
|---------------------------|--------------|----------------------|-----------------|-----------------------------------------|------------------------|------------|------|------------------------|-------------|-----------|
| Start Time                | Right        | Left                 | App. Total      | Right                                   | Thru                   | App. Total | Thru | Left                   | App. Total  | Int. Tota |
| Peak Hour Analysis From   | n 07:00 AM I | to 11:45 A           | M - Peak 1 of 1 |                                         |                        |            |      |                        | ripp. rotar | nn. rota  |
| Peak Hour for Entire Inte | rsection Beg | ins at 08            | :00 AM          |                                         |                        |            |      |                        |             |           |
| 08:00 AM                  | 0            | 0                    | 0               | 0                                       | 1                      | 1          | 2    | 1                      | 3           |           |
| 08:15 AM                  | 0            | 0                    | 0               | 1                                       | 0                      | 1          | 1    | 2                      | 3           | -         |
| 08:30 AM                  | 1            | 1                    | 2               | 0                                       | 0                      | Ó          | ò    | ĩ                      | 4           |           |
| 08:45 AM                  | 0            | 0                    | 0               | 0                                       | 0                      | 0          | ĩ    | 0                      | 41          | 1         |
| Total Volume              | 1            | 1                    | 2               | 1                                       | 1                      | 2          | 4    | 4                      | 8           | 12        |
| % App. Total              | 50           | 50                   |                 | 50                                      | 50                     | -          | 50   | 50                     | 0           | 12        |
| PHF                       | .250         | .250                 | .250            | .250                                    | .250                   | .500       | .500 | .500                   | .667        | .750      |





277 Whitehorse Pike, Suite 203 Atco, NJ 08004


#### N/S Route: Hampden Court E/W Route: Bayview Avenue Pleasantville Twp/Atlantic County/NJ Thursday/cloudy rain/SP/4607

File Name : Not Named 3 Site Code : 20033005 Start Date : 3/12/2020 Page No : 3

|                           |              | npden Co<br>outhbound | (CC)             |       | view Aver<br>Vestbound |            |      | yview Aver<br>Eastbound | 10 m and 1 |            |
|---------------------------|--------------|-----------------------|------------------|-------|------------------------|------------|------|-------------------------|------------|------------|
| Start Time                | Right        | Left                  | App. Total       | Right | Thru                   | App. Total | Thru | Left                    | App. Total | Int. Total |
| Peak Hour Analysis From   | n 12:00 PM   | to 05:45 F            | PM - Peak 1 of 1 |       |                        |            |      |                         |            |            |
| Peak Hour for Entire Inte | rsection Beg | gins at 02:           | :45 PM           |       |                        |            |      |                         |            |            |
| 02:45 PM                  | 2            | 0                     | 2                | 1     | 1                      | 2          | 2    | 1                       | 3          | 7          |
| 03:00 PM                  | 4            | 0                     | 4                | 1     | 1                      | 2          | 1    | Ó                       | 1          | 7          |
| 03:15 PM                  | 1            | 0                     | 1                | 0     | 1                      | 1          | 2    | 0                       | 2          | 4          |
| 03:30 PM                  | 1            | 1                     | 2                | 0     | 6                      | 6          | 1    | 1                       | 2          | 10         |
| Total Volume              | 8            | 1                     | 9                | 2     | 9                      | 11         | 6    | 2                       | 8          | 28         |
| % App. Total              | 88.9         | 11.1                  |                  | 18.2  | 81.8                   |            | 75   | 25                      |            | 20         |
| PHF                       | .500         | .250                  | .563             | .500  | .375                   | .458       | .750 | .500                    | .667       | .700       |







| st) Mile Posts: 0.000 - 2.000     | New Processing and Street                        | Contraction Actions  |                                               | Pleasantville City, Attantic Co | PIRE           (1.92           (1.92           (1.92           (1.92           (1.92           (1.53)           (1.53)           (1.53)           (1.53)           (1.53)           (1.53)           (1.53)           (1.53)           (1.53)           (1.23)           (1.11)           SOMNES           (1.23)           (1.11)           SOMERSE           (1.12)           (1.11)           SOMERSE           (0.62)           S THIR           SECOND           (3.10)           (1.11)           SECOND           (3.10)           (1.11)           SECOND           (3.10)           (1.11)           SECOND           (3.10)           (1.11)           (1.12) | ANE<br>CE AVE<br>AVE<br>AVE<br>AVE<br>DR<br>STRIAN<br>T<br>CE AVE<br>AVE<br>AVE<br>AVE<br>CE AVE<br>AVE<br>CE AVE<br>CE AVE | GRAVE<br>GRAVE<br>(<br>COLUI<br>(<br>COLUI<br>(<br>HARC<br>(<br>HARC<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>CLIN<br>(<br>(<br>CLIN<br>(<br>(<br>CLIN<br>(<br>(<br>CLIN<br>(<br>(<br>CLIN<br>(<br>(<br>CLIN<br>(<br>(<br>CLIN<br>(<br>(<br>(<br>CLIN<br>(<br>(<br>(<br>CLIN<br>(<br>(<br>(<br>(<br>CLIN<br>(<br>(<br>(<br>(<br>(<br>CLIN<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( | ROAD           SSMITH DR           1.82)           ADON DR           1.60)           MBUS AVE           1.60)           MBUS AVE           1.60)           INIG AVE           1.35)           LKWAY           20           GH AVE           0.41           CON AVE           0.97)           DAD           STREET           PRUCE ST           ASI ST           .37)           REET           ON D ST           .43)           STREET           ON AVE |    | Pleasantville City. Attantic Co<br>1.0 Gi Egg Harbor Twp, Atlantic Co<br>1.0 2. | gton Avenue                         | Urban Minor Anterial | STP                                     | 25 + 40 | 0 | None                            | 24 | +<br>8<br>4<br>8 | 2014) | : June             | 2015           | Date last inventoried: July 2011 |
|-----------------------------------|--------------------------------------------------|----------------------|-----------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------|-------------------------------------|----------------------|-----------------------------------------|---------|---|---------------------------------|----|------------------|-------|--------------------|----------------|----------------------------------|
| ATLANTIC COUNTY 608 (East to West | Secondary<br>Direction<br>Direction<br>Direction | Pavement<br>Shoulder | Number of Lanes<br>Speed Limit<br>Straet Name |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Primary Dir<br>Time Primary Dir                                                                                                                                                                                                                                                                                                                                                                                                                        | ₩] | -1.0                                                                            | Street Name -F - F - Jurisdiction F |                      | Federal Aid - NHS Sy<br>Control Section |         |   | Med. Type Med. Width Med. Width |    | лР=0             |       | Iramo Structure No | Enlarged Views | SRI = 01000608                   |

#### 0109103p

Page 1 of 2

# Route US 40/322 and Franklin Boulevard Pleasantville City, Atlantic Co.

#### 120-SECOND BACKGROUND CYCLE

| <u>Pł</u> | ase                             |                         | Sig                          | <u>nal He</u>                                                  | ads                    |                        | Time  | <u>Offset</u> |
|-----------|---------------------------------|-------------------------|------------------------------|----------------------------------------------------------------|------------------------|------------------------|-------|---------------|
|           |                                 | 3,4,5,<br><u>8,9,10</u> | 11,12,13,<br><u>14,15,16</u> | 1,2,<br><u>6,7</u>                                             | 17,18,<br><u>19,20</u> | 21,22,<br><u>23,24</u> |       |               |
|           |                                 | Without P               | edestrian A                  | ctuatio                                                        | on                     |                        |       |               |
| A)        | Route US 40/322 ROW             | G                       | R                            | <r-< td=""><td>W</td><td>DW</td><td>76-40</td><td></td></r-<>  | W                      | DW                     | 76-40 |               |
|           | Pedestrian Clearance            | G                       | R                            | <r-< td=""><td>FDW</td><td>DW</td><td>15</td><td></td></r-<>   | FDW                    | DW                     | 15    |               |
|           | Change                          | Y                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>4</td><td>1*</td></r-<>   | DW                     | DW                     | 4     | 1*            |
|           | Clearance                       | R                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>1</td><td></td></r-<>     | DW                     | DW                     | 1     |               |
| B)        | Franklin Boulevard              | R                       | G                            | <r-< td=""><td>DW</td><td>DW</td><td>10-36</td><td></td></r-<> | DW                     | DW                     | 10-36 |               |
|           | Change                          | R                       | Y                            | <r-< td=""><td>DW</td><td>DW</td><td>3</td><td></td></r-<>     | DW                     | DW                     | 3     |               |
|           | Clearance                       | R                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>2</td><td></td></r-<>     | DW                     | DW                     | 2     |               |
| C)        | Route US 40/322 Left-Turn Slots | R                       | R                            | <g-< td=""><td>DW</td><td>DW</td><td>5-15</td><td></td></g-<>  | DW                     | DW                     | 5-15  |               |
|           | Change                          | R                       | R                            | <y-< td=""><td>DW</td><td>DW</td><td>3</td><td></td></y-<>     | DW                     | DW                     | 3     |               |
|           | Clearance                       | R                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>1</td><td></td></r-<>     | DW                     | DW                     | 1     |               |
|           |                                 | With Peo                | destrian Ac                  | tuation                                                        |                        |                        |       |               |
| A)        | Route US 40/322 ROW             | G                       | R                            | <r-< td=""><td>W</td><td>DW</td><td>59-40</td><td></td></r-<>  | W                      | DW                     | 59-40 |               |
|           | Pedestrian Clearance            | G                       | R                            | <r-< td=""><td>FDW</td><td>DW</td><td>15</td><td></td></r-<>   | FDW                    | DW                     | 15    |               |
|           | Change                          | Y                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>4</td><td>1*</td></r-<>   | DW                     | DW                     | 4     | 1*            |
|           | Clearance                       | R                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>1</td><td>•</td></r-<>    | DW                     | DW                     | 1     | •             |
| B)        | Franklin Boulevard ROW          | R                       | G                            | <r-< td=""><td>DW</td><td>W</td><td>10</td><td></td></r-<>     | DW                     | W                      | 10    |               |
| -1        | Pedestrian Clearance            | R                       | G                            | <r-< td=""><td>DW</td><td>FDW</td><td>10</td><td></td></r-<>   | DW                     | FDW                    | 10    |               |
|           | Vehicle Extension               | R                       | G                            | <r-< td=""><td>DW</td><td>DW</td><td>0-9</td><td></td></r-<>   | DW                     | DW                     | 0-9   |               |
|           | Change                          | R                       | Ŷ                            | <r-< td=""><td>DW</td><td>DW</td><td>3</td><td></td></r-<>     | DW                     | DW                     | 3     |               |
|           | Clearance                       | R                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>2</td><td></td></r-<>     | DW                     | DW                     | 2     |               |
| C)        | Route US 40/322 Left-Turn Slots | R                       | R                            | <g-< td=""><td>DW</td><td>DW</td><td>5-15</td><td></td></g-<>  | DW                     | DW                     | 5-15  |               |
| -1        | Change                          | R                       | R                            | <y-< td=""><td>DW</td><td>DW</td><td>3</td><td></td></y-<>     | DW                     | DW                     | 3     |               |
|           | Clearance                       | R                       | R                            | <r-< td=""><td>DW</td><td>DW</td><td>1</td><td></td></r-<>     | DW                     | DW                     | 1     |               |

0109103p

Page 2 of 2

Directive No. 10-02

Route US 40/322 and Franklin Boulevard Pleasantville City, Atlantic Co.

\*Offset is measured from the beginning of yellow to Route US 40/322 at Main Street to the beginning of yellow to Route US 40/322 at this intersection.

The manual control be connected.

Vehicle interval is to be 2 seconds for Phases B and C.

The memory circuit is to be disconnected for Phases B and C.

The controller be capable of skipping any unactuated phases.

The recall switch for Phase A be in the "On" position, and in the "Off" position for Phases B and C.

The left-turn slots be separate phases but concurrently timed if actuation occurs in both slots.

Each left-turn slot has the capability of terminating or extending independently of each other, thereby reverting the timing to the non-conflicting Phase A movement.

Emergency Flash Operation: Signal Heads #3, 4, 5, 8, 9, 10 – Flash Yellow Signal Heads #1, 2, 6, 7, 11, 12, 13, 14, 15, 16 – Flash Red Pedestrian Indications #17, 18, 19, 20, 21, 22, 23, 24 – Dark

| MAIN STREET (CR 589<br>PLEASA<br>70-SECOND CY                                                                        | NTVILLE |             |                  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------|--|--|--|--|--|--|--|--|--|
| SIGNAL INTERVALMAIN ST.<br>SIGNALSDECATUR<br>SIGNALSTIME<br>(SECS.)MAIN STREET RIGHT-OF-WAYGR42MAIN STREET CHANGEYR4 |         |             |                  |  |  |  |  |  |  |  |  |  |
| MAIN STREET RIGHT-OF-WAY                                                                                             | G       | R           | 42               |  |  |  |  |  |  |  |  |  |
| MAIN STREET CHANGE                                                                                                   | Y       | R           | 4                |  |  |  |  |  |  |  |  |  |
| CLEARANCE                                                                                                            | R       | R           | 1                |  |  |  |  |  |  |  |  |  |
| DECATUR AVENUE RIGHT-OF-WAY                                                                                          | R       | G           | 18               |  |  |  |  |  |  |  |  |  |
| DECATUR AVENUE CHANGE                                                                                                | R       | Y           | 4                |  |  |  |  |  |  |  |  |  |
| CLEARANCE                                                                                                            | R       | R           | 1                |  |  |  |  |  |  |  |  |  |
| EMERGENCY FLASH                                                                                                      | Y       | R           |                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                      |         | Rev. 10-17- | -2018 J.H. Mason |  |  |  |  |  |  |  |  |  |

|                                | ۶         | ->             | Y        | 1     | -       | ×     | 1       | 1     | p       | 1        | ţ       | ~        |
|--------------------------------|-----------|----------------|----------|-------|---------|-------|---------|-------|---------|----------|---------|----------|
| Lane Group                     | EBL       | EBT            | EBR      | WBL   | WBT     | WBR   | NBL     | NBT   | NBR     | SBL      | SBT     | SBR      |
| Lane Configurations            | ሻ         | <b>≜</b> î≽    |          | ሻ     | 朴       |       | ሻ       | ĵ.    |         | ሻ        | ĥ       | PACK AND |
| Traffic Volume (vph)           | 92        | 708            | 9        | 19    | 621     | 128   | 12      | 149   | 132     | 108      | 111     | 49       |
| Future Volume (vph)            | 92        | 708            | 9        | 19    | 621     | 128   | 12      | 149   | 132     | 108      | 111     | 49       |
| Ideal Flow (vphpl)             | 1900      | 1900           | 1900     | 1900  | 1900    | 1900  | 1900    | 1900  | 1900    | 1900     | 1900    | 1900     |
| Lane Util. Factor              | 1.00      | 0.95           | 0.95     | 1.00  | 0.95    | 0.95  | 1.00    | 1.00  | 1.00    | 1.00     | 1.00    | 1.00     |
| Frt                            |           | 0.997          |          |       | 0.974   |       |         | 0.922 | Saulte: | a create | 0.944   | 1.00     |
| Fit Protected                  | 0.950     |                |          | 0.950 |         |       | 0.950   |       |         | 0.950    | 0.011   |          |
| Satd. Flow (prot)              | 1805      | 3599           | 0        | 1805  | 3516    | 0     | 1805    | 1752  | 0       | 1805     | 1780    | 0        |
| Flt Permitted                  | 0.950     | 1.1.2.2.2.2.2. |          | 0.950 |         |       | 0.475   |       |         | 0.217    | 1100    | v        |
| Satd. Flow (perm)              | 1805      | 3599           | 0        | 1805  | 3516    | 0     | 902     | 1752  | 0       | 412      | 1780    | 0        |
| Right Turn on Red              |           |                | Yes      |       | 0010    | Yes   | 002     | 1102  | Yes     | 712      | 1700    | Yes      |
| Satd. Flow (RTOR)              |           | 2              | iter and |       | 27      | 100   |         | 47    | 100     |          | 25      | 103      |
| Link Speed (mph)               |           | 30             |          |       | 30      |       |         | 30    |         |          | 30      |          |
| Link Distance (ft)             |           | 512            |          |       | 642     |       |         | 750   |         |          | 338     |          |
| Travel Time (s)                |           | 11.6           |          |       | 14.6    |       |         | 17.0  |         |          | 7.7     |          |
| Peak Hour Factor               | 0.74      | 0.88           | 0.56     | 0.79  | 0.81    | 0.79  | 0.75    | 0.87  | 0.71    | 0.87     | 0.84    | 0.63     |
| Heavy Vehicles (%)             | 0%        | 0%             | 0%       | 0%    | 0%      | 0%    | 0.75    | 0.07  | 0%      | 0.87     | 0.84    | 2%       |
| Adj. Flow (vph)                | 124       | 805            | 16       | 24    | 767     | 162   | 16      | 171   |         |          |         |          |
| Shared Lane Traffic (%)        |           | 005            | 10       | 24    | 101     | 102   | 10      | 1/1   | 186     | 124      | 132     | 78       |
| Lane Group Flow (vph)          | 124       | 821            | 0        | 24    | 929     | 0     | 16      | 357   | 0       | 124      | 210     | 0        |
| Enter Blocked Intersection     | No        | No             | No       | No    | No      | No    | No      | No    | No      | No       | No      | No       |
| Lane Alignment                 | Left      | Left           | Right    | Left  | Left    | Right | Left    | Left  | Right   | Left     | Left    | Right    |
| Median Width(ft)               |           | 12             | Ū        |       | 12      | v     |         | 12    | 0       | A        | 12      |          |
| Link Offset(ft)                |           | 0              |          |       | 0       |       |         | 0     |         |          | 0       |          |
| Crosswalk Width(ft)            |           | 16             |          |       | 16      |       |         | 16    |         |          | 16      |          |
| Two way Left Turn Lane         |           |                |          |       |         |       |         |       |         |          | 12000   |          |
| Headway Factor                 | 1.00      | 1.00           | 1.00     | 1.00  | 1.00    | 1.00  | 1.00    | 1.00  | 1.00    | 1.00     | 1.00    | 1.00     |
| Turning Speed (mph)            | 15        |                | 9        | 15    |         | 9     | 15      |       | 9       | 15       |         | 9        |
| Number of Detectors            | 1         | 2              |          | 1     | 2       |       | 1       | 2     |         | 1        | 2       |          |
| Detector Template              | Left      | Thru           |          | Left  | Thru    |       | Left    | Thru  |         | Left     | Thru    |          |
| Leading Detector (ft)          | 20        | 100            |          | 20    | 100     |       | 20      | 100   |         | 20       | 100     |          |
| Trailing Detector (ft)         | 0         | 0              |          | 0     | 0       |       | 0       | 0     |         | 0        | 0       |          |
| Detector 1 Position(ft)        | 0         | 0              |          | 0     | 0       |       | 0       | 0     |         | 0        | 0       |          |
| Detector 1 Size(ft)            | 20        | 6              |          | 20    | 6       |       | 20      | 6     |         | 20       | 6       |          |
| Detector 1 Type                | CI+Ex     | CI+Ex          |          | CI+Ex | CI+Ex   |       | CI+Ex   | CI+Ex |         | CI+Ex    | CI+Ex   |          |
| Detector 1 Channel             | . Ustante |                |          | OF EX | OI - EA |       | OI - EX | OILLA |         | OPER     | OFFER   |          |
| Detector 1 Extend (s)          | 0.0       | 0.0            |          | 0.0   | 0.0     |       | 0.0     | 0.0   |         | 0.0      | 0.0     |          |
| Detector 1 Queue (s)           | 0.0       | 0.0            |          | 0.0   | 0.0     |       | 0.0     | 0.0   |         | 0.0      | 0.0     |          |
| Detector 1 Delay (s)           | 0.0       | 0.0            |          | 0.0   | 0.0     |       | 0.0     | 0.0   |         | 0.0      | 0.0     |          |
| Detector 2 Position(ft)        | 0.0       | 94             |          | 0.0   | 94      |       | 0.0     | 94    |         | 0.0      | 94      |          |
| Detector 2 Size(ft)            |           | 6              |          |       | 6       |       |         | 6     |         |          | 94<br>6 |          |
| Detector 2 Type                |           | CI+Ex          |          |       | CI+Ex   |       |         | CI+Ex |         |          | CI+Ex   |          |
| Detector 2 Channel             |           | ULLA           |          |       | ULLA    |       |         | UITEX |         |          | CITEX   |          |
| Detector 2 Extend (s)          |           | 0.0            |          |       | 0.0     |       |         | 0.0   |         |          | 0.0     |          |
| Turn Type                      | Prot      | NA             |          | Drot  | NA      |       | Dorm    |       |         | Dem      | 0.0     |          |
| Protected Phases               | 7         | 4              |          | Prot  |         |       | Perm    | NA    |         | Perm     | NA      |          |
| Permitted Phases               | 1.1.1     | 4              |          | 3     | 8       |       | 0       | 2     |         |          | 6       |          |
|                                | 7         | 4              |          | 2     | •       |       | 2       |       |         | 6        |         |          |
| Detector Phase<br>Switch Phase |           | 4              |          | 3     | 8       |       | 2       | 2     |         | 6        | 6       |          |

20033 - Spyglass at Lakes Bay NBM

Existing AM 05/01/2020

|                                                         | ×                  | -         | $\mathbf{F}$ | 1          | -          | *                                         | 1       | 1              | r       | 1      | Ļ     | ~    |
|---------------------------------------------------------|--------------------|-----------|--------------|------------|------------|-------------------------------------------|---------|----------------|---------|--------|-------|------|
| Lane Group                                              | EBL                | EBT       | EBR          | WBL        | WBT        | WBR                                       | NBL     | NBT            | NBR     | SBL    | SBT   | SBR  |
| Minimum Initial (s)                                     | 5.0                | 55.0      |              | 5.0        | 55.0       | $b \in \mathcal{A} \setminus \mathcal{A}$ | 10.0    | 10.0           | 2012.14 | 10.0   | 10.0  | 花生 法 |
| Minimum Split (s)                                       | 9.0                | 60.0      |              | 9.0        | 60.0       |                                           | 15.0    | 15.0           |         | 15.0   | 15.0  |      |
| Total Split (s)                                         | 19.0               | 60.0      |              | 19.0       | 60.0       |                                           | 41.0    | 41.0           |         | 41.0   | 41.0  |      |
| Total Split (%)                                         | 15.8%              | 50.0%     |              | 15.8%      | 50.0%      |                                           | 34.2%   | 34.2%          |         | 34.2%  | 34.2% |      |
| Maximum Green (s)                                       | 15.0               | 55.0      |              | 15.0       | 55.0       |                                           | 36.0    | 36.0           |         | 36.0   | 36.0  |      |
| Yellow Time (s)                                         | 3.0                | 4.0       |              | 3.0        | 4.0        |                                           | 3.0     | 3.0            |         | 3.0    | 3.0   |      |
| All-Red Time (s)                                        | 1.0                | 1.0       |              | 1.0        | 1.0        |                                           | 2.0     | 2.0            |         | 2.0    | 2.0   |      |
| Lost Time Adjust (s)                                    | 0.0                | 0.0       |              | 0.0        | 0.0        |                                           | 0.0     | 0.0            |         | 0.0    | 0.0   |      |
| Total Lost Time (s)                                     | 4.0                | 5.0       |              | 4.0        | 5.0        |                                           | 5.0     | 5.0            |         | 5.0    | 5.0   |      |
| Lead/Lag                                                | Lead               | Lag       |              | Lead       | Lag        |                                           |         |                |         |        |       |      |
| Lead-Lag Optimize?                                      |                    | 3. S P. N |              |            |            |                                           |         |                |         |        |       |      |
| Vehicle Extension (s)                                   | 2.0                | 2.0       |              | 2.0        | 2.0        |                                           | 2.0     | 2.0            |         | 2.0    | 2.0   |      |
| Recall Mode                                             | None               | C-Min     |              | None       | C-Min      |                                           | None    | None           |         | None   | None  |      |
| Act Effct Green (s)                                     | 12.1               | 74.4      |              | 6.3        | 64.9       |                                           | 29.0    | 29.0           |         | 29.0   | 29.0  |      |
| Actuated g/C Ratio                                      | 0.10               | 0.62      |              | 0.05       | 0.54       |                                           | 0.24    | 0.24           |         | 0.24   | 0.24  |      |
| v/c Ratio                                               | 0.69               | 0.37      |              | 0.26       | 0.49       |                                           | 0.07    | 0.78           |         | 1.25   | 0.47  |      |
| Control Delay                                           | 70.8               | 13.8      |              | 60.7       | 19.4       |                                           | 32.2    | 48.0           |         | 210.0  | 36.1  |      |
| Queue Delay                                             | 0.0                | 0.0       |              | 0.0        | 0.0        |                                           | 0.0     | 0.0            |         | 0.0    | 0.0   |      |
| Total Delay                                             | 70.8               | 13.8      |              | 60.7       | 19.4       |                                           | 32.2    | 48.0           |         | 210.0  | 36.1  |      |
| LOS                                                     | E                  | В         |              | Е          | В          |                                           | С       | D              |         | F      | D     |      |
| Approach Delay                                          |                    | 21.3      |              |            | 20.4       |                                           |         | 47.3           |         |        | 100.7 |      |
| Approach LOS                                            |                    | С         |              |            | С          |                                           |         | D              |         |        | F     |      |
| Intersection Summary                                    |                    |           |              |            |            |                                           |         |                |         |        |       |      |
| Area Type:<br>Cycle Length: 120                         | Other              |           |              |            | e Kar      | 0.16-161                                  | rianas. | 15 11 17 - 1 V | en en   | s se a | -     |      |
| Actuated Cycle Length: 1                                |                    |           |              |            |            |                                           |         |                |         |        |       |      |
| Offset: 115 (96%), Refere                               | enced to phase     | e 4:EBT a | nd 8:WB      | r, Start o | fYellow    |                                           |         |                |         |        |       |      |
| Natural Cycle: 95                                       | and the set of the |           |              |            |            |                                           |         |                |         |        |       |      |
| Control Type: Actuated-C                                | oordinated         |           |              |            |            |                                           |         |                |         |        |       |      |
| Maximum v/c Ratio: 1.25                                 | 24.0               |           |              |            |            | 100.0                                     |         |                |         |        |       |      |
| Intersection Signal Delay:                              |                    |           |              |            | tersection |                                           | -       |                |         |        |       |      |
| Intersection Capacity Utili<br>Analysis Period (min) 15 | zation 91.0%       |           |              | IC         | U Level o  | t Service                                 | F       |                |         |        |       |      |

Splits and Phases: 8: Franklin Boulevard & Route 40/322

| ▲ ¶ Ø2 | <b>√</b> Ø3 | ▶Ø4 (R)  | U |
|--------|-------------|----------|---|
| 41 s   | 19 s        | 60 s     |   |
| ↓ ø6   | <b>▲</b> @7 | ✓ Ø8 (R) | W |
| 41 s   | 19 s        | 60 s     |   |

Existing AM 05/01/2020

|                                  | ٨          | -     | $\mathbf{i}$ | 1      | -     |       | 1         | 1     | 1           | 1     | Ļ     | ~     |
|----------------------------------|------------|-------|--------------|--------|-------|-------|-----------|-------|-------------|-------|-------|-------|
| Lane Group                       | EBL        | EBT   | EBR          | WBL    | WBT   | WBR   | NBL       | NBT   | NBR         | SBL   | SBT   | SBF   |
| Lane Configurations              |            | \$    |              |        | 4     |       |           | 4     | 1.000000000 |       | 4     |       |
| Traffic Volume (vph)             | 6          | 39    | 11           | 38     | 14    | 16    | 7         | 297   | 28          | 21    | 266   | 21    |
| Future Volume (vph)              | 6          | 39    | 11           | 38     | 14    | 16    | 7         | 297   | 28          | 21    | 266   | 21    |
| Ideal Flow (vphpl)               | 1900       | 1900  | 1900         | 1900   | 1900  | 1900  | 1900      | 1900  | 1900        | 1900  | 1900  | 1900  |
| Lane Util. Factor                | 1.00       | 1.00  | 1.00         | 1.00   | 1.00  | 1.00  | 1.00      | 1.00  | 1.00        | 1.00  | 1.00  | 1.00  |
| Frt                              |            | 0.951 |              |        | 0.960 | 14455 | 1999.1678 | 0.988 |             | 1.00  | 0.987 | 1.00  |
| Flt Protected                    |            | 0.994 |              |        | 0.975 |       |           | 0.998 |             |       | 0.995 |       |
| Satd. Flow (prot)                | 0          | 1796  | 0            | 0      | 1778  | 0     | 0         | 1873  | 0           | 0     | 1866  | 0     |
| Flt Permitted                    |            | 0.968 |              | - 11 H | 0.823 |       | ·         | 0.980 | 0           | v     | 0.946 | 0     |
| Satd. Flow (perm)                | 0          | 1749  | 0            | 0      | 1501  | 0     | 0         | 1840  | 0           | 0     | 1774  | 0     |
| Right Turn on Red                |            |       | Yes          |        | 1001  | Yes   |           | 1040  | Yes         | U     | 1//4  | Yes   |
| Satd. Flow (RTOR)                |            | 37    |              |        | 25    | 105   |           | 13    | 103         |       | 14    | 165   |
| Link Speed (mph)                 |            | 25    |              |        | 25    |       |           | 25    |             |       | 25    |       |
| Link Distance (ft)               |            | 431   |              |        | 451   |       |           | 469   |             |       | 268   |       |
| Travel Time (s)                  |            | 11.8  |              |        | 12.3  |       |           | 12.8  |             |       | 7.3   |       |
| Peak Hour Factor                 | 0.50       | 0.75  | 0.30         | 0.86   | 0.88  | 0.63  | 0.44      | 0.95  | 0.88        | 0.58  | 0.88  | 0.50  |
| Heavy Vehicles (%)               | 0%         | 0%    | 0%           | 0%     | 0%    | 0.05  | 0%        | 0.95  | 0.88        | 0.58  | 0.00  | 0.59  |
| Adj. Flow (vph)                  | 12         | 52    | 37           | 44     | 16    | 25    | 16        | 313   | 32          | 36    |       | 0%    |
| Shared Lane Traffic (%)          | 12         | 52    | 57           | 44     | 10    | 20    | 10        | 313   | 32          | 30    | 302   | 36    |
| Lane Group Flow (vph)            | 0          | 101   | 0            | 0      | 85    | 0     | 0         | 201   | 0           | 0     | 074   | •     |
| Enter Blocked Intersection       | No         | No    | No           | No     | No    | No    |           | 361   | 0           | 0     | 374   | 0     |
| Lane Alignment                   | Left       | Left  |              | Left   |       |       | No        | No    | No          | No    | No    | No    |
| Median Width(ft)                 | Leit       | 0     | Right        | Leit   | Left  | Right | Left      | Left  | Right       | Left  | Left  | Right |
| Link Offset(ft)                  |            | 0     |              |        | 0     |       |           | 0     |             |       | 0     |       |
| Crosswalk Width(ft)              |            | 16    |              |        | 0     |       |           | 0     |             |       | 0     |       |
| Two way Left Turn Lane           |            | 10    |              |        | 16    |       |           | 16    |             |       | 16    |       |
| Headway Factor                   | 1 00       | 1.00  | 1.00         | 1.00   | 1 00  | 4.00  | 4.00      | 4.00  | 4.00        |       |       |       |
|                                  | 1.00<br>15 | 1.00  | 1.00         | 1.00   | 1.00  | 1.00  | 1.00      | 1.00  | 1.00        | 1.00  | 1.00  | 1.00  |
| Turning Speed (mph)<br>Turn Type |            | NIA   | 9            | 15     |       | 9     | 15        |       | 9           | 15    |       | 9     |
| Protected Phases                 | Perm       | NA    |              | Perm   | NA    |       | Perm      | NA    |             | Perm  | NA    |       |
| Permitted Phases                 |            | 4     |              |        | 8     |       |           | 2     |             |       | 6     |       |
|                                  | 4          | 00.0  |              | 8      | 00.0  |       | 2         |       |             | 6     |       |       |
| Minimum Split (s)                | 23.0       | 23.0  |              | 23.0   | 23.0  |       | 47.0      | 47.0  |             | 47.0  | 47.0  |       |
| Total Split (s)                  | 23.0       | 23.0  |              | 23.0   | 23.0  |       | 47.0      | 47.0  |             | 47.0  | 47.0  |       |
| Total Split (%)                  | 32.9%      | 32.9% |              | 32.9%  | 32.9% |       | 67.1%     | 67.1% |             | 67.1% | 67.1% |       |
| Maximum Green (s)                | 18.0       | 18.0  |              | 18.0   | 18.0  |       | 42.0      | 42.0  |             | 42.0  | 42.0  |       |
| Yellow Time (s)                  | 4.0        | 4.0   |              | 4.0    | 4.0   |       | 4.0       | 4.0   |             | 4.0   | 4.0   |       |
| All-Red Time (s)                 | 1.0        | 1.0   |              | 1.0    | 1.0   |       | 1.0       | 1.0   |             | 1.0   | 1.0   |       |
| Lost Time Adjust (s)             |            | 0.0   |              |        | 0.0   |       |           | 0.0   |             |       | 0.0   |       |
| Total Lost Time (s)              |            | 5.0   |              |        | 5.0   |       |           | 5.0   |             |       | 5.0   |       |
| Lead/Lag                         |            |       |              |        |       |       |           |       |             |       |       |       |
| Lead-Lag Optimize?               |            |       |              |        |       |       |           |       |             |       |       |       |
| Walk Time (s)                    | 7.0        | 7.0   |              | 7.0    | 7.0   |       | 7.0       | 7.0   |             | 7.0   | 7.0   |       |
| Flash Dont Walk (s)              | 11.0       | 11.0  |              | 11.0   | 11.0  |       | 11.0      | 11.0  |             | 11.0  | 11.0  |       |
| Pedestrian Calls (#/hr)          | 0          | 0     |              | 0      | 0     |       | 0         | 0     |             | 0     | 0     |       |
| Act Effct Green (s)              |            | 18.0  |              |        | 18.0  |       |           | 42.0  |             |       | 42.0  |       |
| Actuated g/C Ratio               |            | 0.26  |              |        | 0.26  |       |           | 0.60  |             |       | 0.60  |       |
| v/c Ratio                        |            | 0.21  |              |        | 0.21  |       |           | 0.33  |             |       | 0.35  |       |
| Control Delay                    |            | 15.3  |              |        | 17.1  |       |           | 7.7   |             |       | 7.9   |       |
| Queue Delay                      |            | 0.0   |              |        | 0.0   |       |           | 0.0   |             |       | 0.0   |       |

20033 - Spyglass at Lakes Bay NBM

|                           | ٨                | -               | 7       | *            | +          |            | 1   | Ť   | 1   | 1      | Ļ   | 1   |
|---------------------------|------------------|-----------------|---------|--------------|------------|------------|-----|-----|-----|--------|-----|-----|
| Lane Group                | EBL              | EBT             | EBR     | WBL          | WBT        | WBR        | NBL | NBT | NBR | SBL    | SBT | SBR |
| Total Delay               |                  | 15.3            | 1. 205  | <b>新日本</b> 人 | 17.1       |            |     | 7.7 |     | 1.1.27 | 7.9 | -1  |
| LOS                       |                  | В               |         |              | В          |            |     | А   |     |        | A   |     |
| Approach Delay            |                  | 15.3            |         |              | 17.1       |            |     | 7.7 |     |        | 7.9 |     |
| Approach LOS              |                  | В               |         |              | В          |            |     | А   |     |        | A   |     |
| Intersection Summary      |                  |                 |         |              |            |            |     |     |     |        |     |     |
| Area Type:                | Other            |                 |         |              |            |            |     |     |     |        |     |     |
| Cycle Length: 70          |                  |                 |         |              |            |            |     |     |     |        |     |     |
| Actuated Cycle Length:    | 70               |                 |         |              |            |            |     |     |     |        |     |     |
| Offset: 0 (0%), Reference | ced to phase 2:1 | <b>NBTL</b> and | 6:SBTL, | Start of C   | Green      |            |     |     |     |        |     |     |
| Natural Cycle: 70         |                  |                 |         |              |            |            |     |     |     |        |     |     |
| Control Type: Pretimed    |                  |                 |         |              |            |            |     |     |     |        |     |     |
| Maximum v/c Ratio: 0.3    | 5                |                 |         |              |            |            |     |     |     |        |     |     |
| Intersection Signal Dela  | v: 9.5           |                 |         | In           | tersection | LOS: A     |     |     |     |        |     |     |
| Intersection Capacity Ut  |                  |                 |         |              |            | of Service | В   |     |     |        |     |     |
| Analysis Period (min) 15  |                  |                 |         | SAR 1        |            |            |     |     |     |        |     |     |
|                           |                  |                 |         |              |            |            |     |     |     |        |     |     |

Splits and Phases: 3: Main Street & Decatur Avenue

| μ <sup>™</sup> Ø2 (R) |              |
|-----------------------|--------------|
| 47 s                  | 23 s         |
| Ø6 (R)                | <b>₹</b> _Ø8 |
| 47 s                  | 23 s         |

| Intersection           | 4.0    | _10°2          |         |                   | 12,12,1      |                                                                                                                                                                                                                                                                                                                                      |
|------------------------|--------|----------------|---------|-------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Int Delay, s/veh       | 1.9    |                |         |                   |              |                                                                                                                                                                                                                                                                                                                                      |
| Movement               | WBL    | WBR            | NBT     | NBR               | SBL          | SBT                                                                                                                                                                                                                                                                                                                                  |
| Lane Configurations    | W/     |                | ĵ.      |                   |              | <del>ب</del> اً                                                                                                                                                                                                                                                                                                                      |
| Traffic Vol, veh/h     | 102    | 29             | 340     | 220               | 0            | 310                                                                                                                                                                                                                                                                                                                                  |
| Future Vol, veh/h      | 102    | 29             | 340     | 220               | 0            | 310                                                                                                                                                                                                                                                                                                                                  |
| Conflicting Peds, #/hr | 0      | 0              | 0       | 0                 | 0            | 0                                                                                                                                                                                                                                                                                                                                    |
| Sign Control           | Stop   | Stop           | Free    | Free              | Free         | Free                                                                                                                                                                                                                                                                                                                                 |
| RT Channelized         |        | None           |         | None              |              | None                                                                                                                                                                                                                                                                                                                                 |
| Storage Length         | 0      | -              | -       | -                 | 4400         | -                                                                                                                                                                                                                                                                                                                                    |
| Veh in Median Storage  |        |                | 0       | Size 1            | En Stal      | 0                                                                                                                                                                                                                                                                                                                                    |
| Grade, %               | 0      | -<br>-         | 0       |                   |              | 0                                                                                                                                                                                                                                                                                                                                    |
| Peak Hour Factor       | 92     | 92             | 92      | 92                | 92           | 92                                                                                                                                                                                                                                                                                                                                   |
| Heavy Vehicles, %      | 92     | 92             | 92      | 92                | 92           | 92                                                                                                                                                                                                                                                                                                                                   |
| Mymt Flow              | 111    | 32             | 370     | 239               | 0            | 337                                                                                                                                                                                                                                                                                                                                  |
| WINTIL FIOW            | 111    | 52             | 310     | 209               | U            | 337                                                                                                                                                                                                                                                                                                                                  |
|                        |        |                |         |                   |              |                                                                                                                                                                                                                                                                                                                                      |
| Major/Minor N          | Ainor1 | 1              | Major1  | 1                 | Major2       |                                                                                                                                                                                                                                                                                                                                      |
| Conflicting Flow All   | 827    | 490            | 0       | 0                 | 609          | 0                                                                                                                                                                                                                                                                                                                                    |
| Stage 1                | 490    | -              |         | 10.12             |              | 18 1972                                                                                                                                                                                                                                                                                                                              |
| Stage 2                | 337    | -              |         | -                 | 2000 B       | in the second                                                                                                                                                                                                                      |
| Critical Hdwy          | 5.5    | 5              |         |                   | 3.5          | 12.21                                                                                                                                                                                                                                                                                                                                |
| Critical Hdwy Stg 1    | 5      | -              | 20-0430 | 10052000          | 0.0          | and the second s |
| Critical Hdwy Stg 2    | 5      |                |         | 21                | 15 125       |                                                                                                                                                                                                                                                                                                                                      |
| Follow-up Hdwy         | 3      | 3              |         |                   | 2            |                                                                                                                                                                                                                                                                                                                                      |
| Pot Cap-1 Maneuver     | 469    | 740            | -<br>-  |                   | 1174         |                                                                                                                                                                                                                                                                                                                                      |
| Stage 1                | 740    | 140            |         | 6000              | 11/4         |                                                                                                                                                                                                                                                                                                                                      |
|                        | 862    |                | i shine | 5 0.01            | i de la      | -                                                                                                                                                                                                                                                                                                                                    |
| Stage 2                | 002    | 0.0            | -       | 1000              | 19. <b>*</b> | 1000                                                                                                                                                                                                                                                                                                                                 |
| Platoon blocked, %     | 100    | 740            | 2       |                   |              |                                                                                                                                                                                                                                                                                                                                      |
| Mov Cap-1 Maneuver     | 469    | 740            | 10.11   | a se <sup>2</sup> | 1174         |                                                                                                                                                                                                                                                                                                                                      |
| Mov Cap-2 Maneuver     | 469    | <u>د.</u>      | 2       | -                 |              | 1                                                                                                                                                                                                                                                                                                                                    |
| Stage 1                | 740    | 2 <del>4</del> |         | 1.56              | 1.54         | 1                                                                                                                                                                                                                                                                                                                                    |
| Stage 2                | 862    | -              | 9       |                   | i i          |                                                                                                                                                                                                                                                                                                                                      |
|                        |        |                |         |                   |              |                                                                                                                                                                                                                                                                                                                                      |
| Approach               | WB     |                | NB      |                   | SB           |                                                                                                                                                                                                                                                                                                                                      |
| HCM Control Delay, s   | 14.8   | exanyiii Kol   | 0       |                   | 0            | -                                                                                                                                                                                                                                                                                                                                    |
|                        |        |                | U       |                   | U            |                                                                                                                                                                                                                                                                                                                                      |
| HCM LOS                | В      |                |         |                   |              |                                                                                                                                                                                                                                                                                                                                      |
|                        |        |                |         |                   |              |                                                                                                                                                                                                                                                                                                                                      |
| Minor Lane/Major Mvmt  |        | NBT            | NBRV    | VBLn1             | SBL          | SBT                                                                                                                                                                                                                                                                                                                                  |
| Capacity (veh/h)       |        | 100            | -       | 510               | 1174         |                                                                                                                                                                                                                                                                                                                                      |
| HCM Lane V/C Ratio     |        | -              |         | 0.279             |              | (1999)<br>(1999)                                                                                                                                                                                                                                                                                                                     |
| HCM Control Delay (s)  |        |                | - 2 Q   | 14.8              | 0            |                                                                                                                                                                                                                                                                                                                                      |
| HCM Lane LOS           |        |                | 2       | B                 | A            | 65 M 117530                                                                                                                                                                                                                                                                                                                          |
| HCM 95th %tile Q(veh)  |        | 1.0.0.55       | -<br>   | 1.1               | Ő            |                                                                                                                                                                                                                                                                                                                                      |
|                        |        | a short so     |         | 1.1               | U            |                                                                                                                                                                                                                                                                                                                                      |

| Intersection                                                                                                    | 2.2        |            |                    |            |            |               |         | 1-12/18               |        | 102    | - Arrah    |                      |  |
|-----------------------------------------------------------------------------------------------------------------|------------|------------|--------------------|------------|------------|---------------|---------|-----------------------|--------|--------|------------|----------------------|--|
| Int Delay, s/veh                                                                                                |            |            |                    |            |            |               |         |                       |        |        |            |                      |  |
| Movement                                                                                                        | EBL        | EBT        | EBR                | WBL        | WBT        | WBR           | NBL     | NBT                   | NBR    | SBL    | SBT        | SBR                  |  |
| Lane Configurations                                                                                             |            | 4          |                    |            | 4          |               |         | ÷.                    |        |        | 4          |                      |  |
| Traffic Vol, veh/h                                                                                              | 16         | 10         | 30                 | 7          | 8          | 10            | 13      | 534                   | 7      | 9      | 392        | 11                   |  |
| Future Vol, veh/h                                                                                               | 16         | 10         | 30                 | 7          | 8          | 10            | 13      | 534                   | 7      | 9      | 392        | 11                   |  |
| Conflicting Peds, #/hr                                                                                          | 0          | 0          | 0                  | 0          | 0          | 0             | 0       | 0                     | 0      | 0      | 0          | 0                    |  |
| Sign Control                                                                                                    | Stop       | Stop       | Stop               | Stop       | Stop       | Stop          | Free    | Free                  | Free   | Free   | Free       | Free                 |  |
| RT Channelized                                                                                                  | -          |            | None               |            |            | None          |         |                       | None   | 1.1    | 10 14      | None                 |  |
| Storage Length                                                                                                  | -          |            | -                  | -          |            | -             | -       | ÷.                    | ÷.     | -      |            | -                    |  |
| Veh in Median Storage,                                                                                          | # -        | 0          |                    |            | 0          | 1997 <b>-</b> | 1000-   | 0                     |        |        | 0          | -                    |  |
| Grade, %                                                                                                        | -          | 0          | 2                  | 7 <u>4</u> | 0          | -             | -       | 0                     | -      | ÷      | 0          | -                    |  |
| Peak Hour Factor                                                                                                | 80         | 42         | 75                 | 58         | 67         | 50            | 81      | 99                    | 44     | 45     | 96         | 46                   |  |
| Heavy Vehicles, %                                                                                               | 0          | 0          | 0                  | 0          | 0          | 0             | 0       | 0                     | 0      | 0      | 0          | 0                    |  |
| Nvmt Flow                                                                                                       | 20         | 24         | 40                 | 12         | 12         | 20            | 16      | 539                   | 16     | 20     | 408        | 24                   |  |
| Major/Minor M                                                                                                   | inor2      |            |                    | Minor1     |            |               | Major1  |                       |        | Major2 | MAKIN A    |                      |  |
|                                                                                                                 | 1055       | 1047       | 420                | 1071       | 1051       | 547           | 432     | 0                     | 0      | 555    | 0          | 0                    |  |
| a second ber all and the second se |            |            |                    |            |            | 547           | 432     | 0                     | U      | 555    | U          | 0                    |  |
| Stage 1                                                                                                         | 460<br>595 | 460<br>587 | i ala <del>j</del> | 579        | 579        |               | 있는 전    | 17.17                 |        |        |            |                      |  |
| Stage 2                                                                                                         | 6.5        |            | -                  | 492        | 472        | -             | 3.5     | a. okon a             |        | 25     | rati inter | -                    |  |
| Critical Hdwy                                                                                                   | 0.5<br>5.5 | 6<br>5     | 6                  | 6.5        | 6          | 6             | 3.5     | 80 E                  |        | 3.5    | 1          | 1897 E.              |  |
| Critical Hdwy Stg 1                                                                                             |            |            |                    | 5.5<br>5.5 | 5          | •<br>•        | -       | an S                  | in. in |        |            | -                    |  |
| Critical Hdwy Stg 2                                                                                             | 5.5        | 5<br>3.5   | -                  |            | 5          | -             | -       |                       | 1.5    | -      |            |                      |  |
| Follow-up Hdwy                                                                                                  | 3          | 286        | 3                  | 3          | 3.5        | 3             | 2       |                       |        | 2      |            |                      |  |
| Pot Cap-1 Maneuver                                                                                              | 268<br>715 | 673        | 706                | 262        | 285<br>602 | 600           | 1330    | 574SC                 | -      | 1219   | 1          | 995 F                |  |
| Stage 1                                                                                                         |            |            | -                  | 625        |            |               |         |                       |        | -      |            |                      |  |
| Stage 2                                                                                                         | 613        | 597        | 5                  | 690        | 666        | Di diftiti    | 1.1     | 1991 <sup>19</sup> 71 | 19 T   |        | •          | 6 ( ) <del>1</del> 9 |  |
| Platoon blocked, %                                                                                              | 040        | 075        | 700                | 004        | 074        | 000           | 4000    | 14                    | -      | 1010   | an Ĉ       | in thin              |  |
| Nov Cap-1 Maneuver                                                                                              | 243        | 275        | 706                | 224        | 274        | 600           | 1330    |                       | -      | 1219   |            | 42 P                 |  |
| Nov Cap-2 Maneuver                                                                                              | 243        | 275        |                    | 224        | 274        | -             |         |                       |        |        | ~          |                      |  |
| Stage 1                                                                                                         | 703        | 658        |                    | 614        | 592        | 2017 2        | 1.10.43 | 1                     | 1.1    |        |            | -                    |  |
| Stage 2                                                                                                         | 571        | 587        | -                  | 614        | 651        | 1.00          | -       | 1.5                   |        |        |            | Linis                |  |
| Approach                                                                                                        | EB         |            |                    | WB         |            |               | NB      |                       |        | SB     |            |                      |  |
| ICM Control Delay, s                                                                                            | 17.5       | 1.54       | N. Spi             | 17.3       | <b>F</b>   | 1.44          | 0.2     | Falsa                 | 1.1.2  | 0.4    | - 312      | No. Con              |  |
| ICM LOS                                                                                                         | С          |            |                    | С          |            |               |         |                       |        |        |            |                      |  |
| /inor Lane/Major Mvmt                                                                                           |            | NBL        | NBT                | NRR        | EBLn1V     | VBI n1        | SBL     | SBT                   | SBR    |        |            | india di<br>Rici di  |  |
| Capacity (veh/h)                                                                                                | 1.10       | 1330       | -                  | TIDIC      | 372        | 336           | 1219    |                       |        |        | i si wint  |                      |  |
| CM Lane V/C Ratio                                                                                               |            | 0.012      |                    | 11.05      | 0.225      |               |         |                       | •      |        |            |                      |  |
| ICM Control Delay (s)                                                                                           |            | 7.7        | 0                  |            | 17.5       | 17.3          |         | 0                     |        |        |            |                      |  |
|                                                                                                                 |            | 7.7<br>A   | 0<br>A             | 12 9 10 2  | 17.5<br>C  | 17.3<br>C     | 8<br>A  | 0<br>A                |        |        |            |                      |  |
| ICM Lane LOS                                                                                                    |            |            |                    |            |            |               |         |                       |        |        |            |                      |  |

| Intersection           |          |       |         |         |          |              | and the second second |             |            | 1910 - A   |         | 1.000           | the second second second second |
|------------------------|----------|-------|---------|---------|----------|--------------|-----------------------|-------------|------------|------------|---------|-----------------|---------------------------------|
| Int Delay, s/veh       | 0.2      |       |         |         |          |              |                       |             |            |            |         |                 |                                 |
| Movement               | EBL      | EBT   | EBR     | WBL     | WBT      | WBR          | NBL                   | NBT         | NBR        | SBL        | SBT     | SBR             |                                 |
| Lane Configurations    |          |       |         |         | 4        |              |                       | \$          |            |            | 4       |                 |                                 |
| Traffic Vol, veh/h     | 0        | 0     | 0       | 0       | 0        | 0            | 6                     | 249         | 0          | 0          | 3       | 125             |                                 |
| Future Vol, veh/h      | 0        | 0     | 0       | 0       | 0        | 0            | 6                     | 249         | 0          | 0          | 3       | 125             |                                 |
| Conflicting Peds, #/hr | 0        | 0     | 0       | 0       | 0        | 0            | 0                     | 0           | 0          | 0          | 0       | 0               |                                 |
| Sign Control           | Stop     | Stop  | Stop    | Stop    | Stop     | Stop         | Free                  | Free        | Free       | Free       | Free    | Free            |                                 |
| RT Channelized         | 1. dia 1 |       | None    |         |          | None         |                       | -           | None       | n la via   |         | None            |                                 |
| Storage Length         |          | ÷     |         | -       | ۲        | 2            | -                     | ÷           | -          |            | -       |                 |                                 |
| Veh in Median Storage, | # -      |       |         |         | 0        |              | 21.12                 | 0           |            |            | 0       | - C             |                                 |
| Grade, %               |          | 0     | -       |         | 0        | Ξ.           | -                     | 0           | -          |            | 0       |                 |                                 |
| Peak Hour Factor       | 92       | 92    | 92      | 92      | 92       | 92           | 50                    | 92          | 92         | 92         | 38      | 95              |                                 |
| Heavy Vehicles, %      | 0        | 0     | 0       | 0       | 0        | 0            | 0                     | 0           | 0          | 0          | 0       | 0               |                                 |
| Mvmt Flow              | 0        | 0     | 0       | 0       | 0        | 0            | 12                    | 271         | 0          | 0          | 8       | 132             |                                 |
|                        |          |       |         |         |          |              |                       |             |            |            |         |                 |                                 |
| Major/Minor            | 1. v.85  | W.    |         | Minor1  |          |              | Major1                |             |            | Major2     |         |                 |                                 |
| Conflicting Flow All   |          |       |         | 369     | 435      | 271          | 140                   | 0           | 0          | 271        | 0       | 0               |                                 |
| Stage 1                |          |       |         | 295     | 295      | 10.0101      |                       | 1. S. S. A. | 1114.2     | 0.00       |         |                 |                                 |
| Stage 2                |          |       |         | 74      | 140      | -            | -                     | -           | -          | -          | -       | -               |                                 |
| Critical Hdwy          |          |       |         | 6.4     | 6.5      | 6.2          | 4.1                   | (Sridler    |            | 4.1        |         |                 |                                 |
| Critical Hdwy Stg 1    |          |       |         | 5.4     | 5.5      | -            | -                     | -           | -          | -          | -       |                 |                                 |
| Critical Hdwy Stg 2    |          |       |         | 5.4     | 5.5      | in Sk        | 1.14                  |             |            |            | No.     | Se island       |                                 |
| Follow-up Hdwy         |          |       |         | 3.5     | 4        | 3.3          | 2.2                   |             | 229<br>129 | 2.2        | -       | -               |                                 |
| Pot Cap-1 Maneuver     |          |       |         | 635     | 517      | 773          | 1456                  |             | -          | 1304       |         | 21.41           |                                 |
| Stage 1                |          |       |         | 760     | 673      | -            | -                     |             | -          | -          | -       | 2               |                                 |
| Stage 2                |          |       |         | 954     | 785      | 11 120       |                       |             | 1114       |            |         | 5.00            |                                 |
| Platoon blocked, %     |          |       |         |         |          |              |                       | -           | -          |            | 2       | 2               |                                 |
| Mov Cap-1 Maneuver     |          |       |         | 629     | 0        | 773          | 1456                  |             |            | 1304       | 6.12    | - 17 <u>2</u> - |                                 |
| Mov Cap-2 Maneuver     |          |       |         | 629     | 0        |              |                       |             | -          | -          |         |                 |                                 |
| Stage 1                |          |       |         | 752     | 0        |              | 1012                  | 1012        |            |            | (den se | in feet         |                                 |
| Stage 2                |          |       |         | 954     | 0        | 12           |                       |             | -          | 100        | 10 X 34 | - C - C -       |                                 |
| oxugo _                |          |       |         |         |          |              |                       |             |            |            |         |                 |                                 |
| Approach               |          |       |         | WB      |          |              | NB                    |             |            | SB         |         |                 |                                 |
| HCM Control Delay, s   |          |       | 12 103  | 0       | P free E |              | 0.3                   |             |            | 0          | 3.5     |                 |                                 |
| HCM LOS                |          |       |         | A       |          |              | 0.0                   |             |            | an Service |         |                 |                                 |
|                        |          |       |         |         |          |              |                       |             |            |            |         |                 |                                 |
| Minor Lane/Major Mvmt  | 202      | NBL   | NBT     | NBRW    | /BLn1    | SBL          | SBT                   | SBR         |            |            |         |                 |                                 |
| Capacity (veh/h)       |          | 1456  | 202     | 1.2764  |          | 1304         |                       | -           |            |            |         |                 |                                 |
| HCM Lane V/C Ratio     |          | 800.0 | -       | ~       | **       | 3 <b>4</b> 0 | а <b>н</b> )          | 20          |            |            |         |                 |                                 |
| HCM Control Delay (s)  |          | 7.5   | 0       | 100 mil | 0        | 0            |                       | 19 - C      |            |            |         |                 |                                 |
| HCM Lane LOS           |          | А     | Α       | <u></u> | А        | А            | -                     | 21          |            |            |         |                 |                                 |
| HCM 95th %tile Q(veh)  |          | 0     | - 1 - 1 | 2 1 41  | 1.4      | 0            |                       |             |            |            |         |                 |                                 |

| Int Delay, s/veh                    | 8.2   |       |          |        |            |          |
|-------------------------------------|-------|-------|----------|--------|------------|----------|
| Movement                            | NBL   | NBT   | SBT      | SBR    | SEL        | SER      |
| Lane Configurations                 |       | ↑     | Ŷ        |        | 14         |          |
| Traffic Vol, veh/h                  | 0     | 35    | 3        | 0      | 220        | 0        |
| Future Vol, veh/h                   | 0     | 35    | 3        | 0      | 220        | 0        |
| Conflicting Peds, #/hr              | 0     | 0     | 0        | 0      | 0          | 0        |
| Sign Control                        | Free  | Free  | Free     | Free   | Stop       | Stop     |
| RT Channelized                      |       | None  |          | None   |            | None     |
| Storage Length                      |       | ÷     |          |        | 0          | -        |
| /eh in Median Storage,              | # -   | 0     | 0        |        | 0          |          |
| Grade, %                            | -     | 0     | 0        | ÷      | 0          | -        |
| Peak Hour Factor                    | 92    | 58    | 92       | 92     | 86         | 25       |
| leavy Vehicles, %                   | 0     | 0     | 0        | 0      | 0          | 0        |
| Nvmt Flow                           | 0     | 60    | 3        | 0      | 256        | 0        |
|                                     |       |       |          |        |            |          |
| Major/Minor M                       | ajor1 | N     | Aajor2   | 1      | Minor2     |          |
| Conflicting Flow All                | -     | 0     | -        | 0      | 63         | 3        |
| Stage 1                             |       |       |          | 20212  | 3          |          |
| Stage 2                             |       |       |          |        | 60         | -        |
| Critical Hdwy                       |       |       | 462      | -      | 6.4        | 6.2      |
| Critical Hdwy Stg 1                 | -     |       | -        |        | 5.4        | -        |
| Critical Hdwy Stg 2                 |       |       | 0.14     | View   | 5.4        | 11.12    |
| ollow-up Hdwy                       |       | -     |          |        | 3.5        | 3.3      |
| ot Cap-1 Maneuver                   | 0     |       | 10.1-    | 0      | 948        | 1087     |
| Stage 1                             | 0     | -     |          | 0      | 1025       | -        |
| Stage 2                             | 0     | 17.54 |          | 0      | 968        | 1.021    |
| Platoon blocked, %                  |       | (-)   |          | v      | 000        |          |
| Nov Cap-1 Maneuver                  |       |       |          | 100 2  | 948        | 1087     |
| Nov Cap-2 Maneuver                  | -     | -     | -        |        | 948        | 1007     |
| Stage 1                             |       | 100   | singate. |        | 1025       | 1.12     |
| Stage 2                             |       | -     |          |        | 968        |          |
| olugo 2                             |       |       |          |        | 500        |          |
| pproach                             | NB    |       | SB       |        | OF         |          |
| pproach<br>ICM Control Delay, s     | 0     |       | 0        | 215.10 | SE<br>10.2 | The Real |
| ICM LOS                             | U     |       | U        |        |            |          |
|                                     |       |       |          |        | В          |          |
|                                     |       |       |          |        |            |          |
| finor Lane/Major Mvmt               |       | NBT S |          | SBT    |            |          |
| apacity (veh/h)                     |       |       | 948      | 1.00   |            |          |
| CM Lane V/C Ratio                   |       | -     | 0.27     | -      |            |          |
| CM Control Delay (s)                |       |       | 10.2     |        |            |          |
| CM Lane LOS<br>CM 95th %tile Q(veh) |       | -     | В        | -      |            |          |
|                                     |       |       | 1.1      |        |            |          |

| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9           | J             |        |             |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------|-------------|--------|----------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL           | EBT           | WBT    | WBR         | SBL    | SBR      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | <u>با ا</u>   | ĥ      |             | W      |          |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4             | 4             | 1      | 1           | 1      | 1        |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4             | 4             | 1      | 1           | 1      | 1        |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0             |               | 0      | 0           | 0      | 0        |
| A state of the sta | Free          |               | Free   | Free        | Stop   | Stop     |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             | None          |        | None        |        | None     |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             | -             | -      | -           | 0      | :=:      |
| Veh in Median Storage,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # -           | 0             | 0      | -           | 0      | taki 🗟   |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -             | 0             | 0      |             | 0      | -        |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50            | 50            | 25     | 25          | 25     | 25       |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0             | 0             | 0      | 0           | 0      | 0        |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8             | 8             | 4      | 4           | 4      | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |        |             |        |          |
| Major/Minor M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lajor1        | 1             | Aajor2 |             | Minor2 |          |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8             | 0             | œ      | 0           | 30     | 6        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -             | 57 ( <b>-</b> |        |             | 6      |          |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -             | -             |        | -           | 24     | -        |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1           | 10.00         |        |             | 6.4    | 6.2      |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ž             | 18            | -      | -           | 5.4    | -        |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷             | Con Sec       |        |             | 5.4    |          |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.2           |               |        |             | 3.5    | 3.3      |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1625          | #             | 53 h g |             | 989    | 1083     |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ÷.            | 070           |        |             | 1022   | .≂.      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | ÷.,           |        |             | 1004   | 2.012    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 1.51          |        |             |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1625          | -             | 8 To + | - 1         | 984    | 1083     |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7           | -             |        | <del></del> | 984    | -        |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               | -      |             | 1017   | 14.6     |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . <del></del> | -             | -      | .=)         | 1004   | ÷        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |        |             |        |          |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB            |               | WB     |             | SB     |          |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6           |               | 0      |             | 8.5    | 1.1.1    |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |        |             | A      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |        |             |        |          |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | EBL           | EBT    | WBT         | WBR    | SBLn1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.66          | 1625          |        |             |        | 1031     |
| Japacity (ven/n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0.005         | - 212  | -           |        | 0.008    |
| Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 0.005         |        |             |        |          |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               | 0      |             |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 7.2<br>A      | 0<br>A |             |        | 8.5<br>A |

|                            | ۶     | -           | $\mathbf{r}$ | 1     | +           | *     | 1     | Ť     | r     | 1     | Ļ             | 1      |
|----------------------------|-------|-------------|--------------|-------|-------------|-------|-------|-------|-------|-------|---------------|--------|
| Lane Group                 | EBL   | EBT         | EBR          | WBL   | WBT         | WBR   | NBL   | NBT   | NBR   | SBL   | SBT           | SBR    |
| Lane Configurations        | ሻ     | <b>≜</b> î≽ |              | ሻ     | <b>≜</b> î≽ |       | ሻ     | ĥ     |       | ሻ     | ĵ.            |        |
| Traffic Volume (vph)       | 118   | 696         | 13           | 77    | 913         | 141   | 19    | 144   | 114   | 116   | 179           | 106    |
| Future Volume (vph)        | 118   | 696         | 13           | 77    | 913         | 141   | 19    | 144   | 114   | 116   | 179           | 106    |
| Ideal Flow (vphpl)         | 1900  | 1900        | 1900         | 1900  | 1900        | 1900  | 1900  | 1900  | 1900  | 1900  | 1900          | 1900   |
| Lane Util. Factor          | 1.00  | 0.95        | 0.95         | 1.00  | 0.95        | 0.95  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00          | 1.00   |
| Frt                        |       | 0.995       |              |       | 0.978       |       |       | 0.929 |       |       | 0.947         | an Sol |
| Fit Protected              | 0.950 |             |              | 0.950 |             |       | 0.950 |       |       | 0.950 | (A) (BABACSE) |        |
| Satd. Flow (prot)          | 1805  | 3592        | 0            | 1805  | 3531        | 0     | 1805  | 1765  | 0     | 1805  | 1793          | 0      |
| Flt Permitted              | 0.950 |             |              | 0.950 |             |       | 0.245 |       |       | 0.262 |               |        |
| Satd. Flow (perm)          | 1805  | 3592        | 0            | 1805  | 3531        | 0     | 466   | 1765  | 0     | 498   | 1793          | 0      |
| Right Turn on Red          |       |             | Yes          |       |             | Yes   | 100   | 11.00 | Yes   | 100   | 1100          | Yes    |
| Satd. Flow (RTOR)          |       | 4           | 100          |       | 22          | 100   |       | 39    | 103   |       | 24            | 103    |
| Link Speed (mph)           |       | 40          |              |       | 40          |       |       | 25    |       |       | 25            |        |
| Link Distance (ft)         |       | 512         |              |       | 642         |       |       | 750   |       |       | 338           |        |
| Travel Time (s)            |       | 8.7         |              |       | 10.9        |       |       | 20.5  |       |       | 9.2           |        |
| Peak Hour Factor           | 0.70  | 0.94        | 0.50         | 0.62  | 0.94        | 0.83  | 0.59  | 0.84  | 0.74  | 0.85  | 0.83          | 0.89   |
| Heavy Vehicles (%)         | 0%    | 0%          | 0%           | 0.02  | 0.94        | 0.05  | 0.59  | 0.84  | 0.74  | 0.85  | 0.85          | 1%     |
| Adj. Flow (vph)            | 169   | 740         | 26           | 124   | 971         | 170   | 32    | 171   | 154   | 136   |               |        |
| Shared Lane Traffic (%)    | 103   | 740         | 20           | 124   | 9/1         | 170   | 52    | 1/1   | 104   | 130   | 216           | 119    |
| Lane Group Flow (vph)      | 169   | 766         | 0            | 124   | 1141        | 0     | 32    | 205   | 0     | 400   | 225           | 0      |
| Enter Blocked Intersection | No    | No          | No           |       |             | 0     |       | 325   | 0     | 136   | 335           | 0      |
|                            |       |             |              | No    | No          | No    | No    | No    | No    | No    | No            | No     |
| Lane Alignment             | Left  | Left        | Right        | Left  | Left        | Right | Left  | Left  | Right | Left  | Left          | Right  |
| Median Width(ft)           |       | 12          |              |       | 12          |       |       | 12    |       |       | 12            |        |
| Link Offset(ft)            |       | 0           |              |       | 0           |       |       | 0     |       |       | 0             |        |
| Crosswalk Width(ft)        |       | 16          |              |       | 16          |       |       | 16    |       |       | 16            |        |
| Two way Left Turn Lane     | 4.00  |             |              | 4.00  |             | 4.00  |       |       |       |       |               |        |
| Headway Factor             | 1.00  | 1.00        | 1.00         | 1.00  | 1.00        | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00          | 1.00   |
| Turning Speed (mph)        | 15    |             | 9            | 15    |             | 9     | 15    |       | 9     | 15    |               | 9      |
| Number of Detectors        | 1     | 2           |              | 1     | 2           |       | 1     | 2     |       | 1     | 2             |        |
| Detector Template          | Left  | Thru        |              | Left  | Thru        |       | Left  | Thru  |       | Left  | Thru          |        |
| Leading Detector (ft)      | 20    | 100         |              | 20    | 100         |       | 20    | 100   |       | 20    | 100           |        |
| Trailing Detector (ft)     | 0     | 0           |              | 0     | 0           |       | 0     | 0     |       | 0     | 0             |        |
| Detector 1 Position(ft)    | 0     | 0           |              | 0     | 0           |       | 0     | 0     |       | 0     | 0             |        |
| Detector 1 Size(ft)        | 20    | 6           |              | 20    | 6           |       | 20    | 6     |       | 20    | 6             |        |
| Detector 1 Type            | CI+Ex | CI+Ex       |              | CI+Ex | CI+Ex       |       | CI+Ex | CI+Ex |       | CI+Ex | CI+Ex         |        |
| Detector 1 Channel         |       |             |              |       |             |       |       |       |       |       |               |        |
| Detector 1 Extend (s)      | 0.0   | 0.0         |              | 0.0   | 0.0         |       | 0.0   | 0.0   |       | 0.0   | 0.0           |        |
| Detector 1 Queue (s)       | 0.0   | 0.0         |              | 0.0   | 0.0         |       | 0.0   | 0.0   |       | 0.0   | 0.0           |        |
| Detector 1 Delay (s)       | 0.0   | 0.0         |              | 0.0   | 0.0         |       | 0.0   | 0.0   |       | 0.0   | 0.0           |        |
| Detector 2 Position(ft)    |       | 94          |              |       | 94          |       |       | 94    |       |       | 94            |        |
| Detector 2 Size(ft)        |       | 6           |              |       | 6           |       |       | 6     |       |       | 6             |        |
| Detector 2 Type            |       | CI+Ex       |              |       | CI+Ex       |       |       | CI+Ex |       |       | CI+Ex         |        |
| Detector 2 Channel         |       |             |              |       |             |       |       |       |       |       |               |        |
| Detector 2 Extend (s)      |       | 0.0         |              |       | 0.0         |       |       | 0.0   |       |       | 0.0           |        |
| Turn Type                  | Prot  | NA          |              | Prot  | NA          |       | Perm  | NA    |       | Perm  | NA            |        |
| Protected Phases           | 7     | 4           |              | 3     | 8           |       |       | 2     |       |       | 6             |        |
| Permitted Phases           |       |             |              |       |             |       | 2     |       |       | 6     |               |        |
| Detector Phase             | 7     | 4           |              | 3     | 8           |       | 2     | 2     |       | 6     | 6             |        |
| Switch Phase               |       |             |              |       |             |       |       |       |       |       |               |        |

20033 - Spyglass at Lakes Bay NBM

Existing PM 05/01/2020

| ٦     | -                                                                                                                                                   | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ť                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL   | EBT                                                                                                                                                 | EBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                         | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NBT                                                    | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.0   | 55.0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second s | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.0   | 60.0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19.0  | 60.0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15.8% | 50.0%                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.8%                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15.0  | 55.0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.0   | 4.0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.0   | 1.0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0   | 0.0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.0   | 5.0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lead  | Lag                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.0   | 2.0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | C-Min                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13.8  | 65.5                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.12  | 0.55                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 0.39                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 18.1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0   | 0.0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 81.1  | 18.1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F     | В                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 29.5                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.3                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | National State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | С                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20    |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | e 4:EBT a                                                                                                                                           | nd 8:WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T. Start of                                                                                                                                                                                                                                                                                                                                                                                                                                 | f Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 5.0<br>9.0<br>19.0<br>15.8%<br>15.0<br>3.0<br>1.0<br>0.0<br>4.0<br>Lead<br>2.0<br>None<br>13.8<br>0.12<br>0.82<br>81.1<br>0.0<br>81.1<br>F<br>Other | 5.0         55.0           9.0         60.0           19.0         60.0           15.8%         50.0%           15.0         55.0           3.0         4.0           1.0         1.0           0.0         0.0           4.0         5.0           3.0         4.0           1.0         1.0           0.0         0.0           4.0         5.0           Lead         Lag           2.0         2.0           None         C-Min           13.8         65.5           0.12         0.55           0.82         0.39           81.1         18.1           0.0         0.0           81.1         18.1           F         B           29.5         C           Other         20 | 5.0       55.0         9.0       60.0         19.0       60.0         15.8%       50.0%         15.0       55.0         3.0       4.0         1.0       1.0         0.0       0.0         4.0       5.0         2.0       2.0         None       C-Min         13.8       65.5         0.12       0.55         0.82       0.39         81.1       18.1         0.0       0.0         81.1       18.1         C       29.5         C       C | 5.0         55.0         5.0           9.0         60.0         9.0           19.0         60.0         19.0           15.8%         50.0%         15.8%           15.0         55.0         15.0           3.0         4.0         3.0           1.0         1.0         1.0           0.0         0.0         0.0           4.0         5.0         4.0           Lead         Lag         Lead           2.0         2.0         2.0           None         C-Min         None           13.8         65.5         12.1           0.12         0.55         0.10           0.82         0.39         0.69           81.1         18.1         70.8           0.0         0.0         0.0           81.1         18.1         70.8           F         B         E           29.5         C         C | 5.0         55.0         5.0         55.0           9.0         60.0         9.0         60.0           19.0         60.0         19.0         60.0           15.8%         50.0%         15.8%         50.0%           15.0         55.0         15.0         55.0           3.0         4.0         3.0         4.0           1.0         1.0         1.0         1.0           0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0           2.0         2.0         2.0         2.0           Lead         Lag         Lead         Lag           2.0         2.0         2.0         2.0           None         C-Min         None         C-Min           13.8         65.5         12.1         63.8           0.12         0.55         0.10         0.53           0.82         0.39         0.69         0.60           81.1         18.1         70.8         22.4           0.0         0.0         0.0         0.0           81.1         18.1         70.8         22.4           F <td< td=""><td>5.0       55.0       5.0       55.0         9.0       60.0       9.0       60.0         19.0       60.0       19.0       60.0         15.8%       50.0%       15.8%       50.0%         15.0       55.0       15.0       55.0         3.0       4.0       3.0       4.0         1.0       1.0       1.0       1.0         0.0       0.0       0.0       0.0         4.0       5.0       4.0       5.0         2.0       2.0       2.0       2.0         2.0       2.0       2.0       2.0         None       C-Min       None       C-Min         13.8       65.5       12.1       63.8         0.12       0.55       0.10       0.53         0.82       0.39       0.69       0.60         81.1       18.1       70.8       22.4         F       B       E       C         29.5       27.1       C       C         Other</td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>5.0         55.0         50         55.0         10.0         10.0           9.0         60.0         9.0         60.0         15.0         15.0           19.0         60.0         19.0         60.0         41.0         41.0           15.8%         50.0%         15.8%         50.0%         34.2%         34.2%           15.0         55.0         15.0         55.0         36.0         36.0           3.0         4.0         3.0         4.0         3.0         3.0           1.0         1.0         1.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0         5.0         5.0           Lead         Lag         Lead         Lag         2.0         2.0         2.0         2.0           None         C-Min         None         None         None         None         None           13.8         65.5         12.1         63.8         28.4         28.4           0.12         0.55         0.10         0.53         0.24         0.24           0.82</td><td>5.0         55.0         5.0         55.0         10.0         10.0           9.0         60.0         9.0         60.0         15.0         15.0           19.0         60.0         19.0         60.0         41.0         41.0           15.8%         50.0%         15.8%         50.0%         34.2%         34.2%           15.0         55.0         15.0         55.0         36.0         36.0           3.0         4.0         3.0         4.0         3.0         3.0           1.0         1.0         1.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0         5.0         5.0           Lead         Lag         Lead         Lag         2.0         2.0         2.0         2.0           None         C-Min         None         C-Min         None         None         None         13.8         65.5         12.1         63.8         28.4         28.4           0.12         0.55         0.10         0.53         0.24         0.24         0.82         0.39         0.69</td><td>5.0         55.0         5.0         55.0         10.0         10.0         10.0           9.0         60.0         9.0         60.0         15.0         15.0         15.0         15.0           19.0         60.0         19.0         60.0         41.0         41.0         41.0         41.0           15.8%         50.0%         15.8%         50.0%         34.2%         34.2%         34.2%           15.0         55.0         15.0         55.0         36.0         36.0         36.0           3.0         4.0         3.0         4.0         3.0         3.0         3.0         3.0           1.0         1.0         1.0         1.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0         5.0         5.0         5.0         5.0           Lead         Lag         Lead         Lag         2.0         2.0         2.0         2.0           None         C-Min         None         C.0         0.24         0.24         0.24         0.24         <t< td=""><td>5.0         55.0         5.0         55.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         1</td></t<></td></td<> | 5.0       55.0       5.0       55.0         9.0       60.0       9.0       60.0         19.0       60.0       19.0       60.0         15.8%       50.0%       15.8%       50.0%         15.0       55.0       15.0       55.0         3.0       4.0       3.0       4.0         1.0       1.0       1.0       1.0         0.0       0.0       0.0       0.0         4.0       5.0       4.0       5.0         2.0       2.0       2.0       2.0         2.0       2.0       2.0       2.0         None       C-Min       None       C-Min         13.8       65.5       12.1       63.8         0.12       0.55       0.10       0.53         0.82       0.39       0.69       0.60         81.1       18.1       70.8       22.4         F       B       E       C         29.5       27.1       C       C         Other | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5.0         55.0         50         55.0         10.0         10.0           9.0         60.0         9.0         60.0         15.0         15.0           19.0         60.0         19.0         60.0         41.0         41.0           15.8%         50.0%         15.8%         50.0%         34.2%         34.2%           15.0         55.0         15.0         55.0         36.0         36.0           3.0         4.0         3.0         4.0         3.0         3.0           1.0         1.0         1.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0         5.0         5.0           Lead         Lag         Lead         Lag         2.0         2.0         2.0         2.0           None         C-Min         None         None         None         None         None           13.8         65.5         12.1         63.8         28.4         28.4           0.12         0.55         0.10         0.53         0.24         0.24           0.82 | 5.0         55.0         5.0         55.0         10.0         10.0           9.0         60.0         9.0         60.0         15.0         15.0           19.0         60.0         19.0         60.0         41.0         41.0           15.8%         50.0%         15.8%         50.0%         34.2%         34.2%           15.0         55.0         15.0         55.0         36.0         36.0           3.0         4.0         3.0         4.0         3.0         3.0           1.0         1.0         1.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0         5.0         5.0           Lead         Lag         Lead         Lag         2.0         2.0         2.0         2.0           None         C-Min         None         C-Min         None         None         None         13.8         65.5         12.1         63.8         28.4         28.4           0.12         0.55         0.10         0.53         0.24         0.24         0.82         0.39         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0         55.0         5.0         55.0         10.0         10.0         10.0           9.0         60.0         9.0         60.0         15.0         15.0         15.0         15.0           19.0         60.0         19.0         60.0         41.0         41.0         41.0         41.0           15.8%         50.0%         15.8%         50.0%         34.2%         34.2%         34.2%           15.0         55.0         15.0         55.0         36.0         36.0         36.0           3.0         4.0         3.0         4.0         3.0         3.0         3.0         3.0           1.0         1.0         1.0         1.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           4.0         5.0         4.0         5.0         5.0         5.0         5.0         5.0           Lead         Lag         Lead         Lag         2.0         2.0         2.0         2.0           None         C-Min         None         C.0         0.24         0.24         0.24         0.24 <t< td=""><td>5.0         55.0         5.0         55.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         1</td></t<> | 5.0         55.0         5.0         55.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         1 |

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.15

Intersection Signal Delay: 39.0

Intersection Capacity Utilization 92.4% Analysis Period (min) 15 Intersection LOS: D ICU Level of Service F

Splits and Phases: 8: Franklin Boulevard & Route 40/322

| Ø2   | <b>√</b> Ø3 | ▶Ø4 (R) |   |
|------|-------------|---------|---|
| 41 s | 19 s        | 60 s    |   |
| Ø6   | ▶ 07        |         | 4 |
| 41 s | 19 s        | 60 s    |   |

|                            | ۶     | -     | $\mathbf{r}$ | *     | -     |       | 1     | Ť     | 1     | 1        | Ļ     | 1     |
|----------------------------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|----------|-------|-------|
| Lane Group                 | EBL   | EBT   | EBR          | WBL   | WBT   | WBR   | NBL   | NBT   | NBR   | SBL      | SBT   | SBR   |
| Lane Configurations        |       | \$    |              |       | \$    |       |       | \$    |       |          | 4     |       |
| Traffic Volume (vph)       | 15    | 66    | 30           | 87    | 53    | 34    | 16    | 361   | 46    | 28       | 313   | 15    |
| Future Volume (vph)        | 15    | 66    | 30           | 87    | 53    | 34    | 16    | 361   | 46    | 28       | 313   | 15    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900         | 1900  | 1900  | 1900  | 1900  | 1900  | 1900  | 1900     | 1900  | 1900  |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  |
| Frt                        |       | 0.951 |              |       | 0.974 |       |       | 0.982 |       |          | 0.992 |       |
| Flt Protected              |       | 0.993 |              |       | 0.976 |       | 2     | 0.997 |       |          | 0.995 |       |
| Satd. Flow (prot)          | 0     | 1794  | 0            | 0     | 1806  | 0     | 0     | 1860  | 0     | 0        | 1875  | 0     |
| Flt Permitted              |       | 0.939 |              |       | 0.757 |       |       | 0.971 |       |          | 0.932 |       |
| Satd. Flow (perm)          | 0     | 1697  | 0            | 0     | 1401  | 0     | 0     | 1812  | 0     | 0        | 1757  | 0     |
| Right Turn on Red          |       |       | Yes          |       |       | Yes   |       | TOTE  | Yes   | <b>U</b> | nor   | Yes   |
| Satd. Flow (RTOR)          |       | 40    | 100          |       | 16    | 100   |       | 20    | 103   |          | 8     | 163   |
| Link Speed (mph)           |       | 25    |              |       | 25    |       |       | 25    |       |          | 25    |       |
| Link Distance (ft)         |       | 431   |              |       | 451   |       |       | 469   |       |          | 268   |       |
| Travel Time (s)            |       | 11.8  |              |       | 12.3  |       |       | 12.8  |       |          | 7.3   |       |
| Peak Hour Factor           | 0.63  | 0.83  | 0.50         | 0.68  | 0.63  | 0.68  | 0.67  |       | 0.72  | 0.70     |       | 0.00  |
| Heavy Vehicles (%)         | 0.03  | 0.03  | 0.00         | 0.08  | 0.03  | 0.00  | 0.07  | 0.96  | 0.73  |          | 0.90  | 0.63  |
|                            | 24    |       | 60           |       |       |       |       | 0%    | 0%    | 0%       | 0%    | 0%    |
| Adj. Flow (vph)            | 24    | 80    | 60           | 128   | 84    | 50    | 24    | 376   | 63    | 40       | 348   | 24    |
| Shared Lane Traffic (%)    | •     | 404   | •            | 0     | 000   | •     |       | 100   |       |          |       |       |
| Lane Group Flow (vph)      | 0     | 164   | 0            | 0     | 262   | 0     | 0     | 463   | 0     | 0        | 412   | 0     |
| Enter Blocked Intersection | No    | No    | No           | No    | No    | No    | No    | No    | No    | No       | No    | No    |
| Lane Alignment             | Left  | Left  | Right        | Left  | Left  | Right | Left  | Left  | Right | Left     | Left  | Right |
| Median Width(ft)           |       | 0     |              |       | 0     |       |       | 0     |       |          | 0     |       |
| Link Offset(ft)            |       | 0     |              |       | 0     |       |       | 0     |       |          | 0     |       |
| Crosswalk Width(ft)        |       | 16    |              |       | 16    |       |       | 16    |       |          | 16    |       |
| Two way Left Turn Lane     |       | 12.30 |              |       |       |       |       |       |       |          |       |       |
| Headway Factor             | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  |
| Turning Speed (mph)        | 15    |       | 9            | 15    |       | 9     | 15    |       | 9     | 15       |       | 9     |
| Turn Type                  | Perm  | NA    |              | Perm  | NA    |       | Perm  | NA    |       | Perm     | NA    |       |
| Protected Phases           |       | 4     |              |       | 8     |       |       | 2     |       |          | 6     |       |
| Permitted Phases           | 4     |       |              | 8     |       |       | 2     |       |       | 6        |       |       |
| Minimum Split (s)          | 23.0  | 23.0  |              | 23.0  | 23.0  |       | 47.0  | 47.0  |       | 47.0     | 47.0  |       |
| Total Split (s)            | 23.0  | 23.0  |              | 23.0  | 23.0  |       | 47.0  | 47.0  |       | 47.0     | 47.0  |       |
| Total Split (%)            | 32.9% | 32.9% |              | 32.9% | 32.9% |       | 67.1% | 67.1% |       | 67.1%    | 67.1% |       |
| Maximum Green (s)          | 18.0  | 18.0  |              | 18.0  | 18.0  |       | 42.0  | 42.0  |       | 42.0     | 42.0  |       |
| Yellow Time (s)            | 4.0   | 4.0   |              | 4.0   | 4.0   |       | 4.0   | 4.0   |       | 4.0      | 4.0   |       |
| All-Red Time (s)           | 1.0   | 1.0   |              | 1.0   | 1.0   |       | 1.0   | 1.0   |       | 1.0      | 1.0   |       |
| Lost Time Adjust (s)       |       | 0.0   |              |       | 0.0   |       |       | 0.0   |       |          | 0.0   |       |
| Total Lost Time (s)        |       | 5.0   |              |       | 5.0   |       |       | 5.0   |       |          | 5.0   |       |
| Lead/Lag                   |       |       |              |       |       |       |       | 1000  |       |          |       |       |
| Lead-Lag Optimize?         |       |       |              |       |       |       |       |       |       |          |       |       |
| Walk Time (s)              | 7.0   | 7.0   |              | 7.0   | 7.0   |       | 7.0   | 7.0   |       | 7.0      | 7.0   |       |
| Flash Dont Walk (s)        | 11.0  | 11.0  |              | 11.0  | 11.0  |       | 11.0  | 11.0  |       | 11.0     | 11.0  |       |
| Pedestrian Calls (#/hr)    | 0     | 0     |              | 0     | 0     |       | 0     | 0     |       | 0        | 0     |       |
| Act Effct Green (s)        | 9     | 18.0  |              | v     | 18.0  |       | U     | 42.0  |       | U        | 42.0  |       |
| Actuated g/C Ratio         |       | 0.26  |              |       | 0.26  |       |       | 0.60  |       |          | 0.60  |       |
| v/c Ratio                  |       | 0.20  |              |       | 0.20  |       |       | 0.00  |       |          | 0.80  |       |
| Control Delay              |       | 18.4  |              |       | 34.4  |       |       | 8.6   |       |          | 8.5   |       |
| Queue Delay                |       | 0.0   |              |       | 0.0   |       |       | 0.0   |       |          |       |       |
|                            |       | 0.0   |              |       | 0.0   |       |       | 0.0   |       |          | 0.0   |       |

20033 - Spyglass at Lakes Bay NBM

|                               | ٨            | -               | $\mathbf{r}$ | *          | -          | *          | 1       | Ť   | r      | 1   | Ļ   | $\checkmark$ |
|-------------------------------|--------------|-----------------|--------------|------------|------------|------------|---------|-----|--------|-----|-----|--------------|
| Lane Group                    | EBL          | EBT             | EBR          | WBL        | WBT        | WBR        | NBL     | NBT | NBR    | SBL | SBT | SBF          |
| Total Delay                   |              | 18.4            |              |            | 34.4       | 1003       | a wiele | 8.6 |        |     | 8.5 |              |
| LOS                           |              | В               |              |            | С          |            |         | А   |        |     | A   |              |
| Approach Delay                |              | 18.4            |              |            | 34.4       |            |         | 8.6 |        |     | 8.5 |              |
| Approach LOS                  |              | В               |              |            | С          |            |         | А   |        |     | A   |              |
| Intersection Summary          |              |                 |              |            |            |            |         |     | 223-72 |     |     |              |
| Area Type:                    | Other        |                 |              |            |            |            |         |     |        |     |     |              |
| Cycle Length: 70              |              |                 |              |            |            |            |         |     |        |     |     |              |
| Actuated Cycle Length: 70     |              |                 |              |            |            |            |         |     |        |     |     |              |
| Offset: 0 (0%), Referenced    | to phase 2:1 | <b>NBTL</b> and | 6:SBTL.      | Start of C | Green      |            |         |     |        |     |     |              |
| Natural Cycle: 70             |              |                 | - street     |            |            |            |         |     |        |     |     |              |
| Control Type: Pretimed        |              |                 |              |            |            |            |         |     |        |     |     |              |
| Maximum v/c Ratio: 0.70       |              |                 |              |            |            |            |         |     |        |     |     |              |
| Intersection Signal Delay: 1  | 5.0          |                 |              | In         | tersection | LOS: B     | Sec. 15 |     |        |     |     |              |
|                               |              |                 |              |            |            | of Service | В       |     |        |     |     |              |
| Intersection Capacity Utiliza |              |                 |              |            |            |            |         |     |        |     |     |              |

Splits and Phases: 3: Main Street & Decatur Avenue

| Ø2 (R) |              |
|--------|--------------|
| 47 s   | 23 s         |
| Ø6 (R) | <b>₩</b> _Ø8 |
| 47 s   | 23 s         |

| Int Delay, s/veh               | 3.5     |                | - Perton         |              |             | 1.11         |
|--------------------------------|---------|----------------|------------------|--------------|-------------|--------------|
| Movement                       | WBL     | WBR            | NBT              | NBR          | SBL         | SBT          |
| Lane Configurations            | WDL     | WDR            | î diri           | NDR          | JDL         | <u>୍</u> ମ   |
| Traffic Vol, veh/h             | 161     | 30             |                  | 011          | 0           |              |
|                                |         |                | 403              | 211          | 0           | 424          |
| Future Vol, veh/h              | 161     | 30<br>0        | 403              | 211          | 0           | 424          |
| Conflicting Peds, #/hr         | 0       |                | 0                | 0            | 0           | 0            |
| Sign Control<br>RT Channelized | Stop    | Stop           | Free             | Free         | Free        | Free         |
|                                | -       | None           | 28 Y 12 H        | None         | 11. S.A.    | None         |
| Storage Length                 | 0       | ALC: NOTE: NOT | -                | instanti s   |             | -            |
| Veh in Median Storage          |         | Read The       | 0                |              |             | 0            |
| Grade, %                       | 0       | -              | 0                | -            | -           | 0            |
| Peak Hour Factor               | 92      | 92             | 92               | 92           | 92          | 92           |
| Heavy Vehicles, %              | 0       | 0              | 0                | 0            | 0           | 0            |
| Mvmt Flow                      | 175     | 33             | 438              | 229          | 0           | 461          |
|                                |         |                |                  |              |             |              |
| Major/Minor M                  | Ainor1  | -A N           | Major1           | 1            | Major2      |              |
| Conflicting Flow All           | 1014    | 553            | 0                | 0            | 667         | 0            |
| Stage 1                        | 553     |                | nus la           |              |             | in the state |
| Stage 2                        | 461     | -              | -                | 111213/07-02 | 2 M. 11 Can |              |
| Critical Hdwy                  | 5.5     | 5              | -                | -10402       | 3.5         | 576 - 57     |
| Critical Hdwy Stg 1            | 5       | •              |                  | TEBC DE O    | 0.0         | Elite (Chi   |
| Critical Hdwy Stg 2            | 5       |                | 1-105            | 1.2.0        |             | 10           |
| Follow-up Hdwy                 | 3       | 3              |                  | in si min    | 2           | 8 D (8)      |
| Pot Cap-1 Maneuver             | 378     | 695            |                  | а. ния       | 1126        |              |
| Stage 1                        | 695     | 035            |                  |              | 1120        | 101 EU       |
| Stage 2                        | 762     | an ni-r        |                  |              |             |              |
| Platoon blocked, %             | 102     | 9-51/9-6       |                  |              | 101.5       |              |
|                                | 270     | COF            | ( <del>*</del> ) |              | 1400        |              |
| Mov Cap-1 Maneuver             | 378     | 695            | 2                | 0.18         | 1126        |              |
| Mov Cap-2 Maneuver             | 378     |                | ;₩:<br>          | -            | 90<br>10    | and a        |
| Stage 1                        | 695     | 10 at 1        | -                | •            | 5           | 10.00        |
| Stage 2                        | 762     | -              | *                | -            |             | -            |
|                                |         |                |                  |              |             |              |
| Approach                       | WB      |                | NB               |              | SB          |              |
| HCM Control Delay, s           | 22.7    |                | 0                |              | 0           |              |
| HCM LOS                        | C       |                | U                |              | U           |              |
|                                | Ŭ       |                |                  |              |             |              |
| PERMIT ECONOMIA                |         |                |                  |              |             |              |
| Vinor Lane/Major Mvmt          | Si - Si | NBT            | NBRV             | VBLn1        | SBL         | SBT          |
| Capacity (veh/h)               |         | - V            | -                | 407          | 1126        | 1            |
| HCM Lane V/C Ratio             |         | -              | -                | 0.51         |             |              |
| HCM Control Delay (s)          |         | (A. 19)        |                  | 22.7         | 0           |              |
|                                |         |                |                  | С            | А           |              |
| HCM Lane LOS                   |         |                | -                | 0            | ~           |              |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |       |                     |           |        |              |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|---------------------|-----------|--------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6       | (     |                     |           |        |              |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EBL       | EBT   | EBR                 | WBL       | WBT    | WBR          | NBL                                                                                                             | NBT         | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SBL             | SBT                   | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                    |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 4     |                     |           | 4      |              |                                                                                                                 | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and an |                    |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16        |       | 41                  | 14        |        | 25           | 21                                                                                                              | 573         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24              | 548                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                    |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16        | 15    | 41                  | 14        |        | 25           | 21                                                                                                              | 573         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24              | 548                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                    |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         |       | 0                   | 0         |        | 0            |                                                                                                                 | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0               | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                    |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop      | Stop  | Stop                | Stop      |        | Stop         |                                                                                                                 | Free        | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Free            | Free                  | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                    |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 5 A 1 | None                |           |        | None         | a la compañía de la c |             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | -                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                    |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | -     |                     | -         | -      | -            |                                                                                                                 |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               | 1                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                    |
| /eh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .# -      | 0     |                     | - 10 F    | 0      |              | 1.5.2                                                                                                           | 0           | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1            | 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | 0     | -                   | -         | 0      | -            | -                                                                                                               | 0           | 010,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUR VIEN        | 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44        |       | 68                  | 88        |        | 63           | 88                                                                                                              | 94          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67              | 87                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                    |
| leavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0         |       | 0                   | 0         | 0      | 0            | 0                                                                                                               | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0               | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                    |
| Avmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36        | 24    | 60                  | 16        | 16     | 40           | 24                                                                                                              | 610         | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36              | 630                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00        | 27    | 00                  | 10        | 10     | 40           | 24                                                                                                              | 010         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30              | 030                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                    |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minor2    |       | 1                   | Minor1    |        | Sec. of the  | Major1                                                                                                          |             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Major2          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1418      | 1408  | 642                 | 1432      | 1401   | 628          | 653                                                                                                             | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 646             | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | Contraction of the |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 714       | 714   |                     | 676       | 676    | -            | -                                                                                                               |             | , in the second se | 010             | e e                   | , in the second s |                                            |                    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 704       | 694   | -                   | 756       | 725    |              |                                                                                                                 | 0.011012511 | CILCUMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THESE SALES     | NUE HER               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5       | 6     | 6                   | 6.5       | 6      | 6            | 3.5                                                                                                             | with the    | -trades                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5             |                       | 1044004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                    |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5       | 5     | -                   | 5.5       | 5      | U            | 0.0                                                                                                             |             | 1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5             | 10021 <sup>-1</sup> 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5       | 5     | hande.              | 5.5       | 5      |              |                                                                                                                 | Ann ann     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.4           | a in                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| ollow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3         | 3.5   | 3                   | 3         | 3.5    | 3            | 2                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2               | 1.51 01               | 8 C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                    |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 158       | 181   | 531                 | 155       | 182    | 541          | 1138                                                                                                            | 0.2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1143            |                       | 1.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 535       | 529   | 551                 | 559       | 549    | 041          | 1130                                                                                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1143            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 541       | 539   | i Contral           | 510       | 524    | -            |                                                                                                                 |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 041       | 009   | 년 다신 ( <b>1</b> 57) | 510       | 524    |              |                                                                                                                 |             | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112-11          | 1112                  | d states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                    |
| and the second se | 407       | 400   | 504                 | 445       | 407    | <b>F</b> 4 4 | 4400                                                                                                            | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 2)<br>                | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                    |
| Nov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127       | 166   | 531                 | 115       | 167    | 541          | 1138                                                                                                            | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1143            | 201 <b>-</b> 4        | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                    |
| lov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127       | 166   | :#:<br>             | 115       | 167    | -            |                                                                                                                 | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 517       | 503   | -                   | 541       | 531    | 1 2          | 1994                                                                                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - , - ·         | 1.1                   | 1 <b>-</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                    |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 470       | 521   |                     | 409       | 498    | -<br>130     |                                                                                                                 |             | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er<br>Alsoniaks |                       | 2<br>60.6354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                    |
| pproach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EB        |       |                     | WB        |        |              | NB                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| CM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38.9      |       |                     | 27.2      |        |              | 0.3                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| ICM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.9<br>E |       |                     | 21.2<br>D |        |              | 0.3                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |       |                     |           |        |              |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| linor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | NBL   | NBT                 | NBR       | EBLn1V |              | SBL                                                                                                             | SBT         | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| apacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1138  |                     | -         | 222    | 233          | 1143                                                                                                            | •           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| ICM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 0.021 | =                   | -         | 0.543  |              |                                                                                                                 | -           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| ICM Control Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 8.2   | 0                   | 신태국       | 38.9   | 27.2         | 8.3                                                                                                             | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| CM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | Α     | A                   | -         | Е      | D            | А                                                                                                               | А           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |
| ICM 95th %tile Q(veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 0.1   |                     |           | 2.9    | 1.3          | 0.1                                                                                                             | 100         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                    |

•

| Int Delay, s/veh       | 0.1  |        |        |           |           |             |         |       |          |        |                   |                    |  |
|------------------------|------|--------|--------|-----------|-----------|-------------|---------|-------|----------|--------|-------------------|--------------------|--|
| Movement               | EBL  | EBT    | EBR    | WBL       | WBT       | WBR         | NBL     | NBT   | NBR      | SBL    | SBT               | SBR                |  |
| Lane Configurations    |      |        |        |           | 4.        |             |         | 4     |          |        | 4                 |                    |  |
| Traffic Vol, veh/h     | 0    | 0      | 0      | 0         | 0         | 0           | 2       | 230   | 0        | 0      | 3                 | 189                |  |
| Future Vol, veh/h      | 0    | 0      | 0      | 0         | 0         | 0           | 2       | 230   | 0        | 0      | 3                 | 189                |  |
| Conflicting Peds, #/hr | 0    | 0      | 0      | 0         | 0         | 0           | 0       | 0     | 0        | 0      | 0                 | 0                  |  |
| Sign Control           | Stop | Stop   | Stop   | Stop      | Stop      | Stop        | Free    | Free  | Free     | Free   | Free              | Free               |  |
| RT Channelized         | -    |        | None   |           |           | None        | 61.4    | 5004  | None     |        |                   | None               |  |
| Storage Length         | -    | -      | 54     | 24        | 124       |             | -       | -     | -        |        |                   | -                  |  |
| Veh in Median Storage, | # -  |        | -      |           | 0         |             |         | 0     |          | 化电缆    | 0                 | -                  |  |
| Grade, %               | -    | 0      | · 🗳    | 1         | 0         | -<br>       | -       | 0     |          |        | 0                 |                    |  |
| Peak Hour Factor       | 92   | 92     | 92     | 92        | 92        | 92          | 50      | 92    | 92       | 92     | 75                | 76                 |  |
| Heavy Vehicles, %      | 0    | 0      | 0      | 0         | 0         | 0           | 0       | 0     | 0        | 0      | 0                 | 0                  |  |
| Mvmt Flow              | 0    | 0      | 0      | 0         | 0         | 0           | 4       | 250   | 0        | 0      | 4                 | 249                |  |
| Major/Minor            |      |        | 1      | Minor1    |           | I           | Aajor1  |       | N        | Aajor2 |                   |                    |  |
| Conflicting Flow All   |      |        |        | 387       | 511       | 250         | 253     | 0     | 0        | 250    | 0                 | 0                  |  |
| Stage 1                |      |        |        | 258       | 258       |             | 1.8374  | e a 📮 | 6.9 F.   |        | 1002              |                    |  |
| Stage 2                |      |        |        | 129       | 253       | -           |         | -     | -        | -      | -                 | Serverses.         |  |
| Critical Hdwy          |      |        |        | 6.4       | 6.5       | 6.2         | 4.1     |       | - 11 - E | 4.1    |                   | SUSIE:             |  |
| Critical Hdwy Stg 1    |      |        |        | 5.4       | 5.5       | -           | -       |       |          | -      | -                 |                    |  |
| Critical Hdwy Stg 2    |      |        |        | 5.4       | 5.5       | 1.0         |         |       | 1.52     | 1.12   |                   | 211                |  |
| Follow-up Hdwy         |      |        |        | 3.5       | 4         | 3.3         | 2.2     | -     |          | 2.2    |                   |                    |  |
| Pot Cap-1 Maneuver     |      |        |        | 620       | 469       | 794         | 1324    |       |          | 1327   |                   | 7. = J <u>e</u> -L |  |
| Stage 1                |      |        |        | 790       | 698       | 1012-10-011 |         | -     | -        | -      | -                 | -                  |  |
| Stage 2                |      |        |        | 902       | 701       | 3.54        |         |       |          |        |                   | N                  |  |
| Platoon blocked, %     |      |        |        | 10.2022.0 | 111.1056. |             |         |       |          |        | -                 | -                  |  |
| Mov Cap-1 Maneuver     |      |        |        | 618       | 0         | 794         | 1324    | 1.12  |          | 1327   | 1.1               |                    |  |
| Nov Cap-2 Maneuver     |      |        |        | 618       | 0         | -           |         |       |          | -      | -                 |                    |  |
| Stage 1                |      |        |        | 787       | Ō         |             |         | 1.4   | 10.4     | 13     |                   |                    |  |
| Stage 2                |      |        |        | 902       | 0         | -           | -       |       | -        |        | -                 | <u>е</u>           |  |
| Approach               |      |        |        | WB        |           |             | NB      |       |          | SB     |                   |                    |  |
| HCM Control Delay, s   | -2.6 | 51201  | 1215 1 | 0         | 1911      | 1-20-1      | 0.1     |       | 1        | 0      | or the pro-       | 8 m 3 m            |  |
| HCM LOS                |      |        |        | A         |           |             | 0.1     |       |          | U      |                   |                    |  |
| Minor Lane/Major Mvmt  |      | NBL    | NBT    | NBRW      | /BI n1    | SBL         | SBT     | SBR   |          |        |                   |                    |  |
| Capacity (veh/h)       |      | 1324   | -      |           | -         | 1327        | -       | ODIX  |          |        | 2011 64 1041<br>2 |                    |  |
| HCM Lane V/C Ratio     |      | 0.003  |        |           |           | 1521        |         | 21 T  |          |        |                   |                    |  |
| ICM Control Delay (s)  |      | 7.7    | 0      |           | 0         | 0           | Sel St  |       |          |        |                   |                    |  |
| HCM Lane LOS           |      |        |        | m e Te    |           |             | S(D-IX) |       |          |        |                   |                    |  |
| ICM 95th %tile Q(veh)  |      | A<br>0 | A<br>- | -         | A         | A<br>0      |         | -     |          |        |                   |                    |  |

| Int Delay, s/veh                      | 8.8      |          |          |              |        |                                          |
|---------------------------------------|----------|----------|----------|--------------|--------|------------------------------------------|
| Movement                              | NBL      | NBT      | SBT      | SBR          | SEL    | SER                                      |
| Lane Configurations                   |          | Ŷ        | Ŷ        |              | Y      |                                          |
| Traffic Vol, veh/h                    | 0        | 21       | 3        | 0            | 211    | 1                                        |
| Future Vol, veh/h                     | 0        | 21       | 3        | 0            | 211    | 1                                        |
| Conflicting Peds, #/hr                | 0        | 0        | 0        | 0            | 0      | 0                                        |
|                                       | Free     | Free     | Free     | Free         | Stop   | Stop                                     |
| RT Channelized                        | 1.       | None     | -        | None         |        | None                                     |
| Storage Length                        | -        | -        | -        |              | 0      |                                          |
| Veh in Median Storage,                | # -      | 0        | 0        |              | 0      |                                          |
| Grade, %                              | -        | 0        | 0        | -            | 0      | -                                        |
| Peak Hour Factor                      | 92       | 67       | 75       | 92           | 81     | 25                                       |
| Heavy Vehicles, %                     | 0        | 0        | 0        | 0            | 0      | 0                                        |
| Mvmt Flow                             | 0        | 31       | 4        | 0            | 260    | 4                                        |
|                                       |          |          |          |              |        |                                          |
| Major/Minor M                         | ajor1    | ٨        | Aajor2   |              | Minor2 |                                          |
| Conflicting Flow All                  | -        | 0        |          | 0            | 35     | 4                                        |
| Stage 1                               | 11 mail  | 17 200   | 1012     | -            | 4      | e (12) Ba                                |
| Stage 2                               | 1/40/Can | 22<br>22 |          |              | 31     |                                          |
| Critical Hdwy                         | 1112     | 100      |          | <b>New S</b> | 6.4    | 6.2                                      |
| Critical Hdwy Stg 1                   | -        | -        | 101110   |              | 5.4    | 0.2                                      |
| Critical Hdwy Stg 2                   | 1        |          |          |              | 5.4    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| Follow-up Hdwy                        | 14       |          |          | -            | 3.5    | 3.3                                      |
| Pot Cap-1 Maneuver                    | 0        |          |          | 0            | 983    | 1085                                     |
| Stage 1                               | 0        | -        |          | 0            | 1024   | -                                        |
| Stage 2                               | 0        | 1.62     | È M.     | Ő            | 997    |                                          |
| Platoon blocked, %                    |          | -        | -        | Ű            | 001    |                                          |
| Nov Cap-1 Maneuver                    |          | 1.14     | -        | 12.20        | 983    | 1085                                     |
| Nov Cap-2 Maneuver                    | -        | -        | -        | -            | 983    |                                          |
| Stage 1                               |          | 10-25    | 6 J 🚽    |              | 1024   | 121                                      |
| Stage 2                               | -        |          |          | -            | 997    | -                                        |
| e an an the                           |          |          |          |              |        |                                          |
| Approach                              | NB       |          | SB       |              | SE     |                                          |
| ICM Control Delay, s                  | 0        |          | 0        |              | 10     | <u> </u>                                 |
| ICM LOS                               | U        |          | U        |              | B      |                                          |
|                                       |          |          |          |              | D      |                                          |
|                                       |          |          |          |              |        |                                          |
| /inor Lane/Major Mvmt                 |          | NBT S    |          | SBT          | 16/24  |                                          |
| Capacity (veh/h)                      |          | 5.1.#/   | 984      | 1997 -       |        |                                          |
| ICM Lane V/C Ratio                    |          |          | 0.269    |              |        |                                          |
| ICM Control Delay (s)                 |          | 1.0.1    | 10       |              |        |                                          |
|                                       |          |          |          |              |        |                                          |
| ICM Lane LOS<br>ICM 95th %tile Q(veh) |          | -        | B<br>1.1 |              |        |                                          |

 $\tilde{k}^{i}$ 

| Movement<br>Lane Configurations<br>Traffic Vol, veh/h<br>Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor<br>Heavy Vehicles, % | EBL<br>2<br>0<br>Free<br>-<br>,# -<br>50 | <b>€</b><br>6<br>6<br>0                                                                                         | WBT<br>9<br>9<br>0<br>Free | WBR<br>2<br>2<br>0<br>Free               | SBL<br>1<br>1<br>0   |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|----------------------|-----------------------------|
| Lane Configurations<br>Traffic Vol, veh/h<br>Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                  | 2<br>2<br>0<br>Free<br>-<br>-<br>,# -    | €<br>6<br>0<br>Free<br>None                                                                                     | ∲<br>9<br>9<br>0<br>Free   | 2<br>2<br>0                              | ۲<br>1<br>1          | 8                           |
| Traffic Vol, veh/h<br>Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                         | 2<br>0<br>Free<br>-<br>-<br>, # -        | 6<br>6<br>0<br>Free<br>None                                                                                     | 9<br>9<br>0<br>Free        | 2<br>0                                   | 1<br>1               | 8                           |
| Future Vol, veh/h<br>Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                                               | 2<br>0<br>Free<br>-<br>-<br>, # -        | 6<br>0<br>Free<br>None                                                                                          | 9<br>0<br>Free             | 2<br>0                                   | 1                    |                             |
| Conflicting Peds, #/hr<br>Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                                                                    | 0<br>Free<br>-<br>, # -                  | 0<br>Free<br>None                                                                                               | 0<br>Free                  | 0                                        |                      |                             |
| Sign Control<br>RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                                                                                              | Free<br>-<br>-<br>, # -                  | Free<br>None                                                                                                    | Free                       |                                          |                      | 0                           |
| RT Channelized<br>Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                                                                                                              | -<br>-<br>,# -                           | None -                                                                                                          |                            |                                          | Stop                 |                             |
| Storage Length<br>Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                                                                                                                                |                                          | -                                                                                                               |                            | None                                     | -                    | None                        |
| Veh in Median Storage,<br>Grade, %<br>Peak Hour Factor                                                                                                                                                                                  |                                          | 0                                                                                                               | -                          | -                                        | 0                    | -                           |
| Grade, %<br>Peak Hour Factor                                                                                                                                                                                                            |                                          |                                                                                                                 | 0                          |                                          | 0                    |                             |
| Peak Hour Factor                                                                                                                                                                                                                        | 50                                       | 0                                                                                                               | 0                          | -                                        | 0                    | -                           |
| Heavy Vehicles, %                                                                                                                                                                                                                       | 00                                       |                                                                                                                 | 38                         | 50                                       | 25                   | 50                          |
|                                                                                                                                                                                                                                         | 0                                        | 0                                                                                                               | 0                          | 0                                        | 0                    | 0                           |
| Mvmt Flow                                                                                                                                                                                                                               | 4                                        |                                                                                                                 | 24                         | 4                                        | 4                    | 16                          |
|                                                                                                                                                                                                                                         |                                          |                                                                                                                 |                            |                                          | 10,000,000           |                             |
| Major/Minor A                                                                                                                                                                                                                           | Aniand                                   |                                                                                                                 | 4-10                       |                                          |                      |                             |
|                                                                                                                                                                                                                                         | Aajor1                                   |                                                                                                                 | Major2                     |                                          | Minor2               |                             |
| Conflicting Flow All                                                                                                                                                                                                                    | 28                                       | 0                                                                                                               | 1.200                      | 0                                        | 42                   | 26                          |
| Stage 1                                                                                                                                                                                                                                 | 요즘 문                                     | 19.28                                                                                                           | contrat.                   | [43] 영문]                                 | 26                   |                             |
| Stage 2                                                                                                                                                                                                                                 |                                          | 10 A 10 10 10                                                                                                   | -                          | an dhe                                   | 16                   | -                           |
| Critical Hdwy                                                                                                                                                                                                                           | 4.1                                      |                                                                                                                 | 190. 1. 8                  | 100                                      | 6.4                  | 6.2                         |
| Critical Hdwy Stg 1                                                                                                                                                                                                                     |                                          | , de la composición d |                            | 9<br>1                                   | 5.4                  |                             |
| Critical Hdwy Stg 2                                                                                                                                                                                                                     | -                                        | 이 가 같다. 통이                                                                                                      |                            | 1                                        | 5.4                  | -                           |
| Follow-up Hdwy                                                                                                                                                                                                                          | 2.2                                      |                                                                                                                 |                            |                                          | 3.5                  | 3.3                         |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                      | 1599                                     | - 14 J # 1                                                                                                      | 1005                       | 21.16                                    | 974                  | 1056                        |
| Stage 1                                                                                                                                                                                                                                 | -                                        | ÷                                                                                                               | ÷                          |                                          | 1002                 | -                           |
| Stage 2                                                                                                                                                                                                                                 |                                          | -                                                                                                               |                            |                                          | 1012                 |                             |
| Platoon blocked, %                                                                                                                                                                                                                      |                                          |                                                                                                                 | 12                         |                                          | 44.57                | <ul> <li>Massawa</li> </ul> |
|                                                                                                                                                                                                                                         | 1599                                     | 140                                                                                                             | 1 (A.                      |                                          | 971                  | 1056                        |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                      | ÷                                        |                                                                                                                 |                            |                                          | 971                  | -                           |
| Stage 1                                                                                                                                                                                                                                 |                                          | 38                                                                                                              |                            |                                          | 999                  | 1.043451                    |
| Stage 2                                                                                                                                                                                                                                 |                                          |                                                                                                                 |                            |                                          | 1012                 | -                           |
|                                                                                                                                                                                                                                         |                                          |                                                                                                                 |                            |                                          |                      |                             |
| Approach                                                                                                                                                                                                                                | EB                                       |                                                                                                                 | WB                         |                                          | SB                   |                             |
| HCM Control Delay, s                                                                                                                                                                                                                    | 2.4                                      | areng                                                                                                           | 0                          | i isinati                                | 8.5                  | or method                   |
| HCM LOS                                                                                                                                                                                                                                 |                                          |                                                                                                                 |                            |                                          | A                    |                             |
|                                                                                                                                                                                                                                         |                                          |                                                                                                                 |                            |                                          |                      |                             |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                   |                                          | EBL                                                                                                             | EBT                        | WBT                                      | WBR S                | SBLn1                       |
| Capacity (veh/h)                                                                                                                                                                                                                        |                                          | 1599                                                                                                            |                            |                                          |                      | 1038                        |
| HCM Lane V/C Ratio                                                                                                                                                                                                                      |                                          | 0.003                                                                                                           |                            | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                      | 0.019                       |
| HCM Control Delay (s)                                                                                                                                                                                                                   |                                          | 7.3                                                                                                             | 0                          | ideata)                                  | 1749-144<br>1749-144 | 8.5                         |
| HCM Lane LOS                                                                                                                                                                                                                            |                                          | A                                                                                                               | A                          | 5 10 S L                                 | 110                  | 0.5<br>A                    |
| HCM 95th %tile Q(veh)                                                                                                                                                                                                                   |                                          | Ô                                                                                                               | Â                          | Community                                | 2002-04              | 0.1                         |

|                            | ۶             | -           | ¥     | *          | -           | *     | 1      | 1                | 1     | 1      | Į.    | 1     |
|----------------------------|---------------|-------------|-------|------------|-------------|-------|--------|------------------|-------|--------|-------|-------|
| Lane Group                 | EBL           | EBT         | EBR   | WBL        | WBT         | WBR   | NBL    | NBT              | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations        | ሻ             | <b>≜</b> î≽ |       | ሻ          | <b>≜</b> î≽ |       | ሻ      | ĥ                |       | ሻ      | ĥ     |       |
| Traffic Volume (vph)       | 96            | 737         | 9     | 20         | 646         | 133   | 12     | 160              | 141   | 112    | 116   | 51    |
| Future Volume (vph)        | 96            | 737         | 9     | 20         | 646         | 133   | 12     | 160              | 141   | 112    | 116   | 51    |
| Ideal Flow (vphpl)         | 1900          | 1900        | 1900  | 1900       | 1900        | 1900  | 1900   | 1900             | 1900  | 1900   | 1900  | 1900  |
| Lane Util. Factor          | 1.00          | 0.95        | 0.95  | 1.00       | 0.95        | 0.95  | 1.00   | 1.00             | 1.00  | 1.00   | 1.00  | 1.00  |
| Frt                        |               | 0.997       |       | a a la sur | 0.974       | 1000  | 1.00   | 0.922            | 1.00  | 1.00   | 0.945 | 1.00  |
| Flt Protected              | 0.950         | 0.000       |       | 0.950      |             |       | 0.950  | UIULL            |       | 0.950  | 0.040 |       |
| Satd. Flow (prot)          | 1805          | 3599        | 0     | 1805       | 3516        | 0     | 1805   | 1752             | 0     | 1805   | 1782  | 0     |
| Flt Permitted              | 0.950         |             |       | 0.950      | 0010        |       | 0.482  | 1102             | U     | 0.221  | 1102  | U     |
| Satd. Flow (perm)          | 1805          | 3599        | 0     | 1805       | 3516        | 0     | 916    | 1752             | 0     | 420    | 1782  | 0     |
| Right Turn on Red          | 1000          | 0000        | Yes   | 1000       | 0010        | Yes   | 510    | 11.52            | Yes   | 420    | 1/02  |       |
| Satd. Flow (RTOR)          |               | 2           | 103   |            | 27          | 165   |        | 46               | Tes   |        | 05    | Yes   |
| Link Speed (mph)           |               | 30          |       |            | 30          |       |        | 40               |       |        | 25    |       |
| Link Distance (ft)         |               | 512         |       |            | 642         |       |        |                  |       |        | 30    |       |
| Travel Time (s)            |               | 11.6        |       |            |             |       |        | 750              |       |        | 338   |       |
| Peak Hour Factor           | 0.74          | 0.88        | 0.50  | 0.70       | 14.6        | 0.70  | 0.75   | 17.0             | 0.74  | 0.07   | 7.7   |       |
|                            |               |             | 0.56  | 0.79       | 0.81        | 0.79  | 0.75   | 0.87             | 0.71  | 0.87   | 0.84  | 0.63  |
| Heavy Vehicles (%)         | 0%            | 0%          | 0%    | 0%         | 0%          | 0%    | 0%     | 0%               | 0%    | 0%     | 0%    | 2%    |
| Adj. Flow (vph)            | 130           | 838         | 16    | 25         | 798         | 168   | 16     | 184              | 199   | 129    | 138   | 81    |
| Shared Lane Traffic (%)    | 100           |             |       |            |             |       | -      | al di mananani i |       |        |       |       |
| Lane Group Flow (vph)      | 130           | 854         | 0     | 25         | 966         | 0     | 16     | 383              | 0     | 129    | 219   | 0     |
| Enter Blocked Intersection | No            | No          | No    | No         | No          | No    | No     | No               | No    | No     | No    | No    |
| Lane Alignment             | Left          | Left        | Right | Left       | Left        | Right | Left   | Left             | Right | Left   | Left  | Right |
| Median Width(ft)           |               | 12          |       |            | 12          |       |        | 12               |       |        | 12    |       |
| Link Offset(ft)            |               | 0           |       |            | 0           |       |        | 0                |       |        | 0     |       |
| Crosswalk Width(ft)        |               | 16          |       |            | 16          |       |        | 16               |       |        | 16    |       |
| Two way Left Turn Lane     |               |             |       |            |             |       |        |                  |       |        |       |       |
| Headway Factor             | 1.00          | 1.00        | 1.00  | 1.00       | 1.00        | 1.00  | 1.00   | 1.00             | 1.00  | 1.00   | 1.00  | 1.00  |
| Turning Speed (mph)        | 15            |             | 9     | 15         |             | 9     | 15     |                  | 9     | 15     |       | 9     |
| Number of Detectors        | 1             | 2           |       | 1          | 2           |       | 1      | 2                |       | 1      | 2     |       |
| Detector Template          | Left          | Thru        |       | Left       | Thru        |       | Left   | Thru             |       | Left   | Thru  |       |
| Leading Detector (ft)      | 20            | 100         |       | 20         | 100         |       | 20     | 100              |       | 20     | 100   |       |
| Trailing Detector (ft)     | 0             | 0           |       | 0          | 0           |       | 0      | 0                |       | 0      | 0     |       |
| Detector 1 Position(ft)    | 0             | 0           |       | 0          | 0           |       | 0      | 0                |       | 0      | 0     |       |
| Detector 1 Size(ft)        | 20            | 6           |       | 20         | 6           |       | 20     | 6                |       | 20     | 6     |       |
| Detector 1 Type            | CI+Ex         | CI+Ex       |       | CI+Ex      | CI+Ex       |       | CI+Ex  | CI+Ex            |       | CI+Ex  | CI+Ex |       |
| Detector 1 Channel         |               |             |       |            |             |       |        |                  |       |        |       |       |
| Detector 1 Extend (s)      | 0.0           | 0.0         |       | 0.0        | 0.0         |       | 0.0    | 0.0              |       | 0.0    | 0.0   |       |
| Detector 1 Queue (s)       | 0.0           | 0.0         |       | 0.0        | 0.0         |       | 0.0    | 0.0              |       | 0.0    | 0.0   |       |
| Detector 1 Delay (s)       | 0.0           | 0.0         |       | 0.0        | 0.0         |       | 0.0    | 0.0              |       | 0.0    | 0.0   |       |
| Detector 2 Position(ft)    |               | 94          |       |            | 94          |       |        | 94               |       | 100200 | 94    |       |
| Detector 2 Size(ft)        |               | 6           |       |            | 6           |       |        | 6                |       |        | 6     |       |
| Detector 2 Type            |               | CI+Ex       |       |            | CI+Ex       |       |        | CI+Ex            |       |        | CI+Ex |       |
| Detector 2 Channel         |               |             |       |            |             |       |        |                  |       |        | OLLA  |       |
| Detector 2 Extend (s)      |               | 0.0         |       |            | 0.0         |       |        | 0.0              |       |        | 0.0   |       |
| Turn Type                  | Prot          | NA          |       | Prot       | NA          |       | Perm   | NA               |       | Perm   | NA    |       |
| Protected Phases           | 7             | 4           |       | 3          | 8           |       | 1 Unit | 2                |       | 1 emi  | 6     |       |
| Permitted Phases           |               |             |       |            | 0           |       | 2      | 4                |       | G      | 0     |       |
| Detector Phase             | 7             | 4           |       | 3          | 8           |       | 2      | 2                |       | 6<br>6 | 6     |       |
| Switch Phase               | Pro-V-S-S-M-A | т.          |       | 0          | 0           |       | 2      | 4                |       | 0      | 6     |       |

20033 - Spyglass at Lakes Bay NBM

|                                                                                                                                                                                                                                         | ٨                                  | -          | $\mathbf{r}$         | 1     | +                                    | ×.  | 1     | Ť     | r   | 1     | Ŧ            | ~   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------|----------------------|-------|--------------------------------------|-----|-------|-------|-----|-------|--------------|-----|
| Lane Group                                                                                                                                                                                                                              | EBL                                | EBT        | EBR                  | WBL   | WBT                                  | WBR | NBL   | NBT   | NBR | SBL   | SBT          | SBF |
| Minimum Initial (s)                                                                                                                                                                                                                     | 5.0                                | 55.0       |                      | 5.0   | 55.0                                 |     | 10.0  | 10.0  |     | 10.0  | 10.0         |     |
| Minimum Split (s)                                                                                                                                                                                                                       | 9.0                                | 60.0       |                      | 9.0   | 60.0                                 |     | 15.0  | 15.0  |     | 15.0  | 15.0         |     |
| Total Split (s)                                                                                                                                                                                                                         | 19.0                               | 60.0       |                      | 19.0  | 60.0                                 |     | 41.0  | 41.0  |     | 41.0  | 41.0         |     |
| Total Split (%)                                                                                                                                                                                                                         | 15.8%                              | 50.0%      |                      | 15.8% | 50.0%                                |     | 34.2% | 34.2% |     | 34.2% | 34.2%        |     |
| Maximum Green (s)                                                                                                                                                                                                                       | 15.0                               | 55.0       |                      | 15.0  | 55.0                                 |     | 36.0  | 36.0  |     | 36.0  | 36.0         |     |
| Yellow Time (s)                                                                                                                                                                                                                         | 3.0                                | 4.0        |                      | 3.0   | 4.0                                  |     | 3.0   | 3.0   |     | 3.0   | 3.0          |     |
| All-Red Time (s)                                                                                                                                                                                                                        | 1.0                                | 1.0        |                      | 1.0   | 1.0                                  |     | 2.0   | 2.0   |     | 2.0   | 2.0          |     |
| Lost Time Adjust (s)                                                                                                                                                                                                                    | 0.0                                | 0.0        |                      | 0.0   | 0.0                                  |     | 0.0   | 0.0   |     | 0.0   | 0.0          |     |
| Total Lost Time (s)                                                                                                                                                                                                                     | 4.0                                | 5.0        |                      | 4.0   | 5.0                                  |     | 5.0   | 5.0   |     | 5.0   | 5.0          |     |
| Lead/Lag                                                                                                                                                                                                                                | Lead                               | Lag        |                      | Lead  | Lag                                  |     |       |       |     |       | 1999 (1999 B |     |
| Lead-Lag Optimize?                                                                                                                                                                                                                      |                                    |            |                      |       | Same N                               |     |       |       |     |       |              |     |
| Vehicle Extension (s)                                                                                                                                                                                                                   | 2.0                                | 2.0        |                      | 2.0   | 2.0                                  |     | 2.0   | 2.0   |     | 2.0   | 2.0          |     |
| Recall Mode                                                                                                                                                                                                                             | None                               | C-Min      |                      | None  | C-Min                                |     | None  | None  |     | None  | None         |     |
| Act Effct Green (s)                                                                                                                                                                                                                     | 12.3                               | 71.3       |                      | 6.3   | 61.7                                 |     | 32.0  | 32.0  |     | 32.0  | 32.0         |     |
| Actuated g/C Ratio                                                                                                                                                                                                                      | 0.10                               | 0.59       |                      | 0.05  | 0.51                                 |     | 0.27  | 0.27  |     | 0.27  | 0.27         |     |
| v/c Ratio                                                                                                                                                                                                                               | 0.71                               | 0.40       |                      | 0.26  | 0.53                                 |     | 0.07  | 0.77  |     | 1.15  | 0.44         |     |
| Control Delay                                                                                                                                                                                                                           | 72.0                               | 15.3       |                      | 60.9  | 21.6                                 |     | 31.2  | 45.7  |     | 172.8 | 34.2         |     |
| Queue Delay                                                                                                                                                                                                                             | 0.0                                | 0.0        |                      | 0.0   | 0.0                                  |     | 0.0   | 0.0   |     | 0.0   | 0.0          |     |
| Total Delay                                                                                                                                                                                                                             | 72.0                               | 15.3       |                      | 60.9  | 21.6                                 |     | 31.2  | 45.7  |     | 172.8 | 34.2         |     |
| LOS                                                                                                                                                                                                                                     | E                                  | В          |                      | Е     | С                                    |     | С     | D     |     | F     | C            |     |
| Approach Delay                                                                                                                                                                                                                          |                                    | 22.8       |                      |       | 22.6                                 |     |       | 45.1  |     |       | 85.6         |     |
| Approach LOS                                                                                                                                                                                                                            |                                    | С          |                      |       | С                                    |     |       | D     |     |       | F            |     |
| Intersection Summary                                                                                                                                                                                                                    |                                    |            |                      |       |                                      |     |       |       |     |       |              |     |
| Area Type:<br>Cycle Length: 120<br>Actuated Cycle Length: 12<br>Offset: 115 (96%), Referer<br>Natural Cycle: 95<br>Control Type: Actuated-Co<br>Maximum v/c Ratio: 1.15<br>Intersection Signal Delay: 3<br>Intersection Capacity Utiliz | nced to phase<br>ordinated<br>34.0 | e 4:EBT ar | nd 8:WB <sup>-</sup> | In    | f Yellow<br>tersection<br>CU Level o |     |       |       |     |       |              |     |

Splits and Phases: 8: Franklin Boulevard & Route 40/322

| <b>1</b> Ø2 | <b>√</b> Ø3 | ▶Ø4 (R) |  |
|-------------|-------------|---------|--|
| 41 s        | 19 s        | 60 s    |  |
|             |             |         |  |
| 41 s        | 19 s        | 60 s    |  |

|                            | ۶        | ->    | $\mathbf{r}$ | 1     | 4      | ×.    | 1           | Ť     | 1                                                                                                               | 1     | ŧ     | ~            |
|----------------------------|----------|-------|--------------|-------|--------|-------|-------------|-------|-----------------------------------------------------------------------------------------------------------------|-------|-------|--------------|
| Lane Group                 | EBL      | EBT   | EBR          | WBL   | WBT    | WBR   | NBL         | NBT   | NBR                                                                                                             | SBL   | SBT   | SBF          |
| Lane Configurations        |          | \$    |              |       | 4      |       |             | 4     |                                                                                                                 |       | 4     | 1000000000   |
| Traffic Volume (vph)       | 6        | 41    | 11           | 40    | 15     | 17    | 7           | 309   | 29                                                                                                              | 22    | 277   | 22           |
| Future Volume (vph)        | 6        | 41    | 11           | 40    | 15     | 17    | 7           | 309   | 29                                                                                                              | 22    | 277   | 22           |
| Ideal Flow (vphpl)         | 1900     | 1900  | 1900         | 1900  | 1900   | 1900  | 1900        | 1900  | 1900                                                                                                            | 1900  | 1900  | 1900         |
| Lane Util. Factor          | 1.00     | 1.00  | 1.00         | 1.00  | 1.00   | 1.00  | 1.00        | 1.00  | 1.00                                                                                                            | 1.00  | 1.00  | 1.00         |
| Frt                        |          | 0.952 |              |       | 0.960  |       | devid shell | 0.988 | a de la compañía de l |       | 0.987 | 1.00         |
| Fit Protected              |          | 0.994 |              |       | 0.975  |       |             | 0.998 |                                                                                                                 |       | 0.995 |              |
| Satd. Flow (prot)          | 0        | 1798  | 0            | 0     | 1778   | 0     | 0           | 1873  | 0                                                                                                               | 0     | 1866  | 0            |
| Flt Permitted              |          | 0.968 |              |       | 0.819  |       |             | 0.980 | 1915 308                                                                                                        |       | 0.943 | 0            |
| Satd. Flow (perm)          | 0        | 1751  | 0            | 0     | 1494   | 0     | 0           | 1840  | 0                                                                                                               | 0     | 1768  | 0            |
| Right Turn on Red          |          |       | Yes          |       | 1101   | Yes   | U.          | 1040  | Yes                                                                                                             | v     | 1700  | Yes          |
| Satd. Flow (RTOR)          |          | 37    | 100          |       | 27     | 103   |             | 12    | 103                                                                                                             |       | 13    | 163          |
| Link Speed (mph)           |          | 25    |              |       | 25     |       |             | 25    |                                                                                                                 |       | 25    |              |
| Link Distance (ft)         |          | 431   |              |       | 451    |       |             | 469   |                                                                                                                 |       | 268   |              |
| Travel Time (s)            |          | 11.8  |              |       | 12.3   |       |             | 12.8  |                                                                                                                 |       | 7.3   |              |
| Peak Hour Factor           | 0.50     | 0.75  | 0.30         | 0.86  | 0.88   | 0.63  | 0.44        | 0.95  | 0.88                                                                                                            | 0.58  |       | 0.50         |
| Heavy Vehicles (%)         | 0%       | 0%    | 0.00         | 0.00  | 0.88   | 0.03  | 0.44        |       |                                                                                                                 |       | 0.88  | 0.59         |
| Adj. Flow (vph)            | 12       | 55    | 37           | 47    | 17     | 27    |             | 0%    | 0%                                                                                                              | 0%    | 0%    | 0%           |
| Shared Lane Traffic (%)    | 12       | 00    | 31           | 41    | U I    | 21    | 16          | 325   | 33                                                                                                              | 38    | 315   | 37           |
| Lane Group Flow (vph)      | 0        | 104   | 0            | 0     | 04     | 0     | 0           | 074   | •                                                                                                               | •     | 000   | i doministra |
| Enter Blocked Intersection |          |       | 0            | 0     | 91     | 0     | 0           | 374   | 0                                                                                                               | 0     | 390   | 0            |
|                            | No       | No    | No           | No    | No     | No    | No          | No    | No                                                                                                              | No    | No    | No           |
| Lane Alignment             | Left     | Left  | Right        | Left  | Left   | Right | Left        | Left  | Right                                                                                                           | Left  | Left  | Right        |
| Median Width(ft)           |          | 0     |              |       | 0      |       |             | 0     |                                                                                                                 |       | 0     |              |
| Link Offset(ft)            |          | 0     |              |       | 0      |       |             | 0     |                                                                                                                 |       | 0     |              |
| Crosswalk Width(ft)        |          | 16    |              |       | 16     |       |             | 16    |                                                                                                                 |       | 16    |              |
| Two way Left Turn Lane     |          | 1.00  |              |       |        |       | 1.1         |       |                                                                                                                 |       |       |              |
| Headway Factor             | 1.00     | 1.00  | 1.00         | 1.00  | 1.00   | 1.00  | 1.00        | 1.00  | 1.00                                                                                                            | 1.00  | 1.00  | 1.00         |
| Turning Speed (mph)        | 15       |       | 9            | 15    | 10.245 | 9     | 15          |       | 9                                                                                                               | 15    |       | 9            |
| Turn Type                  | Perm     | NA    |              | Perm  | NA     |       | Perm        | NA    |                                                                                                                 | Perm  | NA    |              |
| Protected Phases           | A. Anthe | 4     |              | 12102 | 8      |       |             | 2     |                                                                                                                 |       | 6     |              |
| Permitted Phases           | 4        |       |              | 8     |        |       | 2           |       |                                                                                                                 | 6     |       |              |
| Minimum Split (s)          | 23.0     | 23.0  |              | 23.0  | 23.0   |       | 47.0        | 47.0  |                                                                                                                 | 47.0  | 47.0  |              |
| Total Split (s)            | 23.0     | 23.0  |              | 23.0  | 23.0   |       | 47.0        | 47.0  |                                                                                                                 | 47.0  | 47.0  |              |
| Total Split (%)            | 32.9%    | 32.9% |              | 32.9% | 32.9%  |       | 67.1%       | 67.1% |                                                                                                                 | 67.1% | 67.1% |              |
| Maximum Green (s)          | 18.0     | 18.0  |              | 18.0  | 18.0   |       | 42.0        | 42.0  |                                                                                                                 | 42.0  | 42.0  |              |
| Yellow Time (s)            | 4.0      | 4.0   |              | 4.0   | 4.0    |       | 4.0         | 4.0   |                                                                                                                 | 4.0   | 4.0   |              |
| All-Red Time (s)           | 1.0      | 1.0   |              | 1.0   | 1.0    |       | 1.0         | 1.0   |                                                                                                                 | 1.0   | 1.0   |              |
| Lost Time Adjust (s)       |          | 0.0   |              |       | 0.0    |       |             | 0.0   |                                                                                                                 |       | 0.0   |              |
| Total Lost Time (s)        |          | 5.0   |              |       | 5.0    |       |             | 5.0   |                                                                                                                 |       | 5.0   |              |
| Lead/Lag                   |          |       |              |       |        |       |             |       |                                                                                                                 |       |       |              |
| Lead-Lag Optimize?         |          |       |              |       |        |       |             |       |                                                                                                                 |       |       |              |
| Act Effct Green (s)        |          | 18.0  |              |       | 18.0   |       |             | 42.0  |                                                                                                                 |       | 42.0  |              |
| Actuated g/C Ratio         |          | 0.26  |              |       | 0.26   |       |             | 0.60  |                                                                                                                 |       | 0.60  |              |
| v/c Ratio                  |          | 0.22  |              |       | 0.23   |       |             | 0.34  |                                                                                                                 |       | 0.37  |              |
| Control Delay              |          | 15.5  |              |       | 17.1   |       |             | 7.8   |                                                                                                                 |       | 8.1   |              |
| Queue Delay                |          | 0.0   |              |       | 0.0    |       |             | 0.0   |                                                                                                                 |       | 0.0   |              |
| Total Delay                |          | 15.5  |              |       | 17.1   |       |             | 7.8   |                                                                                                                 |       | 8.1   |              |
| LOS                        |          | В     |              |       | В      |       |             | A     |                                                                                                                 |       | A     |              |
| Approach Delay             |          | 15.5  |              |       | 17.1   |       |             | 7.8   |                                                                                                                 |       | 8.1   |              |

20033 - Spyglass at Lakes Bay NBM

|                                | ۶           | -                   | 7       | *          | -       | *          | 1    | Ť   | 1   | 1               | ţ      | 1      |
|--------------------------------|-------------|---------------------|---------|------------|---------|------------|------|-----|-----|-----------------|--------|--------|
| Lane Group                     | EBL         | EBT                 | EBR     | WBL        | WBT     | WBR        | NBL  | NBT | NBR | SBL             | SBT    | SBR    |
| Approach LOS                   |             | В                   |         |            | В       |            |      | A   |     |                 | A      |        |
| Intersection Summary           |             |                     |         |            |         |            |      |     |     |                 |        | n i Al |
| Area Type:                     | Other       |                     | - N 15  |            | 1992-51 |            | 1.00 |     |     | le <u>n</u> ada | SEN VE | 1000   |
| Cycle Length: 70               |             |                     |         |            |         |            |      |     |     |                 |        |        |
| Actuated Cycle Length: 70      |             |                     |         |            |         |            |      |     |     |                 |        |        |
| Offset: 0 (0%), Referenced     | to phase 2: | <b>VBTL</b> and     | 6:SBTL, | Start of C | Green   |            |      |     |     |                 |        |        |
| Natural Cycle: 70              |             |                     |         |            |         |            |      |     |     |                 |        |        |
| Control Type: Pretimed         |             |                     |         |            |         |            |      |     |     |                 |        |        |
| Maximum v/c Ratio: 0.37        |             |                     |         |            |         |            |      |     |     |                 |        |        |
| Intersection Signal Delay: 9.6 |             | Intersection LOS: A |         |            |         |            |      |     |     |                 |        |        |
| Intersection Capacity Utiliz   |             |                     |         |            |         | of Service | В    |     |     |                 |        |        |
| Analysis Period (min) 15       |             |                     |         |            |         |            |      |     |     |                 |        |        |

Splits and Phases: 3: Main Street & Decatur Avenue

| Ø2 (R) |             |
|--------|-------------|
| 47 s   | 23 s        |
| 06 (R) | <b>↓</b> Ø8 |
| 47 s   | 23 s        |

| Intersection           | 1.1.1  | 1        | 100          |                 |             |           |  |
|------------------------|--------|----------|--------------|-----------------|-------------|-----------|--|
| Int Delay, s/veh       | 2.1    |          |              |                 |             |           |  |
| Movement               | WBL    | WBR      | NBT          | NBR             | SBL         | SBT       |  |
| Lane Configurations    | Y      |          | ĵ⇒           |                 |             | र्स       |  |
| Traffic Vol, veh/h     | 109    | 31       | 354          | 229             | 0           | 323       |  |
| Future Vol, veh/h      | 109    | 31       | 354          | 229             | 0           | 323       |  |
| Conflicting Peds, #/hr | 0      | 0        | 0            | 0               | 0           | 0         |  |
| Sign Control           | Stop   | Stop     | Free         | Free            | Free        | Free      |  |
| RT Channelized         | •      | None     | -            | None            | -           | None      |  |
| Storage Length         | 0      | -        | -            | -               | <del></del> | -         |  |
| Veh in Median Storage  | ,# 0   | -        | 0            |                 |             | 0         |  |
| Grade, %               | 0      | -        | 0            | -               |             | 0         |  |
| Peak Hour Factor       | 92     | 92       | 92           | 92              | 92          | 92        |  |
| Heavy Vehicles, %      | 0      | 0        | 0            | 0               | 0           | 0         |  |
| Mvmt Flow              | 118    | 34       | 385          | 249             | 0           | 351       |  |
| Major/Minor I          | Minor1 |          | Major1       | 1               | Major2      |           |  |
| Conflicting Flow All   | 861    | 510      | 0            | 0               | 634         | 0         |  |
| Stage 1                | 510    |          | U            | U               | 0.04        | U         |  |
| Stage 2                | 351    |          |              |                 | 1000.24     | elver set |  |
| Critical Hdwy          | 5.5    | 5        | 99           | 1. 1. 1.        | 3.5         | una du    |  |
| Critical Hdwy Stg 1    | 5      |          | 1901 - 24F.4 | 100000 (C       | 0.0         | 10000     |  |
| Critical Hdwy Stg 2    | 5      | n e      | n di         | of the          |             | u de      |  |
| Follow-up Hdwy         | 3      | 3        |              | 100 M           | 2           | 2912 J 54 |  |
| Pot Cap-1 Maneuver     | 451    | 725      | -<br>Paula   | a ŝ             | 1153        |           |  |
| Stage 1                | 725    | 120      |              | 0500 000<br>120 | 1100        |           |  |
| Stage 2                | 850    | 226      | 11.2         | w i             |             |           |  |
| Platoon blocked, %     | 000    |          |              | 151 (S)<br>(2)  | 10.112      | 100 200   |  |
| Mov Cap-1 Maneuver     | 451    | 725      | s de         |                 | 1153        | n ie      |  |
| Nov Cap-2 Maneuver     | 451    | 120      |              | 15 (<br>15      | 1100        | 2         |  |
| Stage 1                | 725    |          |              |                 | 5 X .       | 3.54      |  |
| Stage 2                | 850    |          | 14-143<br>2  |                 |             | 11-11-2   |  |
| olugo 2                | 000    | 10       |              |                 |             | E SI      |  |
| Approach               | WB     |          | NB           |                 | SB          |           |  |
| HCM Control Delay, s   | 15.6   |          | 0            |                 | 0           |           |  |
| HCM LOS                | С      |          |              |                 |             |           |  |
| Minor Lane/Major Mvml  |        | NBT      | NBRV         | /BLn1           | SBL         | SBT       |  |
| Capacity (veh/h)       |        |          | -            | 492             | 1153        | -         |  |
| HCM Lane V/C Ratio     |        |          |              | 0.309           |             |           |  |
| HCM Control Delay (s)  |        | 1241.30  |              | 15.6            | 0           | dağı.     |  |
| HCM Lane LOS           |        | 12,012/1 | 2            | 13.0<br>C       | A           |           |  |
| ICM 95th %tile Q(veh)  |        | -        |              | 1.3             | 0           |           |  |

| Intersection                     |           |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |         |          |                                                                                                                                                                                                                                    |                | 1272   |         |         |  |
|----------------------------------|-----------|-----------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|---------|---------|--|
| Int Delay, s/veh                 | 2.2       |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |         |          |                                                                                                                                                                                                                                    |                |        |         |         |  |
| Movement                         | EBL       | . EBT                                         | EBR           | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WBT               | WBR     | NBL      | NBT                                                                                                                                                                                                                                | NBR            | SBL    | SBT     | SBR     |  |
| Lane Configurations              |           | 4                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                 |         |          | 4                                                                                                                                                                                                                                  |                |        | 4       |         |  |
| Traffic Vol, veh/h               | 17        | 10                                            | 31            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 10      | 14       | 556                                                                                                                                                                                                                                | 7              | 9      | 408     | 11      |  |
| Future Vol, veh/h                | 17        | 10                                            | 31            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                 | 10      | 14       | 556                                                                                                                                                                                                                                | 7              | 9      | 408     | 11      |  |
| Conflicting Peds, #/hr           | 0         | 0                                             | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0       | 0        | 0                                                                                                                                                                                                                                  | 0              | 0      | 0       | 0       |  |
| Sign Control                     | Stop      | Stop                                          | Stop          | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stop              | Stop    | Free     | Free                                                                                                                                                                                                                               | Free           | Free   | Free    | Free    |  |
| RT Channelized                   |           | -                                             | None          | a la filia de la f |                   | None    | -        | -                                                                                                                                                                                                                                  | None           | 1.     | ar ar L | None    |  |
| Storage Length                   | 3         |                                               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 <del>5</del> - |         |          | -                                                                                                                                                                                                                                  | (#)            |        |         |         |  |
| Veh in Median Storage,           | # -       | 0                                             | 영상같           | 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                 | -       |          | 0                                                                                                                                                                                                                                  | 98.04          | -      | 0       | 1111    |  |
| Grade, %                         |           | 0                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                 |         | -        | 0                                                                                                                                                                                                                                  | -              | -      | 0       | -       |  |
| Peak Hour Factor                 | 80        | 42                                            | 75            | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                | 50      | 81       | 99                                                                                                                                                                                                                                 | 44             | 45     | 96      | 46      |  |
| Heavy Vehicles, %                | 0         | 0                                             | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0       | 0        | 0                                                                                                                                                                                                                                  | 0              | 0      | 0       | 0       |  |
| Mvmt Flow                        | 21        | 24                                            | 41            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                | 20      | 17       | 562                                                                                                                                                                                                                                | 16             | 20     | 425     | 24      |  |
| Major/Minor N                    | linor2    |                                               |               | Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |         | Major1   |                                                                                                                                                                                                                                    | I              | Aajor2 |         |         |  |
| Conflicting Flow All             | 1097      |                                               | 437           | 1114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1093              | 570     | 449      | 0                                                                                                                                                                                                                                  | 0              | 578    | 0       | 0       |  |
| Stage 1                          | 477       | 477                                           |               | 604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 604               | 010     |          |                                                                                                                                                                                                                                    | U              | 510    |         | U       |  |
| Stage 2                          | 620       | 612                                           | 3102-0110<br> | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 489               | 0.40,40 | 10012020 | 904 (MR)                                                                                                                                                                                                                           |                |        |         |         |  |
| Critical Hdwy                    | 6.5       | 6                                             | 6             | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                 | 6       | 3.5      | an i                                                                                                                                                                                                                               |                | 3.5    |         |         |  |
| Critical Hdwy Stg 1              | 5.5       | 5                                             | -             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                 |         | 0.0      |                                                                                                                                                                                                                                    |                | 0.0    |         |         |  |
| Critical Hdwy Stg 2              | 5.5       | 5                                             |               | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                 | 1416    |          |                                                                                                                                                                                                                                    | са.<br>1910 г. | 1.00   | si wist |         |  |
| Follow-up Hdwy                   | 3         | 3.5                                           | 3             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5               | 3       | 2        |                                                                                                                                                                                                                                    |                | 2      | 1.25    |         |  |
| Pot Cap-1 Maneuver               | 253       | 272                                           | 691           | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270               | 583     | 1314     |                                                                                                                                                                                                                                    | 25.<br>25      | 1200   | 1.15.5  |         |  |
| Stage 1                          | 702       | 663                                           | -             | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 588               | -       | 1014     | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | 60 (10)<br>(2) | 1200   |         |         |  |
| Stage 2                          | 596       | 583                                           | 100           | 676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 655               |         |          |                                                                                                                                                                                                                                    |                | 11.2   |         | LIN NOR |  |
| Platoon blocked, %               |           |                                               |               | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000               |         |          |                                                                                                                                                                                                                                    |                | 10.00  |         |         |  |
| Mov Cap-1 Maneuver               | 228       | 261                                           | 691           | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 259               | 583     | 1314     |                                                                                                                                                                                                                                    | 1.1            | 1200   | a di    | 10.00   |  |
| Mov Cap-2 Maneuver               | 228       | 261                                           |               | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 259               | -       | -        |                                                                                                                                                                                                                                    | -              | 1200   |         | -       |  |
| Stage 1                          | 689       | 648                                           |               | 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 577               |         |          |                                                                                                                                                                                                                                    | 1              | in da  |         | Linga   |  |
| Stage 2                          | 553       | 572                                           | -             | 599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 641               |         |          | •                                                                                                                                                                                                                                  |                | -      |         | -       |  |
| Approach                         | EB        | a de la composition<br>Nota de la composition |               | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |         | ND       |                                                                                                                                                                                                                                    |                | 00     |         |         |  |
| Approach<br>HCM Control Delay, s | 18.4      | 10.20                                         |               | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |         | NB       |                                                                                                                                                                                                                                    |                | SB     | NIER E  |         |  |
| HCM LOS                          | 10.4<br>C |                                               |               | 18.1<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |         | 0.2      |                                                                                                                                                                                                                                    |                | 0.3    |         |         |  |
|                                  |           |                                               | 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | n en i  |          |                                                                                                                                                                                                                                    |                |        |         |         |  |
| Minor Lane/Major Mvmt            |           | NBL                                           | NBT           | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EBLn1V            |         | SBL      | SBT                                                                                                                                                                                                                                | SBR            | 백금취    | 5.36    |         |  |
| Capacity (veh/h)                 |           | 1314                                          | 4. A          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 354               |         | 1200     | <del>-</del>                                                                                                                                                                                                                       |                |        | 5.000   |         |  |
| HCM Lane V/C Ratio               |           | 0.013                                         | -             | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.244             | 0.138   | 0.017    |                                                                                                                                                                                                                                    | ÷              |        |         |         |  |
| HCM Control Delay (s)            |           | 7.8                                           | 0             | C Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.4              | 18.1    | 8.1      | 0                                                                                                                                                                                                                                  |                |        |         |         |  |
| HCM Lane LOS                     |           | А                                             | А             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                 | С       | Α        | А                                                                                                                                                                                                                                  | ÷              |        |         |         |  |
| HCM 95th %tile Q(veh)            |           | 0                                             | 1112          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9               | 0.5     | 0.1      |                                                                                                                                                                                                                                    |                |        |         |         |  |

a.

| Int Delay, s/veh       | 0.2     |                    |      |               |          |      |            |               |          |         |       |              |  |
|------------------------|---------|--------------------|------|---------------|----------|------|------------|---------------|----------|---------|-------|--------------|--|
| Movement               | EBL     | EBT                | EBR  | WBL           | WBT      | WBR  | NBL        | NBT           | NBR      | SBL     | SBT   | SBR          |  |
| Lane Configurations    |         |                    |      |               | 4        |      |            | 4             |          |         | 4>    |              |  |
| Traffic Vol, veh/h     | 0       | 0                  | 0    | 0             | 0        | 0    | 6          | 272           | 0        | 0       | 3     | 134          |  |
| Future Vol, veh/h      | 0       | 0                  | 0    | 0             | 0        | 0    | 6          | 272           | 0        | 0       | 3     | 134          |  |
| Conflicting Peds, #/hr | 0       | 0                  | 0    | 0             | 0        | 0    | 0          | 0             | 0        | 0       | 0     | 0            |  |
| Sign Control           | Stop    | Stop               | Stop | Stop          | Stop     | Stop | Free       | Free          | Free     | Free    | Free  | Free         |  |
| RT Channelized         |         |                    | None |               |          | None |            | -             | None     |         |       | None         |  |
| Storage Length         | -       |                    |      | -             | -        |      |            | -             |          |         |       | -            |  |
| /eh in Median Storage, | # -     | 0.42               |      |               | 0        |      |            | 0             |          | -       | 0     | 1.00-        |  |
| Grade, %               | ÷       | 0                  | œ    |               | 0        | -    |            | 0             |          |         | 0     |              |  |
| Peak Hour Factor       | 92      | 92                 | 92   | 92            | 92       | 92   | 50         | 92            | 92       | 92      | 38    | 95           |  |
| leavy Vehicles, %      | 0       | 0                  | 0    | 0             | 0        | 0    | 0          | 0             | 0        | 0       | 0     | 0            |  |
| Nvmt Flow              | 0       | 0                  | 0    | 0             | 0        | 0    | 12         | 296           | 0        | 0       | 8     | 141          |  |
| Major/Minor            |         |                    |      | Minor1        | (*9)<br> |      | Major1     |               | ٨        | /lajor2 |       |              |  |
| Conflicting Flow All   |         |                    |      | 399           | 469      | 296  | 149        | 0             | 0        | 296     | 0     | 0            |  |
| Stage 1                |         |                    |      | 320           | 320      |      | 110        | i goly        |          |         | 10112 |              |  |
| Stage 2                |         |                    |      | 79            | 149      | -    | -          | 9 - 9 B<br>12 |          |         |       | 17,557,659,9 |  |
| Critical Hdwy          |         |                    |      | 6.4           | 6.5      | 6.2  | 4.1        |               | 102      | 4.1     | 11.12 | 1101263      |  |
| Critical Hdwy Stg 1    |         |                    |      | 5.4           | 5.5      | -    | -          | -             | 2 4      | -       |       | 2            |  |
| Critical Hdwy Stg 2    |         |                    |      | 5.4           | 5.5      | 15.8 |            | 1152          | 100      | -       | 195   | 201120       |  |
| ollow-up Hdwy          |         |                    |      | 3.5           | 4        | 3.3  | 2.2        | 4             | -        | 2.2     | 1     | -            |  |
| Pot Cap-1 Maneuver     |         |                    |      | 611           | 495      | 748  | 1445       |               | 111-121  | 1277    |       |              |  |
| Stage 1                |         |                    |      | 741           | 656      | -    | -          | -             | -        | -       | -     | -            |  |
| Stage 2                |         |                    |      | 949           | 778      | 134  | 3 4        | 4             | 1.44     | 100     |       | 1004.0       |  |
| latoon blocked, %      |         |                    |      | CONTRACTOR OF |          |      |            |               |          |         | 100   | -            |  |
| Nov Cap-1 Maneuver     |         |                    |      | 605           | 0        | 748  | 1445       |               |          | 1277    | ÷.    |              |  |
| Nov Cap-2 Maneuver     |         |                    |      | 605           | 0        |      | 1          |               | -        | -       |       | -            |  |
| Stage 1                |         |                    |      | 734           | 0        | 2    | 1937       |               |          | 1.      |       | 0 - 2 5      |  |
| Stage 2                |         |                    |      | 949           | 0        |      | -          |               |          |         | -     |              |  |
| Approach               |         |                    |      | WB            |          |      | NB         |               |          | SB      |       |              |  |
| ICM Control Delay, s   | 1.1.1   | C <sub>1</sub> L D | 14   | 0             |          |      | 0.3        |               | Wind Ser | 0       |       |              |  |
| ICM LOS                |         |                    |      | Â             |          |      | 0.0        |               |          | U       |       |              |  |
| /inor Lane/Major Mvmt  |         | NBL                | NBT  | NBRW          | 'BLn1    | SBL  | SBT        | SBR           |          |         |       |              |  |
| Capacity (veh/h)       |         | 1445               |      |               |          | 1277 |            |               | 1111.000 |         | 1.1   |              |  |
| ICM Lane V/C Ratio     |         | 0.008              | 100  |               |          | -    |            |               |          |         |       |              |  |
| ICM Control Delay (s)  | and the | 7.5                | 0    |               | 0        | 0    | 1 marsh    |               |          |         |       |              |  |
| ICM Lane LOS           |         | A.                 | A    | - 12 C        | A        | A    |            |               |          |         |       |              |  |
| CM 95th %tile Q(veh)   |         | Ô                  | -    | -             | ~        | 0    | tion and a |               |          |         |       |              |  |

| Int Delay, s/veh                          | 8.4     |             |         |                     |            |          |           |  |
|-------------------------------------------|---------|-------------|---------|---------------------|------------|----------|-----------|--|
| Movement                                  | NBL     | NBT         | SBT     | SBR                 | SEL        | SER      |           |  |
| Lane Configurations                       |         | 1           | 1       | CON                 | W          | of all 1 |           |  |
| Traffic Vol, veh/h                        | 0       | 36          | 3       | 0                   | 236        | 0        |           |  |
| Future Vol, veh/h                         | 0       | 36          | 3       | 0                   | 236        | 0        |           |  |
| Conflicting Peds, #/hr                    | 0       | 0           | 0       | 0                   | 0          | Ő        |           |  |
|                                           | Free    | Free        | Free    | Free                | Stop       | Stop     |           |  |
| RT Channelized                            |         | None        | -       | None                | -          | None     |           |  |
| Storage Length                            | -       | -           | -       | -                   | 0          | -        |           |  |
| Veh in Median Storage,                    | # -     | 0           | 0       | des de              | 0          |          |           |  |
| Grade, %                                  | -       | 0           | 0       |                     | 0          | -        |           |  |
| Peak Hour Factor                          | 92      | 58          | 92      | 92                  | 86         | 25       |           |  |
| Heavy Vehicles, %                         | 0       | 0           | 0       | 0                   | 0          | 0        |           |  |
| Mvmt Flow                                 | 0       | 62          | 3       | 0                   | 274        | 0        |           |  |
|                                           |         |             |         |                     |            |          |           |  |
| Major/Minor Ma                            | ajor1   | ٨           | Aajor2  | ,                   | Minor2     |          |           |  |
| Conflicting Flow All                      | ajori   | 0           | najuiz  | 0                   | 65         | 3        |           |  |
| Stage 1                                   | 1997    | 0           |         | 0                   | 3          | э<br>-   |           |  |
| Stage 2                                   |         |             |         | 1.416.85            | 62         |          |           |  |
| Critical Hdwy                             | 683     |             |         |                     | 6.4        | 6.2      |           |  |
| Critical Hdwy Stg 1                       |         |             |         |                     | 5.4        | 0.2      |           |  |
| Critical Hdwy Stg 2                       | 1.1051  |             |         |                     | 5.4        | Heriot   |           |  |
| Follow-up Hdwy                            |         |             |         |                     | 3.5        | 3.3      |           |  |
| Pot Cap-1 Maneuver                        | 0       |             |         | 0                   | 946        | 1087     |           |  |
| Stage 1                                   | 0       |             |         | 0                   | 1025       | 1007     |           |  |
| Stage 2                                   | 0       | 10 m        |         | 0                   | 966        |          |           |  |
| Platoon blocked, %                        | U       | witter fr   |         | U                   | 300        | 05400748 |           |  |
| Mov Cap-1 Maneuver                        |         | 1.10        |         | 50.                 | 946        | 1087     |           |  |
| Nov Cap-2 Maneuver                        |         |             | 12.01   |                     | 946        | 1001     |           |  |
| Stage 1                                   |         |             | 90.     | stak.               | 1025       |          |           |  |
| Stage 2                                   |         |             |         |                     | 966        |          |           |  |
| olugo z                                   |         | 18.14       |         |                     | 500        | STREE 6  |           |  |
| Approach                                  | ND      |             | CD.     |                     | OF         |          |           |  |
| Approach<br>HCM Control Delay, s          | NB<br>0 | 14 March 19 | SB<br>0 | 216                 | SE<br>10.4 |          |           |  |
| HCM LOS                                   | 0       |             | 0       |                     | 10.4       |          |           |  |
|                                           |         |             |         |                     | В          |          |           |  |
| Minor Lano/Major Mumt                     |         |             | Cind    | ODT                 |            |          |           |  |
| Minor Lane/Major Mvmt<br>Capacity (veh/h) |         | NBT S       |         | SBT                 |            |          | C. States |  |
| HCM Lane V/C Ratio                        |         |             | 946     | 1997 <del>-</del> 1 |            |          |           |  |
| CM Control Delay (s)                      |         | i Marina    | 0.29    | stitunt i           |            |          |           |  |
| ICINI CONTION Delay (S)                   |         |             | 10.4    |                     |            |          |           |  |
| HCM Lane LOS                              |         |             | В       |                     |            |          |           |  |

| 1.1. 0.                                          | 111527 | o/atama    | los de la composición de |                       |        |          |
|--------------------------------------------------|--------|------------|--------------------------|-----------------------|--------|----------|
| Intersection                                     | 3.9    |            |                          |                       |        |          |
| Int Delay, s/veh                                 |        |            |                          |                       |        |          |
| Movement                                         | EBL    | Crissienti | WBT                      | WBR                   | SBL    | SBR      |
| Lane Configurations                              |        | ŧ          | ţ,                       |                       | ¥      |          |
| Traffic Vol, veh/h                               | 4      |            | 1                        | 1                     | 1      | 1        |
| Future Vol, veh/h                                | 4      |            | 1                        | 1                     | 1      | 1        |
| Conflicting Peds, #/hr                           | 0      |            | 0                        | 0                     | 0      | 0        |
|                                                  | Free   |            | Free                     | Free                  | Stop   | Stop     |
| RT Channelized                                   |        | None       |                          | None                  | - V. I | None     |
| Storage Length                                   |        |            | -                        |                       | 0      |          |
| Veh in Median Storage,                           | # -    |            | 0                        |                       | 0      |          |
| Grade, %                                         | -      | 0          | 0                        | ÷                     | 0      | -        |
| Peak Hour Factor                                 | 50     |            | 25                       | 25                    | 25     | 25       |
| Heavy Vehicles, %                                | 0      |            | 0                        | 0                     | 0      | 0        |
| Mvmt Flow                                        | 8      | 8          | 4                        | 4                     | 4      | 4        |
|                                                  |        |            |                          |                       |        |          |
| Major/Minor M                                    | ajor1  |            | Major2                   | <sup>a</sup> njaran W | Minor2 | 1.4      |
| Conflicting Flow All                             | 8      |            | -                        | 0                     | 30     | 6        |
| Stage 1                                          | 181    |            |                          |                       | 6      |          |
| Stage 2                                          | -      | -          | 14                       | 11-0-1 - 10<br>1-     | 24     | -        |
| Critical Hdwy                                    | 4.1    | 1          |                          | 1.1                   | 6.4    | 6.2      |
| Critical Hdwy Stg 1                              | -      | -          |                          |                       | 5.4    | 0.2      |
| Critical Hdwy Stg 2                              | 1992   |            | 1112                     | 5.05                  | 5.4    |          |
| Follow-up Hdwy                                   | 2.2    | -          |                          |                       | 3.5    | 3.3      |
|                                                  | 1625   |            |                          |                       | 989    | 1083     |
| Stage 1                                          | .020   | -<br>      | 1911                     |                       | 1022   | 1000     |
| Stage 2                                          | 400    | D.A        | 13.2                     | 1.1                   | 1022   |          |
| Platoon blocked, %                               | 1000   |            |                          |                       | 1004   | KON COLO |
|                                                  | 1625   | 1.7        |                          | 1                     | 984    | 1083     |
| Nov Cap-2 Maneuver                               | 1020   |            |                          |                       | 984    | 1003     |
| Stage 1                                          | 100    |            | -<br>                    | -                     | 1017   | tu has   |
| Stage 2                                          | -      |            |                          |                       | 1004   |          |
| Oldge Z                                          | Ustik  |            | 71.00                    |                       | 1004   |          |
| ovoji naso spretvo ovoji<br>Naso da ovoji naso s |        |            |                          |                       |        |          |
| Approach                                         | EB     |            | WB                       | Nº STAR               | SB     | 10 - 30  |
| HCM Control Delay, s                             | 3.6    |            | 0                        |                       | 8.5    |          |
| HCM LOS                                          |        |            |                          |                       | А      |          |
|                                                  |        |            |                          |                       |        |          |
| Minor Lane/Major Mvmt                            |        | EBL        | EBT                      | WBT                   | WBR S  | SBLn1    |
| Capacity (veh/h)                                 | 200    | 1625       | -                        |                       |        |          |
| HCM Lane V/C Ratio                               |        | 0.005      | 4                        | -                     | -      | 0.008    |
| HCM Control Delay (s)                            |        | 7.2        | 0                        |                       | 1.<br> | 8.5      |
| HCM Lane LOS                                     |        | A          | А                        | -                     | -      | A        |
| HCM 95th %tile Q(veh)                            |        | 0          |                          | 11.11.21              | 1916   | 0        |

|                                       | ٨         |               | Y                                         | 1            | -         | 4     | 1          | Ť          | r         | 1       | Ŧ         | ~     |
|---------------------------------------|-----------|---------------|-------------------------------------------|--------------|-----------|-------|------------|------------|-----------|---------|-----------|-------|
| Lane Group                            | EBL       | EBT           | EBR                                       | WBL          | WBT       | WBR   | NBL        | NBT        | NBR       | SBL     | SBT       | SBR   |
| Lane Configurations                   | ሻ         | <b>†</b> î»   |                                           | ሻ            | 朴         |       | ሻ          | ĵ.         |           | ሻ       | ¢Î        |       |
| Traffic Volume (vph)                  | 123       | 724           | 14                                        | 80           | 950       | 147   | 20         | 154        | 122       | 121     | 186       | 110   |
| Future Volume (vph)                   | 123       | 724           | 14                                        | 80           | 950       | 147   | 20         | 154        | 122       | 121     | 186       | 110   |
| Ideal Flow (vphpl)                    | 1900      | 1900          | 1900                                      | 1900         | 1900      | 1900  | 1900       | 1900       | 1900      | 1900    | 1900      | 1900  |
| Lane Util. Factor                     | 1.00      | 0.95          | 0.95                                      | 1.00         | 0.95      | 0.95  | 1.00       | 1.00       | 1.00      | 1.00    | 1.00      | 1.00  |
| Frt                                   |           | 0.995         |                                           |              | 0.978     |       |            | 0.929      | (the same | 1.1.6.9 | 0.947     |       |
| Flt Protected                         | 0.950     | 1. NTA 2.2121 |                                           | 0.950        |           |       | 0.950      | 0.020      |           | 0.950   | 0.011     |       |
| Satd. Flow (prot)                     | 1805      | 3592          | 0                                         | 1805         | 3531      | 0     | 1805       | 1765       | 0         | 1805    | 1793      | 0     |
| Flt Permitted                         | 0.950     |               |                                           | 0.950        |           |       | 0.257      |            |           | 0.257   |           |       |
| Satd. Flow (perm)                     | 1805      | 3592          | 0                                         | 1805         | 3531      | 0     | 488        | 1765       | 0         | 488     | 1793      | 0     |
| Right Turn on Red                     | 127.7.7   |               | Yes                                       | (A) 13-5-5-1 |           | Yes   |            |            | Yes       | 100     |           | Yes   |
| Satd. Flow (RTOR)                     |           | 4             |                                           |              | 22        |       |            | 39         | 100       |         | 24        | 100   |
| Link Speed (mph)                      |           | 40            |                                           |              | 40        |       |            | 25         |           |         | 25        |       |
| Link Distance (ft)                    |           | 512           |                                           |              | 642       |       |            | 750        |           |         | 338       |       |
| Travel Time (s)                       |           | 8.7           |                                           |              | 10.9      |       |            | 20.5       |           |         | 9.2       |       |
| Peak Hour Factor                      | 0.70      | 0.94          | 0.50                                      | 0.62         | 0.94      | 0.83  | 0.59       | 0.84       | 0.74      | 0.85    | 0.83      | 0.89  |
| Heavy Vehicles (%)                    | 0%        | 0%            | 0%                                        | 0%           | 0%        | 0%    | 0%         | 0%         | 0%        | 0%      | 0%        | 1%    |
| Adj. Flow (vph)                       | 176       | 770           | 28                                        | 129          | 1011      | 177   | 34         | 183        | 165       | 142     | 224       | 124   |
| Shared Lane Traffic (%)               | 110       | 110           | 20                                        | 125          | 1011      | 111   | 04         | 105        | 100       | 142     | 224       | 124   |
| Lane Group Flow (vph)                 | 176       | 798           | 0                                         | 129          | 1188      | 0     | 34         | 348        | 0         | 142     | 348       | 0     |
| Enter Blocked Intersection            | No        | No            | No                                        | No           | No        | No    | No         | No         | No        | No      | No        | No    |
| Lane Alignment                        | Left      | Left          | Right                                     | Left         | Left      | Right | Left       | Left       | Right     | Left    | Left      | Right |
| Median Width(ft)                      | Lon       | 12            | rugin                                     | Len          | 12        | rugin | Leit       | 12         | right     | Leit    | 12        | Right |
| Link Offset(ft)                       |           | 0             |                                           |              | 0         |       |            | 0          |           |         | 0         |       |
| Crosswalk Width(ft)                   |           | 16            |                                           |              | 16        |       |            | 16         |           |         | 16        |       |
| Two way Left Turn Lane                |           | 10            |                                           |              | 10        |       |            | 10         |           |         | 10        |       |
| Headway Factor                        | 1.00      | 1.00          | 1.00                                      | 1.00         | 1.00      | 1.00  | 1.00       | 1.00       | 1.00      | 1.00    | 1.00      | 1.00  |
| Turning Speed (mph)                   | 1.00      | 1.00          | 9                                         | 1.00         | 1.00      | 9     | 1.00       | 1.00       | 9         | 1.00    | 1.00      |       |
| Number of Detectors                   | 13        | 2             | 3                                         | 1            | 2         | 9     | 10         | 2          | 9         | 15      | 2         | 9     |
| Detector Template                     | Left      | Thru          |                                           | Left         | Thru      |       | Left       | Thru       |           | Left    | 2<br>Thru |       |
| Leading Detector (ft)                 | 20        | 100           |                                           | 20           | 100       |       | 20         | 100        |           | 20      | 100       |       |
| Trailing Detector (ft)                | 0         | 0             |                                           | 0            | 0         |       | 20         | 0          |           | 20      |           |       |
| Detector 1 Position(ft)               | 0         | 0             |                                           | 0            | 0         |       | 0          | 0          |           |         | 0         |       |
| Detector 1 Size(ft)                   | 20        | 6             |                                           | 20           | 6         |       | 20         | 6          |           | 0<br>20 | 0         |       |
| Detector 1 Type                       | CI+Ex     | CI+Ex         |                                           | CI+Ex        | CI+Ex     |       | CI+Ex      | CI+Ex      |           | CI+Ex   | CI+Ex     |       |
| Detector 1 Channel                    | OFLA      | GITLA         |                                           | CITEX        | CITEX     |       | GITEX      | CITEX      |           | CI+EX   | CITEX     |       |
| Detector 1 Extend (s)                 | 0.0       | 0.0           |                                           | 0.0          | 0.0       |       | 0.0        | 0.0        |           | 0.0     | 0.0       |       |
| Detector 1 Queue (s)                  | 0.0       | 0.0           |                                           | 0.0          | 0.0       |       | 0.0<br>0.0 | 0.0<br>0.0 |           | 0.0     | 0.0       |       |
| Detector 1 Delay (s)                  | 0.0       | 0.0           |                                           | 0.0          | 0.0       |       | 0.0        |            |           | 0.0     | 0.0       |       |
| Detector 2 Position(ft)               | 0.0       | 94            |                                           | 0.0          | 94        |       | 0.0        | 0.0        |           | 0.0     | 0.0       |       |
| Detector 2 Size(ft)                   |           | 94<br>6       |                                           |              |           |       |            | 94         |           |         | 94        |       |
|                                       | u sust    | CI+Ex         | in an |              | 6<br>CUEv |       |            | 6          |           |         | 6         |       |
| Detector 2 Type<br>Detector 2 Channel |           | UTEX          |                                           |              | CI+Ex     |       |            | CI+Ex      |           |         | CI+Ex     |       |
|                                       |           | 0.0           |                                           |              | 0.0       |       |            | 0.0        |           |         | 0.0       |       |
| Detector 2 Extend (s)<br>Turn Type    | Drot      | 0.0<br>NA     |                                           | Drot         | 0.0       |       | Der        | 0.0        |           | Deres   | 0.0       |       |
|                                       | Prot<br>7 |               |                                           | Prot         | NA        |       | Perm       | NA         |           | Perm    | NA        |       |
| Protected Phases                      | 1         | 4             |                                           | 3            | 8         |       | •          | 2          |           |         | 6         |       |
| Permitted Phases                      | 7         | CUIVES. 255   |                                           | 0            | 0         |       | 2          |            |           | 6       |           |       |
| Detector Phase<br>Switch Phase        | (Daliela  | 4             |                                           | 3            | 8         |       | 2          | 2          |           | 6       | 6         |       |

20033 - Spyglass at Lakes Bay NBM

|                                                              | ٦           | -     | Y     | 1     | -     | ×.     | 1     | Ť     | p        | 1     | Ļ      | ~    |
|--------------------------------------------------------------|-------------|-------|-------|-------|-------|--------|-------|-------|----------|-------|--------|------|
| Lane Group                                                   | EBL         | EBT   | EBR   | WBL   | WBT   | WBR    | NBL   | NBT   | NBR      | SBL   | SBT    | SBR  |
| Minimum Initial (s)                                          | 5.0         | 55.0  | 81.15 | 5.0   | 55.0  | 120123 | 10.0  | 10.0  | 17-34-96 | 10.0  | 10.0   |      |
| Minimum Split (s)                                            | 9.0         | 60.0  |       | 9.0   | 60.0  |        | 15.0  | 15.0  |          | 15.0  | 15.0   |      |
| Total Split (s)                                              | 19.0        | 60.0  |       | 19.0  | 60.0  |        | 41.0  | 41.0  |          | 41.0  | 41.0   |      |
| Total Split (%)                                              | 15.8%       | 50.0% |       | 15.8% | 50.0% |        | 34.2% | 34.2% |          | 34.2% | 34.2%  |      |
| Maximum Green (s)                                            | 15.0        | 55.0  |       | 15.0  | 55.0  |        | 36.0  | 36.0  |          | 36.0  | 36.0   |      |
| Yellow Time (s)                                              | 3.0         | 4.0   |       | 3.0   | 4.0   |        | 3.0   | 3.0   |          | 3.0   | 3.0    |      |
| All-Red Time (s)                                             | 1.0         | 1.0   |       | 1.0   | 1.0   |        | 2.0   | 2.0   |          | 2.0   | 2.0    |      |
| Lost Time Adjust (s)                                         | 0.0         | 0.0   |       | 0.0   | 0.0   |        | 0.0   | 0.0   |          | 0.0   | 0.0    |      |
| Total Lost Time (s)                                          | 4.0         | 5.0   |       | 4.0   | 5.0   |        | 5.0   | 5.0   |          | 5.0   | 5.0    |      |
| Lead/Lag                                                     | Lead        | Lag   |       | Lead  | Lag   |        |       |       |          |       |        |      |
| Lead-Lag Optimize?                                           |             |       |       |       |       |        |       |       |          |       |        |      |
| Vehicle Extension (s)                                        | 2.0         | 2.0   |       | 2.0   | 2.0   |        | 2.0   | 2.0   |          | 2.0   | 2.0    |      |
| Recall Mode                                                  | None        | C-Min |       | None  | C-Min |        | None  | None  |          | None  | None   |      |
| Act Effct Green (s)                                          | 14.0        | 63.1  |       | 12.3  | 61.4  |        | 30.7  | 30.7  |          | 30.7  | 30.7   |      |
| Actuated g/C Ratio                                           | 0.12        | 0.53  |       | 0.10  | 0.51  |        | 0.26  | 0.26  |          | 0.26  | 0.26   |      |
| v/c Ratio                                                    | 0.84        | 0.42  |       | 0.70  | 0.65  |        | 0.27  | 0.73  |          | 1.15  | 0.73   |      |
| Control Delay                                                | 83.6        | 19.7  |       | 71.8  | 24.7  |        | 39.3  | 44.5  |          | 164.6 | 46.7   |      |
| Queue Delay                                                  | 0.0         | 0.0   |       | 0.0   | 0.0   |        | 0.0   | 0.0   |          | 0.0   | 0.0    |      |
| Total Delay                                                  | 83.6        | 19.7  |       | 71.8  | 24.7  |        | 39.3  | 44.5  |          | 164.6 | 46.7   |      |
| LOS                                                          | F           | В     |       | E     | С     |        | D     | D     |          | F     | D      |      |
| Approach Delay                                               |             | 31.2  |       |       | 29.3  |        |       | 44.0  |          |       | 80.9   |      |
| Approach LOS                                                 |             | С     |       |       | С     |        |       | D     |          |       | F      |      |
| Intersection Summary                                         |             |       |       |       |       |        |       |       |          |       |        |      |
| Area Type:<br>Cycle Length: 120<br>Actuated Cycle Length: 12 | Other<br>20 |       |       |       | 26    |        |       |       |          |       | 948-55 | 537. |

Offset: 115 (96%), Referenced to phase 4:EBT and 8:WBT, Start of Yellow

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.15

Intersection Signal Delay: 39.7 Intersection Capacity Utilization 93.3% Analysis Period (min) 15 Intersection LOS: D ICU Level of Service F

Splits and Phases: 8: Franklin Boulevard & Route 40/322

| ↑ Ø2        | <b>√</b> Ø3              | →Ø4 (R)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41 s        | 19 s                     | 60 s     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>↓</b> Ø6 | _ <b>▲</b> <sub>07</sub> | ✓ Ø8 (R) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41 s        | 19 s                     | 60 s     | SURPERSION OF THE STREET STREET, STREE |

|                                            | ٨        | -     | *     | *        | ←     | ×.    | 1      | Ť          | 1      | 1     | Ļ          | 1      |
|--------------------------------------------|----------|-------|-------|----------|-------|-------|--------|------------|--------|-------|------------|--------|
| Lane Group                                 | EBL      | EBT   | EBR   | WBL      | WBT   | WBR   | NBL    | NBT        | NBR    | SBL   | SBT        | SBR    |
| Lane Configurations                        |          | 4     |       | E.       | 4     |       |        | 4          |        |       | \$         |        |
| Traffic Volume (vph)                       | 16       | 69    | 31    | 91       | 55    | 35    | 16     | 376        | 48     | 29    | 326        | 16     |
| Future Volume (vph)                        | 16       | 69    | 31    | 91       | 55    | 35    | 16     | 376        | 48     | 29    | 326        | 16     |
| Ideal Flow (vphpl)                         | 1900     | 1900  | 1900  | 1900     | 1900  | 1900  | 1900   | 1900       | 1900   | 1900  | 1900       | 1900   |
| Lane Util. Factor                          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00   | 1.00       | 1.00   | 1.00  | 1.00       | 1.00   |
| Frt                                        |          | 0.951 |       | 19767130 | 0.975 |       |        | 0.982      | Detter |       | 0.992      | adurat |
| Fit Protected                              |          | 0.993 |       |          | 0.976 |       |        | 0.998      |        |       | 0.995      |        |
| Satd. Flow (prot)                          | 0        | 1794  | 0     | 0        | 1808  | 0     | 0      | 1862       | 0      | 0     | 1875       | 0      |
| Flt Permitted                              |          | 0.936 |       |          | 0.747 |       |        | 0.971      | U.     | v     | 0.931      | U      |
| Satd. Flow (perm)                          | 0        | 1691  | 0     | 0        | 1384  | 0     | 0      | 1812       | 0      | 0     | 1755       | 0      |
| Right Turn on Red                          | <b>U</b> | 1001  | Yes   |          | 1004  | Yes   | 0      | 1012       | Yes    | U     | 1100       | Yes    |
| Satd. Flow (RTOR)                          |          | 40    | 103   |          | 16    | 103   |        | 20         | 165    |       | 8          | Tes    |
| Link Speed (mph)                           |          | 25    |       |          | 25    |       |        | 20         |        |       | 25         |        |
| Link Distance (ft)                         |          | 431   |       |          | 451   |       |        | 469        |        |       | 268        |        |
| Travel Time (s)                            |          | 11.8  |       |          | 12.3  |       |        | 12.8       |        |       |            |        |
|                                            | 0.63     |       | 0.50  | 0.00     |       | 0.00  | 0.07   |            | 0.70   | 0.70  | 7.3        | 0.00   |
| Peak Hour Factor                           |          | 0.83  |       | 0.68     | 0.63  | 0.68  | 0.67   | 0.96       | 0.73   | 0.70  | 0.90       | 0.63   |
| Heavy Vehicles (%)                         | 0%       | 0%    | 0%    | 0%       | 0%    | 0%    | 0%     | 0%         | 0%     | 0%    | 0%         | 0%     |
| Adj. Flow (vph)<br>Shared Lane Traffic (%) | 25       | 83    | 62    | 134      | 87    | 51    | 24     | 392        | 66     | 41    | 362        | 25     |
| Lane Group Flow (vph)                      | 0        | 170   | 0     | 0        | 272   | 0     | 0      | 482        | 0      | 0     | 428        | 0      |
| Enter Blocked Intersection                 | No       | No    | No    | No       | No    | No    | No     | No         | No     | No    | No         | No     |
| Lane Alignment                             | Left     | Left  | Right | Left     | Left  | Right | Left   | Left       | Right  | Left  | Left       | Right  |
| Median Width(ft)                           |          | 0     |       |          | 0     |       |        | 0          |        |       | 0          | G      |
| Link Offset(ft)                            |          | 0     |       |          | 0     |       |        | 0          |        |       | 0          |        |
| Crosswalk Width(ft)                        |          | 16    |       |          | 16    |       |        | 16         |        |       | 16         |        |
| Two way Left Turn Lane                     |          |       |       |          |       |       |        |            |        |       |            |        |
| Headway Factor                             | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00   | 1.00       | 1.00   | 1.00  | 1.00       | 1.00   |
| Turning Speed (mph)                        | 15       |       | 9     | 15       |       | 9     | 15     |            | 9      | 15    |            | 9      |
| Turn Type                                  | Perm     | NA    |       | Perm     | NA    |       | Perm   | NA         |        | Perm  | NA         |        |
| Protected Phases                           |          | 4     |       |          | 8     |       | 11.012 | 2          |        |       | 6          |        |
| Permitted Phases                           | 4        |       |       | 8        |       |       | 2      |            |        | 6     |            |        |
| Minimum Split (s)                          | 23.0     | 23.0  |       | 23.0     | 23.0  |       | 47.0   | 47.0       |        | 47.0  | 47.0       |        |
| Total Split (s)                            | 23.0     | 23.0  |       | 23.0     | 23.0  |       | 47.0   | 47.0       |        | 47.0  | 47.0       |        |
| Total Split (%)                            | 32.9%    | 32.9% |       | 32.9%    | 32.9% |       | 67.1%  | 67.1%      |        | 67.1% | 67.1%      |        |
| Maximum Green (s)                          | 18.0     | 18.0  |       | 18.0     | 18.0  |       | 42.0   | 42.0       |        | 42.0  | 42.0       |        |
| Yellow Time (s)                            | 4.0      | 4.0   |       | 4.0      | 4.0   |       | 4.0    | 4.0        |        | 42.0  | 42.0       |        |
| All-Red Time (s)                           | 1.0      | 1.0   |       | 1.0      | 1.0   |       | 1.0    | 4.0        |        | 1.0   | 4.0        |        |
| Lost Time Adjust (s)                       | 1.0      | 0.0   |       | 1.0      | 0.0   |       | 1.0    |            |        | 1.0   |            |        |
| Total Lost Time (s)                        |          | 5.0   |       |          | 5.0   |       |        | 0.0<br>5.0 |        |       | 0.0<br>5.0 |        |
| Lead/Lag                                   |          |       |       |          |       |       |        |            |        |       |            |        |
| Lead-Lag Optimize?                         |          |       |       |          |       |       |        |            |        |       |            |        |
| Act Effct Green (s)                        |          | 18.0  |       |          | 18.0  |       |        | 42.0       |        |       | 42.0       |        |
| Actuated g/C Ratio                         |          | 0.26  |       |          | 0.26  |       |        | 0.60       |        |       | 0.60       |        |
| v/c Ratio                                  |          | 0.37  |       |          | 0.74  |       |        | 0.44       |        |       | 0.41       |        |
| Control Delay                              |          | 18.8  |       |          | 37.0  |       |        | 8.8        |        |       | 8.7        |        |
| Queue Delay                                |          | 0.0   |       |          | 0.0   |       |        | 0.0        |        |       | 0.0        |        |
| Total Delay                                |          | 18.8  |       |          | 37.0  |       |        | 8.8        |        |       | 8.7        |        |
| LOS                                        |          | В     |       |          | D     |       |        | A          |        |       | A          |        |
| Approach Delay                             |          | 18.8  |       |          | 37.0  |       |        | 8.8        |        |       | 8.7        |        |

20033 - Spyglass at Lakes Bay NBM

|                             | ۶              | -        | 7        | 1          | -          | *          | •                 | Ť    | 1   | 1    | ţ   | ~   |
|-----------------------------|----------------|----------|----------|------------|------------|------------|-------------------|------|-----|------|-----|-----|
| Lane Group                  | EBL            | EBT      | EBR      | WBL        | WBT        | WBR        | NBL               | NBT  | NBR | SBL  | SBT | SBR |
| Approach LOS                |                | В        |          |            | D          |            |                   | А    |     | 전문관관 | А   | 5   |
| Intersection Summary        |                |          |          |            |            |            |                   |      |     |      |     | =   |
| Area Type:                  | Other          |          |          |            |            |            | 0.8315-0          | 1000 |     |      |     |     |
| Cycle Length: 70            |                |          |          |            |            |            |                   |      |     |      |     |     |
| Actuated Cycle Length: 7    | 0              |          |          |            |            |            |                   |      |     |      |     |     |
| Offset: 0 (0%), Reference   | d to phase 2:1 | VBTL and | 6:SBTL,  | Start of C | Green      |            |                   |      |     |      |     |     |
| Natural Cycle: 70           |                |          | is and a |            |            |            |                   |      |     |      |     |     |
| Control Type: Pretimed      |                |          |          |            |            |            |                   |      |     |      |     |     |
| Maximum v/c Ratio: 0.74     |                |          |          |            |            |            |                   |      |     |      |     |     |
| Intersection Signal Delay:  | 15.7           |          |          | In         | tersectior | LOS: B     |                   |      |     |      |     |     |
| Intersection Capacity Utili |                |          |          |            |            | of Service | В                 |      |     |      |     |     |
| Analysis Period (min) 15    |                |          |          |            |            |            | 073 (90 (10) (10) |      |     |      |     |     |

Splits and Phases: 3: Main Street & Decatur Avenue

| ν <sup>≪</sup> ¶ <sub>Ø2 (R)</sub> |             |
|------------------------------------|-------------|
| 47 s                               | 23 s        |
| 06 (R)                             | <b>▼</b> Ø8 |
| 47 s                               | 23 s        |

| Intersection           | 4.1       |                        | nubri cur          | e te poo       |        |                                          |
|------------------------|-----------|------------------------|--------------------|----------------|--------|------------------------------------------|
| Int Delay, s/veh       |           |                        |                    |                |        |                                          |
| Movement               | WBL       | WBR                    | NBT                | NBR            | SBL    | SBT                                      |
| Lane Configurations    | ۲         |                        | ĵ.                 |                |        | ર્લ                                      |
| Traffic Vol, veh/h     | 173       | 32                     | 419                | 220            | 0      | 441                                      |
| Future Vol, veh/h      | 173       | 32                     | 419                | 220            | 0      | 441                                      |
| Conflicting Peds, #/hr | 0         | 0                      | 0                  | 0              | 0      | 0                                        |
| Sign Control           | Stop      | Stop                   | Free               | Free           | Free   | Free                                     |
| RT Channelized         |           | None                   |                    | None           |        | None                                     |
| Storage Length         | 0         | -                      | internet internet  | -              | -      | -                                        |
| Veh in Median Storage  | e,# 0     |                        | 0                  | 1.1.1          |        | 0                                        |
| Grade, %               | 0         | -                      | 0                  | -              | -      | 0                                        |
| Peak Hour Factor       | 92        | 92                     | 92                 | 92             | 92     | 92                                       |
| Heavy Vehicles, %      | 0         | 0                      | 0                  | 0              | 0      | 0                                        |
| Mymt Flow              | 188       | 35                     | 455                | 239            | 0      | 479                                      |
|                        |           |                        |                    |                |        |                                          |
| Majar/Minor            | Minaud    |                        | Antonia            | vere la ve     | 1      |                                          |
|                        | Minor1    |                        | Major1             |                | Major2 | -                                        |
| Conflicting Flow All   | 1054      | 575                    | 0                  | 0              | 694    | 0                                        |
| Stage 1                | 575       | 1993 - 19 <del>4</del> | - 6 - E            |                | 1033 문 |                                          |
| Stage 2                | 479       | -                      |                    | -              | -      | -                                        |
| Critical Hdwy          | 5.5       | 5                      |                    | •              | 3.5    | 1.15                                     |
| Critical Hdwy Stg 1    | 5         | -                      | ~                  |                | -      | -                                        |
| Critical Hdwy Stg 2    | 5         | ÷.,                    |                    |                | -      | -                                        |
| Follow-up Hdwy         | 3         | 3                      |                    |                | 2      |                                          |
| Pot Cap-1 Maneuver     | 360       | 680                    |                    |                | 1105   | -                                        |
| Stage 1                | 680       | ( <b></b> )            | ک                  | -              | -      | <b>a</b> 1                               |
| Stage 2                | 748       | -                      | - <sup>16</sup> -1 | -              |        | 1.4                                      |
| Platoon blocked, %     |           |                        | -                  | -              |        | 2                                        |
| Mov Cap-1 Maneuver     | 360       | 680                    | 1.1                | (1. L)         | 1105   |                                          |
| Mov Cap-2 Maneuver     | 360       |                        | *                  | -              | -      | -                                        |
| Stage 1                | 680       | 1.14                   |                    | 6.0143         | 1.1    | - 1928                                   |
| Stage 2                | 748       | -                      | -                  | -              |        | 2                                        |
|                        |           |                        |                    |                |        |                                          |
| Approach               | WB        |                        | ND                 |                | CD.    |                                          |
| Approach               |           | BEA112A                | NB                 | <u>/12813)</u> | SB     |                                          |
| HCM Control Delay, s   | 26        |                        | 0                  |                | 0      |                                          |
| HCM LOS                | D         |                        |                    |                |        |                                          |
|                        |           |                        |                    |                |        |                                          |
| Minor Lane/Major Mvm   | ıt        | NBT                    | NBRW               | /BLn1          | SBL    | SBT                                      |
| Capacity (veh/h)       | 1225      | -                      |                    | 389            | 1105   | an a |
| HCM Lane V/C Ratio     |           | - 100 - 1904<br>(#)    | -                  | 0.573          | -      | -                                        |
| HCM Control Delay (s)  |           |                        | 1.1                | 26             | 0      | (inter                                   |
| HCM Lane LOS           |           |                        | -                  | D              | A      |                                          |
| HCM 95th %tile Q(veh)  |           |                        | un forge           | 3.5            | 0      | 1.052                                    |
| our oour maio aqueri,  | 10 Parata | - WEAD                 | a linge            | 0.0            | 0      | anita si a                               |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |            |          |        |          |           |              |            |             |               |             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------|----------|--------|----------|-----------|--------------|------------|-------------|---------------|-------------|--|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.5    |       |            |          |        |          |           |              |            |             |               |             |  |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EBL    | . EBT | EBR        | WBL      | WBT    | WBR      | NBL       | NBT          | NBR        | SBL         | SBT           | SBR         |  |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 4     |            |          | 4      |          |           | 4            |            |             | 4             |             |  |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17     |       | 43         | 15       |        | 26       | 22        | 596          | 19         | 25          | 570           | 14          |  |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17     | 16    | 43         | 15       |        | 26       | 22        | 596          | 19         | 25          | 570           | 14          |  |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 0     | 0          | 0        |        | 0        | 0         | 0            | 0          | 0           | 0             | 0           |  |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop   | Stop  | Stop       | Stop     | Stop   | Stop     | Free      | Free         | Free       | Free        | Free          | Free        |  |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91722  |       | None       |          |        | None     | 3122      | 15,674       | None       | 1000        | 10.02         | None        |  |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -      |       | -          | -        | -      |          |           |              | -          | -           | -             | -           |  |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .# -   | 0     | 이 및 것의 🛓   | i lini ş | 0      | 1.1.2    | 146 -     | 0            |            | 4-300,113   | 0             | 8           |  |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | 0     | -          |          | 0      | -        |           | 0            |            | -           | 0             | -           |  |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44     |       | 68         | 88       |        | 63       | 88        | 94           | 50         | 67          | 87            | 56          |  |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      |       | 0          | 0        | 0      | 0        | 0         | 0            | 0          | 0           | 0             | 0           |  |
| Mymt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39     |       | 63         | 17       | 16     | 41       | 25        | 634          | 38         | 37          | 655           | 25          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00     | 20    | 00         |          | 10     |          | 20        | 004          | 50         | 07          | 000           | 20          |  |
| Major/Minor M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minor2 |       | e (ui) - 1 | Minor1   |        | 19.2%    | Major1    |              |            | Major2      |               |             |  |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1474   |       | 668        | 1489     | 1457   | 653      | 680       | 0            | 0          | 672         | 0             | 0           |  |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 742    | 742   | -          | 703      | 703    | -        | -         | e de la      |            | 012         | i i i         | -           |  |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 732    | 722   | -          | 786      | 754    | erancean |           | -            | -          | -           | 91. M         | an easterio |  |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5    | 6     | 6          | 6.5      | 6      | 6        | 3.5       | 1. N 12 12 1 | 104 X      | 3.5         |               | a periode   |  |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5    | 5     | -          | 5.5      | 5      |          | 0.0       | ng meru      | 1012010100 | 0.0         | in contration | 100000      |  |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5    |       | in the     | 5.5      | 5      |          | 1-10      | 100          |            | 1.145       | 1010          |             |  |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3      | 3.5   | 3          | 3        | 3.5    | 3        | 2         |              | 1911/201   | 2           | -             | 5 O         |  |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 146    | 168   | 514        | 142      | 170    | 524      | 1116      | 1100         |            | 1122        | 1. V.I.       | 1.0.0       |  |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 518    | 515   | - 10       | 542      | 535    | 524      | 1110      | 02010        | CELOSER S  | 1122        |               | 100120      |  |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 524    | 525   | at site    | 492      | 509    |          | and a     | i de la      |            |             |               |             |  |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 024    | 020   | 8          | 452      | 000    | 2011/072 | 10.476    |              | 1.5002     | are, system |               |             |  |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116    | 153   | 514        | 102      | 155    | 524      | 1116      | -            |            | 1122        | a na da       |             |  |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116    | 153   | 514        | 102      | 155    | 524      | 1110      | 0.12.51      |            | 1122        | 1.2           |             |  |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 499    | 488   | 1980       | 522      | 516    | in stal  | attes ini |              | det els    | di shina    |               | 1.00        |  |
| and the second se | 499    | 400   | *          | 387      | 482    |          |           | 1 A A        |            |             | 1, 22         |             |  |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 451    | 506   | 9.7        | 307      | 402    | -        | 86194     |              | L SEVE     | u Č         | Nétra         | Lateral     |  |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EB     |       |            | WB       |        |          | NB        |              |            | SB          |               |             |  |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.6   |       | 2. So      | 30.7     |        | - UK UNE | 0.3       | ingenie.     |            | 0.4         |               | 12-11-3     |  |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E      |       |            | D        |        |          | 0.0       |              |            | 0.4         |               |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |       |            |          |        |          |           |              |            |             |               |             |  |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | NBL   | NBT        | NBR      | EBLn1V |          | SBL       | SBT          | SBR        |             |               |             |  |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1116  | 7          | -        | 205    | 213      | 1122      | à 🖓 📲        |            |             |               |             |  |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 0.022 | •          | -        |        | 0.349    |           | -            | -          |             |               |             |  |
| HCM Control Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 8.3   | 0          | 4        | 47.6   | 30.7     | 8.3       | 0            |            |             |               |             |  |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | А     | А          | -        | E      | D        | А         | Α            | -          |             |               |             |  |
| HCM 95th %tile Q(veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 0.1   |            | 1216140  | 3.6    | 1.5      | 0.1       | 100          | 10.12      |             |               |             |  |

| Int Delay, s/veh       | 0.1   |        |             |                   |         |         |        |                          |                   |             |          |           |  |
|------------------------|-------|--------|-------------|-------------------|---------|---------|--------|--------------------------|-------------------|-------------|----------|-----------|--|
| Movement               | EBL   | EBT    | EBR         | WBL               | WBT     | WBR     | NBL    | NBT                      | NBR               | SBL         | SBT      | SBR       |  |
| Lane Configurations    |       |        |             |                   | 4       |         |        | 4                        |                   |             | 4        |           |  |
| Traffic Vol, veh/h     | 0     | 0      | 0           | 0                 | 0       | 0       | 2      | 248                      | 0                 | 0           | 3        | 203       |  |
| Future Vol, veh/h      | 0     | 0      | 0           | 0                 | 0       | 0       | 2      | 248                      | 0                 | 0           | 3        | 203       |  |
| Conflicting Peds, #/hr | 0     | 0      | 0           | 0                 | 0       | 0       | 0      | 0                        | 0                 | 0           | 0        | 0         |  |
| Sign Control           | Stop  | Stop   | Stop        | Stop              | Stop    | Stop    | Free   | Free                     | Free              | Free        | Free     | Free      |  |
| RT Channelized         |       | 1.6.24 | None        | HALE.             | V= jozi | None    | 1018 L |                          | None              |             |          | None      |  |
| Storage Length         | -     | -      | 14          |                   |         | -       |        | -                        | -                 | -           |          | -         |  |
| Veh in Median Storage, | # -   | duc 4  | 1           | 14                | 0       | -       |        | 0                        | 10 A              | 1           | 0        | 1         |  |
| Grade, %               | -     | 0      | 72          | -                 | 0       |         |        | 0                        | -                 | ÷           | 0        |           |  |
| Peak Hour Factor       | 92    | 92     | 92          | 92                | 92      | 92      | 50     | 92                       | 92                | 92          | 75       | 76        |  |
| Heavy Vehicles, %      | 0     | 0      | 0           | 0                 | 0       | 0       | 0      | 0                        | 0                 | 0           | 0        | 0         |  |
| Mvmt Flow              | 0     | 0      | 0           | 0                 | 0       | 0       | 4      | 270                      | 0                 | 0           | 4        | 267       |  |
| Major/Minor            | 10.51 |        | N           | /linor1           |         |         | Major1 |                          | Ν                 | /lajor2     |          |           |  |
| Conflicting Flow All   |       |        |             | 416               | 549     | 270     | 271    | 0                        | 0                 | 270         | 0        | 0         |  |
| Stage 1                |       |        |             | 278               | 278     | 210     | 211    | Ŭ.                       | U U               | 210         | Ŭ        | U         |  |
| Stage 2                |       |        |             | 138               | 271     |         | 1.2.10 |                          |                   | 100023      |          |           |  |
| Critical Hdwy          |       |        |             | 6.4               | 6.5     | 6.2     | 4.1    | 2,335                    | S.                | 4.1         | with a   | 191720    |  |
| Critical Hdwy Stg 1    |       |        |             | 5.4               | 5.5     | 0.2     | 0.000  |                          |                   | 7.1         | 12211224 |           |  |
| Critical Hdwy Stg 2    |       |        |             | 5.4               | 5.5     |         | 1000   | t tie                    |                   | -           | N 10     | 0.74675   |  |
| Follow-up Hdwy         |       |        |             | 3.5               | 4       | 3.3     | 2.2    |                          |                   | 2.2         |          |           |  |
| Pot Cap-1 Maneuver     |       |        |             | 597               | 446     | 774     | 1304   |                          |                   | 1305        | 1        | Nutriette |  |
| Stage 1                |       |        |             | 774               | 684     |         | 1004   |                          |                   | 1000        | 0200     | 0.000     |  |
| Stage 2                |       |        |             | 894               | 689     | a de la |        | 1115                     | - 1943            |             |          |           |  |
| Platoon blocked, %     |       |        |             | 004               | 000     |         |        | npisne<br>L              | 147, C 2 19<br>18 | and a large |          | 1005-140  |  |
| Nov Cap-1 Maneuver     |       |        |             | 595               | 0       | 774     | 1304   | 110                      | - 10              | 1305        |          |           |  |
| Nov Cap-2 Maneuver     |       |        |             | 595               | 0       |         | 1001   | 0-005                    |                   | 1000        |          | 1.00      |  |
| Stage 1                |       |        |             | 771               | Ő       |         |        |                          |                   | the state   | en la    | NGC-1     |  |
| Stage 2                |       |        | •           | 894               | 0       |         | -      | -                        |                   |             | -        |           |  |
| Approach               |       |        |             | WB                |         |         | NB     |                          |                   | SB          |          |           |  |
| CM Control Delay, s    |       | SU SE  |             | 0                 |         |         | 0.1    |                          | Arden.            | 0           | -        |           |  |
| ICM LOS                |       |        |             | A                 |         |         | 0.1    |                          |                   | U           |          |           |  |
| /linor Lane/Major Mvmt |       | NBL    | NBT         | NBRW              | /BLn1   | SBL     | SBT    | SBR                      |                   |             |          |           |  |
| Capacity (veh/h)       | 12.1  | 1304   |             |                   | -       | 1305    | -      | -                        |                   |             |          | 324 15    |  |
| ICM Lane V/C Ratio     |       | 0.003  | -           | -                 |         |         | -      | 1992 A.S. 1997<br>- 1992 | 1997 (1997)<br>1  |             |          |           |  |
| ICM Control Delay (s)  |       | 7.8    | 0           | Sec.              | 0       | 0       |        |                          |                   |             |          |           |  |
| ICM Lane LOS           |       | A      | A           | 10 LU (A2)<br>(#) | A       | A       |        | 2                        |                   |             |          |           |  |
| ICM 95th %tile Q(veh)  |       | 0      | V SCIENCE A | -                 | ~       | 0       |        | Sec. No.                 |                   |             |          |           |  |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0             | ) <sup>(</sup> Kr | Section 2          |         | 619-36 | and the second |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|--------------------|---------|--------|----------------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.9             |                   |                    |         |        |                |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NBL             | NBT               | SBT                | SBR     | SEL    | SER            |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | <b>↑</b>          | <b>↑</b>           |         | ¥      |                |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0               | 22                | 3                  | 0       | 226    | 1              |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 22                | 3                  | 0       | 226    | 1              |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0               | 0                 | 0                  | 0       | 0      | 0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free            | Free              | Free               | Free    | Stop   | Stop           |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | None              |                    | None    | 1111   | None           |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | -                 |                    | -       | 0      | -              |
| Veh in Median Storage,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # -             | 0                 | 0                  | 80622   | 0      | 100            |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -               | 0                 | 0                  | -       | 0      | 1 <u></u>      |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92              | 67                | 75                 | 92      | 81     | 25             |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 0                 | 0                  | 0       | 0      | 0              |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0               | 33                | 4                  | 0       | 279    | 4              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                    |         |        |                |
| Major/Minor M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olord           |                   | Anin=0             |         | 1      |                |
| Major/Minor Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ajor1           |                   | Aajor2             |         | Minor2 |                |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e.<br>Filmun    | 0                 |                    | 0       | 37     | 4              |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10              | 이 관습 등            | 100                |         | 4      |                |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | San ta            | er:<br>Händnes     | -       | 33     | -              |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                   |                    | 1.00    | 6.4    | 6.2            |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175             |                   | •                  |         | 5.4    | -              |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 S.           | 3. 18 <b>.</b>    |                    | 1-12-24 | 5.4    | 6.00           |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 3 <b>7</b> 3      |                    |         | 3.5    | 3.3            |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0               |                   | -                  | 0       | 981    | 1085           |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0               | ;=;               |                    | 0       | 1024   | S <b>-</b> 5   |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0               | -                 | 14.4               | 0       | 995    |                |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | :-:               | *                  |         |        |                |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -                 | 13.<br>A           | 100,000 | 981    | 1085           |
| Nov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : <del></del> : | (e)               | .#3                | -       | 981    | 3.00           |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -               | 1                 | -                  |         | 1024   | -15-1          |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :=:             | -                 | -                  | -       | 995    | -              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                    |         |        |                |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NB              |                   | SB                 |         | SE     |                |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0               |                   | 0                  |         | 10.1   |                |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U               |                   | U                  |         |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                    |         | В      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                    |         |        |                |
| and the second s | 1837 I.         | NBT S             | SELn1              | SBT     |        |                |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1975 N.         |                   | 982                |         |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                    |         |        |                |
| Minor Lane/Major Mvmt<br>Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   | 0.288              | 3       |        |                |
| Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                   |                    |         |        |                |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                   | 0.288<br>10.1<br>B |         |        |                |

| Int Delay, s/veh                       | 3.3    |                        |                 |                     |                              |                   |
|----------------------------------------|--------|------------------------|-----------------|---------------------|------------------------------|-------------------|
| Movement                               | EBL    |                        | WBT             | WBR                 | SBL                          | SBR               |
| Lane Configurations                    |        | <u>دی</u> ر<br>ا       |                 | TUN                 | JDL<br>W                     | ODIN              |
| Traffic Vol, veh/h                     | 2      |                        | <b>f</b> »<br>9 | 0                   | and the second second second | 0                 |
| Future Vol, veh/h                      | 2      |                        |                 | 2                   | 1                            | 8                 |
|                                        |        |                        | 9               | 2                   | 1                            | 8                 |
| Conflicting Peds, #/hr                 | 0      |                        | 0               | 0                   | 0                            | 0                 |
| Sign Control                           | Free   |                        | Free            | Free                | Stop                         | Stop              |
| RT Channelized                         | 1.00   | None                   | <del>-</del>    | None                | -                            | None              |
| Storage Length                         | -      |                        |                 | -                   | 0                            | •                 |
| Veh in Median Storage,                 | # -    |                        | 0               | 신경이님                | 0                            | 1999 <del>-</del> |
| Grade, %                               | đ      | 0                      | 0               | ÷                   | 0                            |                   |
| Peak Hour Factor                       | 50     |                        | 38              | 50                  | 25                           | 50                |
| Heavy Vehicles, %                      | 0      |                        | 0               | 0                   | 0                            | 0                 |
| Mvmt Flow                              | 4      | 8                      | 24              | 4                   | 4                            | 16                |
|                                        |        |                        |                 |                     |                              |                   |
| Major/Minor M                          | 1ajor1 | 1                      | Major2          |                     | Minor2                       |                   |
| Conflicting Flow All                   | 28     | 0                      | indjoi z        | 0                   | 42                           | 26                |
| Stage 1                                | 20     | 0                      | -               | U                   | 26                           |                   |
| Stage 2                                | UN2153 |                        |                 | 5 B.                |                              |                   |
|                                        |        |                        |                 |                     | 16                           | -                 |
| Critical Hdwy                          | 4.1    |                        |                 |                     | 6.4                          | 6.2               |
| Critical Hdwy Stg 1                    | -      | ine<br>Aller and aller |                 |                     | 5.4                          | -                 |
| Critical Hdwy Stg 2                    | 1.5    |                        |                 |                     | 5.4                          | 0.25              |
| Follow-up Hdwy                         | 2.2    | -                      | -               |                     | 3.5                          | 3.3               |
|                                        | 1599   |                        |                 |                     | 974                          | 1056              |
| Stage 1                                | -      | -                      | -               | 5 <b>8</b> 3        | 1002                         | -                 |
| Stage 2                                |        | -                      |                 | 1                   | 1012                         | 이 이번 목구           |
| Platoon blocked, %                     |        | -                      | 141             | -                   |                              |                   |
| Mov Cap-1 Maneuver                     | 1599   | 100                    | - 14            | -                   | 971                          | 1056              |
| Mov Cap-2 Maneuver                     | -      | 1                      |                 | 4                   | 971                          | -                 |
| Stage 1                                | 2712   | 0.004                  |                 |                     | 999                          | 17.12             |
| Stage 2                                |        |                        | -               | -                   | 1012                         | -                 |
|                                        |        |                        |                 |                     | 1012                         |                   |
| Approach                               | EB     |                        |                 |                     | CD.                          |                   |
| Approach                               |        |                        | WB              |                     | SB                           |                   |
| HCM Control Delay, s                   | 2.4    |                        | 0               |                     | 8.5                          |                   |
| HCM LOS                                |        |                        |                 |                     | A                            |                   |
|                                        |        |                        |                 |                     |                              |                   |
|                                        |        | EBL                    | EBT             | WBT                 | WBR S                        | SBLn1             |
| Vinor Lane/Major Mvmt                  |        |                        |                 |                     |                              | 1038              |
|                                        |        | 1599                   |                 | College A           | 10.14                        | 10.00             |
| Capacity (veh/h)                       |        | 1599<br>0.003          |                 | 1919 <del>-</del> 9 |                              |                   |
| Capacity (veh/h)<br>HCM Lane V/C Ratio |        | 0.003                  | -               |                     |                              | 0.019             |
| Capacity (veh/h)                       |        |                        | -<br>0<br>A     |                     |                              |                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۶     | -           | 7     | 1      | -           | A.     | 1         | Ť     | r     | 1     | ¥     | 1                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------|--------|-------------|--------|-----------|-------|-------|-------|-------|------------------------------------------|
| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EBL   | EBT         | EBR   | WBL    | WBT         | WBR    | NBL       | NBT   | NBR   | SBL   | SBT   | SBR                                      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ሻ     | <b>≜</b> î∌ |       | ሻ      | <b>≜</b> î≽ |        | ሻ         | Þ     |       | ሻ     | ĵ.⊧   |                                          |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96    | 737         | 14    | 25     | 646         | 133    | 25        | 166   | 157   | 112   | 118   | 51                                       |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96    | 737         | 14    | 25     | 646         | 133    | 25        | 166   | 157   | 112   | 118   | 51                                       |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1900  | 1900        | 1900  | 1900   | 1900        | 1900   | 1900      | 1900  | 1900  | 1900  | 1900  | 1900                                     |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00  | 0.95        | 0.95  | 1.00   | 0.95        | 0.95   | 1.00      | 1.00  | 1.00  | 1.00  | 1.00  | 1.00                                     |
| Frt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0.996       | 0.00  | 1100   | 0.974       | 0.00   | 1.00      | 0.920 | 1.00  | 1.00  | 0.945 | 1.00                                     |
| Flt Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.950 | 0.000       |       | 0.950  | 0.011       |        | 0.950     | 0.020 |       | 0.950 | 0.040 |                                          |
| Satd. Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1805  | 3596        | 0     | 1805   | 3516        | 0      | 1805      | 1748  | 0     | 1805  | 1782  | 0                                        |
| Flt Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.950 | 0000        | v     | 0.950  | 0010        |        | 0.504     | 1740  | U     | 0.232 | 1702  | U                                        |
| Satd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1805  | 3596        | 0     | 1805   | 3516        | 0      | 958       | 1748  | 0     | 441   | 1782  | 0                                        |
| Right Turn on Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000  | 0000        | Yes   | 1005   | 5510        | Yes    | 900       | 1/40  | Yes   | 441   | 1/02  | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
| And the second sec |       | 2           | Tes   |        | 27          | Tes    |           | 50    | res   |       | 05    | Yes                                      |
| Satd. Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 3<br>30     |       |        | 30          |        |           | 50    |       |       | 25    |                                          |
| Link Speed (mph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |             |       |        |             |        |           | 30    |       |       | 30    |                                          |
| Link Distance (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 512         |       |        | 642         |        |           | 750   |       |       | 338   |                                          |
| Travel Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.74  | 11.6        |       |        | 14.6        |        |           | 17.0  |       | 2.22  | 7.7   | 1211212                                  |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.74  | 0.88        | 0.56  | 0.79   | 0.81        | 0.79   | 0.75      | 0.87  | 0.71  | 0.87  | 0.84  | 0.63                                     |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0%    | 0%          | 0%    | 0%     | 0%          | 0%     | 0%        | 0%    | 0%    | 0%    | 0%    | 2%                                       |
| Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130   | 838         | 25    | 32     | 798         | 168    | 33        | . 191 | 221   | 129   | 140   | 81                                       |
| Shared Lane Traffic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |             |       |        |             |        |           |       |       |       |       |                                          |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130   | 863         | 0     | 32     | 966         | 0      | 33        | 412   | 0     | 129   | 221   | 0                                        |
| Enter Blocked Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No    | No          | No    | No     | No          | No     | No        | No    | No    | No    | No    | No                                       |
| Lane Alignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left  | Left        | Right | Left   | Left        | Right  | Left      | Left  | Right | Left  | Left  | Right                                    |
| Median Width(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 12          |       |        | 12          |        |           | 12    |       |       | 12    |                                          |
| Link Offset(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 0           |       |        | 0           | ALC: N |           | 0     |       |       | 0     |                                          |
| Crosswalk Width(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 16          |       |        | 16          |        |           | 16    |       |       | 16    |                                          |
| Two way Left Turn Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |             |       |        |             |        |           |       |       |       |       |                                          |
| Headway Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00  | 1.00        | 1.00  | 1.00   | 1.00        | 1.00   | 1.00      | 1.00  | 1.00  | 1.00  | 1.00  | 1.00                                     |
| Turning Speed (mph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15    |             | 9     | 15     |             | 9      | 15        |       | 9     | 15    |       | 9                                        |
| Number of Detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 2           |       | 1      | 2           |        | 1         | 2     | 1.272 | 1     | 2     |                                          |
| Detector Template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Left  | Thru        |       | Left   | Thru        |        | Left      | Thru  |       | Left  | Thru  |                                          |
| Leading Detector (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20    | 100         |       | 20     | 100         |        | 20        | 100   |       | 20    | 100   |                                          |
| Trailing Detector (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0     | 0           |       | 0      | 0           |        | 0         | 0     |       | 0     | 0     |                                          |
| Detector 1 Position(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | 0           |       | 0      | 0           |        | 0         | 0     |       | 0     | 0     |                                          |
| Detector 1 Size(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20    | 6           |       | 20     | 6           |        | 20        | 6     |       | 20    | 6     |                                          |
| Detector 1 Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CI+Ex | CI+Ex       |       | CI+Ex  | CI+Ex       |        | CI+Ex     | CI+Ex |       | CI+Ex | CI+Ex |                                          |
| Detector 1 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OFLA  | UILA        |       | OFLA   | UILA        |        | OILA      | ULLA  |       | UTLA  | UITEX |                                          |
| Detector 1 Extend (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0   | 0.0         |       | 0.0    | 0.0         |        | 0.0       | 0.0   |       | 0.0   | 0.0   |                                          |
| Detector 1 Queue (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0   | 0.0         |       | 0.0    | 0.0         |        |           | 0.0   |       | 0.0   | 0.0   |                                          |
| The second  |       |             |       |        |             |        | 0.0       | 0.0   |       | 0.0   | 0.0   |                                          |
| Detector 1 Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0   | 0.0         |       | 0.0    | 0.0         |        | 0.0       | 0.0   |       | 0.0   | 0.0   |                                          |
| Detector 2 Position(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 94          |       |        | 94          |        |           | 94    |       |       | 94    |                                          |
| Detector 2 Size(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 6           |       |        | 6           |        |           | 6     |       |       | 6     |                                          |
| Detector 2 Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | CI+Ex       |       |        | CI+Ex       |        |           | CI+Ex |       |       | CI+Ex |                                          |
| Detector 2 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |             |       |        |             |        |           |       |       |       |       |                                          |
| Detector 2 Extend (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1995  | 0.0         |       | 105550 | 0.0         |        | 1.157.173 | 0.0   |       |       | 0.0   |                                          |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prot  | NA          |       | Prot   | NA          |        | Perm      | NA    |       | Perm  | NA    |                                          |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7     | 4           |       | 3      | 8           |        |           | 2     |       |       | 6     |                                          |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |             |       |        |             |        | 2         |       |       | 6     |       |                                          |
| Detector Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7     | 4           |       | 3      | 8           |        | 2         | 2     |       | 6     | 6     |                                          |
| Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |             |       |        |             |        |           |       |       |       |       |                                          |

20033 - Spyglass at Lake Bay NBM

Build AM 05/01/2020

|                             | ٨             | -         | Y         | 1          | -          | ×         | 1     | 1     | 1   | 1     | Ļ     | ~   |
|-----------------------------|---------------|-----------|-----------|------------|------------|-----------|-------|-------|-----|-------|-------|-----|
| Lane Group                  | EBL           | EBT       | EBR       | WBL        | WBT        | WBR       | NBL   | NBT   | NBR | SBL   | SBT   | SBF |
| Minimum Initial (s)         | 5.0           | 55.0      | 1224      | 5.0        | 55.0       | 1211201   | 10.0  | 10.0  |     | 10.0  | 10.0  |     |
| Minimum Split (s)           | 9.0           | 60.0      |           | 9.0        | 60.0       |           | 15.0  | 15.0  |     | 15.0  | 15.0  |     |
| Total Split (s)             | 19.0          | 60.0      |           | 19.0       | 60.0       |           | 41.0  | 41.0  |     | 41.0  | 41.0  |     |
| Total Split (%)             | 15.8%         | 50.0%     |           | 15.8%      | 50.0%      |           | 34.2% | 34.2% |     | 34.2% | 34.2% |     |
| Maximum Green (s)           | 15.0          | 55.0      |           | 15.0       | 55.0       |           | 36.0  | 36.0  |     | 36.0  | 36.0  |     |
| Yellow Time (s)             | 3.0           | 4.0       |           | 3.0        | 4.0        |           | 3.0   | 3.0   |     | 3.0   | 3.0   |     |
| All-Red Time (s)            | 1.0           | 1.0       |           | 1.0        | 1.0        |           | 2.0   | 2.0   |     | 2.0   | 2.0   |     |
| Lost Time Adjust (s)        | 0.0           | 0.0       |           | 0.0        | 0.0        |           | 0.0   | 0.0   |     | 0.0   | 0.0   |     |
| Total Lost Time (s)         | 4.0           | 5.0       |           | 4.0        | 5.0        |           | 5.0   | 5.0   |     | 5.0   | 5.0   |     |
| Lead/Lag                    | Lead          | Lag       |           | Lead       | Lag        |           |       |       |     |       |       |     |
| Lead-Lag Optimize?          |               |           |           |            | 목가리관       |           |       |       |     |       |       |     |
| Vehicle Extension (s)       | 2.0           | 2.0       |           | 2.0        | 2.0        |           | 2.0   | 2.0   |     | 2.0   | 2.0   |     |
| Recall Mode                 | None          | C-Min     |           | None       | C-Min      |           | None  | None  |     | None  | None  |     |
| Act Effct Green (s)         | 12.3          | 66.9      |           | 6.8        | 57.7       |           | 36.0  | 36.0  |     | 36.0  | 36.0  |     |
| Actuated g/C Ratio          | 0.10          | 0.56      |           | 0.06       | 0.48       |           | 0.30  | 0.30  |     | 0.30  | 0.30  |     |
| v/c Ratio                   | 0.71          | 0.43      |           | 0.32       | 0.57       |           | 0.11  | 0.74  |     | 0.98  | 0.40  |     |
| Control Delay               | 72.0          | 17.0      |           | 62.0       | 23.6       |           | 32.0  | 42.1  |     | 116.0 | 32.0  |     |
| Queue Delay                 | 0.0           | 0.0       |           | 0.0        | 0.0        |           | 0.0   | 0.0   |     | 0.0   | 0.0   |     |
| Total Delay                 | 72.0          | 17.0      |           | 62.0       | 23.6       |           | 32.0  | 42.1  |     | 116.0 | 32.0  |     |
| LOS                         | E             | В         |           | E          | C          |           | С     | D     |     | F     | С     |     |
| Approach Delay              |               | 24.2      |           |            | 24.8       |           |       | 41.3  |     |       | 63.0  |     |
| Approach LOS                |               | С         |           |            | С          |           |       | D     |     |       | Е     |     |
| Intersection Summary        |               |           |           |            |            |           |       |       |     |       |       |     |
| Area Type:                  | Other         |           |           |            |            |           |       |       |     |       |       |     |
| Cycle Length: 120           |               |           |           |            |            |           |       |       |     |       |       |     |
| Actuated Cycle Length: 12   |               |           |           |            |            |           |       |       |     |       |       |     |
| Offset: 115 (96%), Referen  | nced to phas  | e 4:EBT a | nd 8:WB   | T, Start o | fYellow    |           |       |       |     |       |       |     |
| Natural Cycle: 105          |               |           |           |            |            |           |       |       |     |       |       |     |
| Control Type: Actuated-Co   | oordinated    |           |           |            |            |           |       |       |     |       |       |     |
| Maximum v/c Ratio: 0.98     |               |           |           |            |            |           |       |       |     |       |       |     |
| Intersection Signal Delay:  |               |           |           | In         | tersection | LOS: C    |       |       |     |       |       |     |
| ntersection Capacity Utiliz | zation 93.7%  |           |           | IC         | CU Level o | f Service | ۶F    |       |     |       |       |     |
| Analysis Period (min) 15    |               |           |           |            |            |           |       |       |     |       |       |     |
|                             | D.            |           | 1 10 10   |            |            |           |       |       |     |       |       |     |
| Splits and Phases: 8: Fr    | ranklin Boule | varo & Ro | ute 40/32 | 12         |            |           |       |       |     |       |       |     |

Splits and Phases: 8: Franklin Boulevard & Route 40/322

| <sup>™</sup> ¶ø2 | <b>√</b> Ø3 | →Ø4 (R) | U. |
|------------------|-------------|---------|----|
| 41 s             | 19 s        | 60 s    |    |
| <b>↓</b> Ø6      | <i>→</i> Ø7 |         |    |
| 41 s             | 19 s        | 60 s    |    |

÷.

|                            | ۶       | -     | ¥     | 1        | -     | ×.       | 1          | 1     | 1      | 1     | ¥     | 1                     |
|----------------------------|---------|-------|-------|----------|-------|----------|------------|-------|--------|-------|-------|-----------------------|
| Lane Group                 | EBL     | EBT   | EBR   | WBL      | WBT   | WBR      | NBL        | NBT   | NBR    | SBL   | SBT   | SBR                   |
| Lane Configurations        |         | \$    |       |          | \$    |          |            | 43    |        |       | 4     |                       |
| Traffic Volume (vph)       | 6       | 41    | 11    | 40       | 16    | 20       | 7          | 311   | 29     | 23    | 278   | 22                    |
| Future Volume (vph)        | 6       | 41    | 11    | 40       | 16    | 20       | 7          | 311   | 29     | 23    | 278   | 22                    |
| Ideal Flow (vphpl)         | 1900    | 1900  | 1900  | 1900     | 1900  | 1900     | 1900       | 1900  | 1900   | 1900  | 1900  | 1900                  |
| Lane Util. Factor          | 1.00    | 1.00  | 1.00  | 1.00     | 1.00  | 1.00     | 1.00       | 1.00  | 1.00   | 1.00  | 1.00  | 1.00                  |
| Frt                        | C STATE | 0.952 |       | Net were | 0.955 |          | CONTRACTOR | 0.988 |        |       | 0.987 | 1.00                  |
| Fit Protected              |         | 0.994 |       |          | 0.976 |          |            | 0.998 |        |       | 0.995 |                       |
| Satd. Flow (prot)          | 0       | 1798  | 0     | 0        | 1771  | 0        | 0          | 1873  | 0      | 0     | 1866  | 0                     |
| Fit Permitted              | v       | 0.967 | U     | V        | 0.828 | U        | U          | 0.980 | U      | U     | 0.939 | U                     |
| Satd. Flow (perm)          | 0       | 1749  | 0     | 0        | 1502  | 0        | 0          | 1840  | 0      | 0     | 1761  | 0                     |
| Right Turn on Red          | U       | 1/45  | Yes   | U        | 1002  | Yes      | U          | 1040  |        | U     | 1/01  |                       |
|                            |         | 27    | res   |          | 20    | res      |            | 40    | Yes    |       | 40    | Yes                   |
| Satd. Flow (RTOR)          |         | 37    |       |          | 32    |          |            | 12    |        |       | 13    |                       |
| Link Speed (mph)           |         | 25    |       |          | 25    |          |            | 25    |        |       | 25    |                       |
| Link Distance (ft)         |         | 431   |       |          | 451   |          |            | 469   |        |       | 268   |                       |
| Travel Time (s)            |         | 11.8  |       |          | 12.3  | n course |            | 12.8  |        |       | 7.3   | and the second second |
| Peak Hour Factor           | 0.50    | 0.75  | 0.30  | 0.86     | 0.88  | 0.63     | 0.44       | 0.95  | 0.88   | 0.58  | 0.88  | 0.59                  |
| Heavy Vehicles (%)         | 0%      | 0%    | 0%    | 0%       | 0%    | 0%       | 0%         | 0%    | 0%     | 0%    | 0%    | 0%                    |
| Adj. Flow (vph)            | 12      | 55    | 37    | 47       | 18    | 32       | 16         | 327   | 33     | 40    | 316   | 37                    |
| Shared Lane Traffic (%)    |         |       |       |          |       |          |            |       |        |       |       |                       |
| Lane Group Flow (vph)      | 0       | 104   | 0     | 0        | 97    | 0        | 0          | 376   | 0      | 0     | 393   | 0                     |
| Enter Blocked Intersection | No      | No    | No    | No       | No    | No       | No         | No    | No     | No    | No    | No                    |
| Lane Alignment             | Left    | Left  | Right | Left     | Left  | Right    | Left       | Left  | Right  | Left  | Left  | Right                 |
| Median Width(ft)           |         | 0     |       |          | 0     |          |            | 0     | ,g.r.t |       | 0     | ragin                 |
| Link Offset(ft)            |         | 0     |       |          | 0     |          |            | 0     |        |       | Ő     |                       |
| Crosswalk Width(ft)        |         | 16    |       |          | 16    |          |            | 16    |        |       | 16    |                       |
| Two way Left Turn Lane     |         |       |       |          |       |          |            | 10    |        |       | 10    |                       |
| Headway Factor             | 1.00    | 1.00  | 1.00  | 1.00     | 1.00  | 1.00     | 1.00       | 1.00  | 1.00   | 1.00  | 1.00  | 1.00                  |
| Turning Speed (mph)        | 1.00    | 1.00  | 9     | 1.00     | 1.00  | 1.00     | 1.00       | 1.00  | 9      | 1.00  | 1.00  | 9                     |
| Turn Type                  | Perm    | NA    | 3     | Perm     | NA    | 9        | Perm       | NA    | 3      |       | NIA   | 9                     |
| Protected Phases           | Feim    | 4     |       | reim     | 8     |          | Penn       | 2     |        | Perm  | NA    |                       |
| Permitted Phases           | 4       | 4     |       | 0        | 0     |          | 0          | 2     |        |       | 6     |                       |
|                            | 4       | 00.0  |       | 8        | 00.0  |          | 2          | 17.0  |        | 6     | 17.0  |                       |
| Minimum Split (s)          | 23.0    | 23.0  |       | 23.0     | 23.0  |          | 47.0       | 47.0  |        | 47.0  | 47.0  |                       |
| Total Split (s)            | 23.0    | 23.0  |       | 23.0     | 23.0  |          | 47.0       | 47.0  |        | 47.0  | 47.0  |                       |
| Total Split (%)            | 32.9%   | 32.9% |       | 32.9%    | 32.9% |          | 67.1%      | 67.1% |        | 67.1% | 67.1% |                       |
| Maximum Green (s)          | 18.0    | 18.0  |       | 18.0     | 18.0  |          | 42.0       | 42.0  |        | 42.0  | 42.0  |                       |
| Yellow Time (s)            | 4.0     | 4.0   |       | 4.0      | 4.0   |          | 4.0        | 4.0   |        | 4.0   | 4.0   |                       |
| All-Red Time (s)           | 1.0     | 1.0   |       | 1.0      | 1.0   |          | 1.0        | 1.0   |        | 1.0   | 1.0   |                       |
| Lost Time Adjust (s)       |         | 0.0   |       |          | 0.0   |          |            | 0.0   |        |       | 0.0   |                       |
| Total Lost Time (s)        |         | 5.0   |       |          | 5.0   |          |            | 5.0   |        |       | 5.0   |                       |
| Lead/Lag                   |         |       |       |          |       |          |            |       |        |       |       |                       |
| Lead-Lag Optimize?         |         |       |       |          |       |          |            |       |        |       |       |                       |
| Act Effct Green (s)        |         | 18.0  |       |          | 18.0  |          |            | 42.0  |        |       | 42.0  |                       |
| Actuated g/C Ratio         |         | 0.26  |       |          | 0.26  |          |            | 0.60  |        |       | 0.60  |                       |
| v/c Ratio                  |         | 0.22  |       |          | 0.24  |          |            | 0.34  |        |       | 0.37  |                       |
| Control Delay              |         | 15.5  |       |          | 16.5  |          |            | 7.8   |        |       | 8.2   |                       |
| Queue Delay                |         | 0.0   |       |          | 0.0   |          |            | 0.0   |        |       | 0.2   |                       |
| Total Delay                |         | 15.5  |       |          | 16.5  |          |            | 7.8   |        |       |       |                       |
| LOS                        |         |       |       |          |       |          |            |       |        |       | 8.2   |                       |
|                            |         | B     |       |          | B     |          |            | A     |        |       | A     |                       |
| Approach Delay             |         | 15.5  |       |          | 16.5  |          |            | 7.8   |        |       | 8.2   |                       |

20033 - Spyglass at Lake Bay NBM

|                                                         | ۶              | -               | 7       | 1          | -          | *          | 1   | Ť   | r      | 1   | Ļ   | ~   |
|---------------------------------------------------------|----------------|-----------------|---------|------------|------------|------------|-----|-----|--------|-----|-----|-----|
| Lane Group                                              | EBL            | EBT             | EBR     | WBL        | WBT        | WBR        | NBL | NBT | NBR    | SBL | SBT | SBR |
| Approach LOS                                            |                | В               |         |            | В          |            | N   | Α   |        |     | А   |     |
| Intersection Summary                                    |                |                 |         |            |            |            |     |     |        |     |     |     |
| Area Type:                                              | Other          |                 |         | The second |            |            |     |     | 10.000 |     |     |     |
| Cycle Length: 70                                        |                |                 |         |            |            |            |     |     |        |     |     |     |
| Actuated Cycle Length: 7                                | 0              |                 |         |            |            |            |     |     |        |     |     |     |
| Offset: 0 (0%), Reference                               | d to phase 2:1 | <b>NBTL</b> and | 6:SBTL, | Start of ( | Green      |            |     |     |        |     |     |     |
| Natural Cycle: 70                                       |                |                 |         |            |            |            |     |     |        |     |     |     |
| Control Type: Pretimed                                  |                |                 |         |            |            |            |     |     |        |     |     |     |
| Maximum v/c Ratio: 0.37                                 |                |                 |         |            |            |            |     |     |        |     |     |     |
| Intersection Signal Delay:                              | 9.7            |                 |         | In         | tersectior | LOS: A     |     |     |        |     |     |     |
| Intersection Capacity Utili<br>Analysis Period (min) 15 |                |                 |         |            |            | of Service | В   |     |        |     |     |     |

Splits and Phases: 3: Main Street & Decatur Avenue

| ∫ ≪¶ <sub>Ø2 (R)</sub> |             |
|------------------------|-------------|
| 47 s                   | 23 s        |
| Ø6 (R)                 | <b>●</b> Ø8 |
| 47 s                   | 23 s        |

| Int Delay, s/veh       | 2.1       |                    |                 |         |         |           |
|------------------------|-----------|--------------------|-----------------|---------|---------|-----------|
| Movement               | WBL       | WBR                | NBT             | NBR     | SBL     | SBT       |
| Lane Configurations    | W         |                    | ĵ.              |         |         | 4         |
| Traffic Vol, veh/h     | 112       | 31                 | 356             | 229     | 1       | 323       |
| Future Vol, veh/h      | 112       | 31                 | 356             | 229     | 1       | 323       |
| Conflicting Peds, #/hr | 0         | 0                  | 0               | 0       | 0       | 0         |
| Sign Control           | Stop      | Stop               | Free            | Free    | Free    | Free      |
| RT Channelized         | -         | None               | -               | None    | -       | None      |
| Storage Length         | 0         | NUNC               |                 | NULLE   | jan neg | NULLE     |
| Veh in Median Storage, |           |                    | 0               |         |         | 0         |
| Grade, %               | # 0<br>0  |                    | 0               |         |         | 0         |
| Peak Hour Factor       | 92        | 92                 | 92              | 92      | 92      | 92        |
| Heavy Vehicles, %      | 0         | 0                  | 0               | 0       | 52      | 0         |
| Mymt Flow              | 122       | 34                 | 387             | 249     | 1       | 351       |
| WWINCTIOW              | 122       | 04                 | 507             | 243     | an da   | 001       |
|                        |           |                    |                 |         |         |           |
|                        | linor1    |                    | Major1          |         | Major2  |           |
| Conflicting Flow All   | 865       | 512                | 0               | 0       | 636     | 0         |
| Stage 1                | 512       | Contraction of the | dir Se          |         | 1.1     | 1997      |
| Stage 2                | 353       |                    |                 | -       |         | -         |
| Critical Hdwy          | 5.5       | 5                  |                 | 1.1.5   | 3.5     |           |
| Critical Hdwy Stg 1    | 5         | =                  | 1.5             |         | 184     |           |
| Critical Hdwy Stg 2    | 5         | 0.20 -             | -               | ÷.,     | 1.00    |           |
| Follow-up Hdwy         | 3         | 3                  |                 | 97      | 2       | -         |
| Pot Cap-1 Maneuver     | 449       | 724                | -               |         | 1151    | Sec. Sec. |
| Stage 1                | 724       | . =                |                 | :•:     | -       | -         |
| Stage 2                | 848       |                    | -               |         |         | 1010 410  |
| Platoon blocked, %     |           |                    | -               |         |         | -         |
| Nov Cap-1 Maneuver     | 449       | 724                | 510-7           |         | 1151    |           |
| Nov Cap-2 Maneuver     | 449       |                    | ( <del></del> ; | -       | -       | -         |
| Stage 1                | 724       | 6 a 4 y 4          | S               | 2.1     |         |           |
| Stage 2                | 847       |                    | -               |         | -       | -         |
|                        | C. and    |                    |                 |         |         |           |
| Approach               | WB        |                    | ND              |         | OD      |           |
| Approach               | 100000000 |                    | NB              | in mark | SB      |           |
| ICM Control Delay, s   | 15.8      |                    | 0               |         | 0       |           |
| HCM LOS                | С         |                    |                 |         |         |           |
|                        |           |                    |                 |         |         |           |
| Minor Lane/Major Mvmt  |           | NBT                | NBRV            | VBLn1   | SBL     | SBT       |
| Capacity (veh/h)       | 5 A.S.    | -                  | -               | 489     | 1151    |           |
| HCM Lane V/C Ratio     |           | -                  |                 | 0.318   |         |           |
| HCM Control Delay (s)  |           | 110.20             | 50              | 15.8    | 8.1     | 0         |
|                        |           |                    |                 |         |         |           |
| HCM Lane LOS           |           | -                  | -               | С       | A       | A         |

| Int Delay, s/veh       | 2.4        | 5.        |        |          |           |           |          |            |          |        |                 |           |                                                                                                                  |   |
|------------------------|------------|-----------|--------|----------|-----------|-----------|----------|------------|----------|--------|-----------------|-----------|------------------------------------------------------------------------------------------------------------------|---|
| Movement               | EBL        | EBT       | EBR    | WBL      | WBT       | WBR       | NBL      | NBT        | NBR      | SBL    | SBT             | SBR       |                                                                                                                  |   |
| Lane Configurations    |            | 4         |        |          | 4         |           |          | 4          |          |        | 4               |           |                                                                                                                  |   |
| Traffic Vol, veh/h     | 17         |           | 31     | 11       | 9         | 12        | 14       | 556        | 10       | 9      | 411             | 11        |                                                                                                                  |   |
| Future Vol, veh/h      | 17         | 10        | 31     | 11       | 9         | 12        | 14       | 556        | 10       | 9      | 411             | 11        |                                                                                                                  |   |
| Conflicting Peds, #/hr | 0          | 0         | 0      | 0        | 0         | 0         | 0        | 0          | 0        | 0      | 0               | 0         |                                                                                                                  |   |
| Sign Control           | Stop       | Stop      | Stop   | Stop     | Stop      | Stop      | Free     | Free       | Free     | Free   | Free            | Free      |                                                                                                                  |   |
| RT Channelized         | 0.74       | Service - | None   |          | and.      | None      | 1000     | and in     | None     |        | -               | None      |                                                                                                                  |   |
| Storage Length         | -          | -         | -      | 1423     | -         | -         | 1        | ÷.         | -        |        |                 | -         |                                                                                                                  |   |
| Veh in Median Storage, | # -        | 0         | 30.142 |          | 0         |           |          | 0          |          |        | 0               |           |                                                                                                                  |   |
| Grade, %               | -          | 0         | -      | 02       | 0         | -         |          | 0          | ÷        | -      | 0               | -         |                                                                                                                  |   |
| Peak Hour Factor       | 80         | 42        | 75     | 58       | 67        | 50        | 81       | 99         | 44       | 45     | 96              | 46        |                                                                                                                  |   |
| Heavy Vehicles, %      | 0          | 0         | 0      | 0        | 0         | 0         | 0        | 0          | 0        | 0      | 0               | 0         |                                                                                                                  |   |
| Mvmt Flow              | 21         | 24        | 41     | 19       | 13        | 24        | 17       | 562        | 23       | 20     | 428             | 24        |                                                                                                                  |   |
| Major/Minor N          | linor2     |           |        | Minor1   |           |           | Major1   |            | 1        | Major2 |                 |           | nie de l                                                                                                         |   |
| Conflicting Flow All   | 1106       | 1099      | 440    | 1121     | 1100      | 574       | 452      | 0          | 0        | 585    | 0               | 0         | and the second | - |
| Stage 1                | 480        | 480       |        | 608      | 608       | 514       | 102      | , i        |          | -      |                 | v         |                                                                                                                  |   |
| Stage 2                | 626        | 619       |        | 513      | 492       | 10-0210   | -        | (CONTRACT) | n an the |        |                 |           |                                                                                                                  |   |
| Critical Hdwy          | 6.5        | 6         | 6      | 6.5      | 6         | 6         | 3.5      |            |          | 3.5    | 100             |           |                                                                                                                  |   |
| Critical Hdwy Stg 1    | 5.5        | 5         | -      | 5.5      | 5         | -         |          |            |          | 0.0    |                 | as-shifta |                                                                                                                  |   |
| Critical Hdwy Stg 2    | 5.5        | 5         |        | 5.5      | 5         | 1.112     |          |            |          | ti sub |                 | 1.00      |                                                                                                                  |   |
| Follow-up Hdwy         | 3          | 3.5       | 3      | 3        | 3.5       | 3         | 2        |            |          | 2      |                 |           |                                                                                                                  |   |
| Pot Cap-1 Maneuver     | 249        | 268       | 688    | 244      | 268       | 580       | 1312     |            |          | 1194   |                 | a di      |                                                                                                                  |   |
| Stage 1                | 699        | 661       | -      | 604      | 586       | -         | 1012     |            |          | 1104   |                 | 100       |                                                                                                                  |   |
| Stage 2                | 592        | 579       |        | 673      | 653       | 303       |          | 10.1       |          |        | The later       | 1.00      |                                                                                                                  |   |
| Platoon blocked, %     | 001        | 0.0       |        | 010      | 000       |           |          |            |          |        |                 | 10.11.5.0 |                                                                                                                  |   |
| Nov Cap-1 Maneuver     | 222        | 257       | 688    | 207      | 257       | 580       | 1312     | 1.12       |          | 1194   | - <i>n</i> -1., |           |                                                                                                                  |   |
| Nov Cap-2 Maneuver     | 222        | 257       | -      | 207      | 257       | 000       | 1012     |            |          | 1134   | 0.000           | 1000      |                                                                                                                  |   |
| Stage 1                | 686        | 646       |        | 593      | 575       |           |          |            |          | 10504  | -vigi           | Sant Bill |                                                                                                                  |   |
| Stage 2                | 544        | 568       | -      | 596      | 639       |           |          | 121        |          |        |                 |           |                                                                                                                  |   |
| Approach               | EB         |           |        | WB       |           |           | NB       |            |          | SB     |                 |           |                                                                                                                  |   |
| ICM Control Delay, s   | 18.7       |           | 11/18  | 19.5     |           |           | 0.2      | 1 AN       | R 3      | 0.3    |                 |           |                                                                                                                  | - |
| HCM LOS                | C          |           |        | C        |           |           | 0.2      |            |          | 0.0    |                 |           |                                                                                                                  |   |
| Minor Lane/Major Mvmt  | 9799)<br>1 | NBL       | NBT    | NBR      | EBLn1V    | VBL n1    | SBL      | SBT        | SBR      |        |                 |           |                                                                                                                  |   |
| Capacity (veh/h)       |            | 1312      | -      | -        | 348       | 304       | 1194     | -          | -        |        |                 |           |                                                                                                                  |   |
| ICM Lane V/C Ratio     |            | 0.013     | 1000   |          | 0.248     |           |          |            | 50 S.    |        |                 |           |                                                                                                                  |   |
| ICM Control Delay (s)  |            | 7.8       | 0      |          | 18.7      | 19.5      | 8.1      | 0          | 1.1.000  |        |                 |           |                                                                                                                  |   |
| ICM Lane LOS           |            | 7.0<br>A  | A      | an di Ba | 10.7<br>C | 19.5<br>C | 0.1<br>A | A          | 1701050  |        |                 |           |                                                                                                                  |   |
|                        |            | ~         | ~      | -        | U         | U         | A        | A          | -        |        |                 |           |                                                                                                                  |   |

HCM 95th %tile Q(veh) 0 - - 0 0 - -

| Int Delay, s/veh       | 0.5        |       |      |        |       |        |              |         |        |         |       |         |                     |
|------------------------|------------|-------|------|--------|-------|--------|--------------|---------|--------|---------|-------|---------|---------------------|
| Movement               | EBL        | EBT   | EBR  | WBL.   | WBT   | WBR    | NBL          | NBT     | NBR    | SBL     | SBT   | SBR     |                     |
| Lane Configurations    |            |       |      |        | 4     |        |              | 4       | 0.0000 |         | 4     |         |                     |
| Traffic Vol, veh/h     | 0          | 0     | 0    | 1      | 1     | 8      | 8            | 304     | 0      | 2       | 14    | 134     |                     |
| Future Vol, veh/h      | 0          | 0     | 0    | 1      | 1     | 8      | 8            | 304     | 0      | 2       | 14    | 134     |                     |
| Conflicting Peds, #/hr | 0          | 0     | 0    | 0      | 0     | 0      | 0            | 0       | 0      | 0       | 0     | 0       |                     |
|                        | Stop       | Stop  | Stop | Stop   | Stop  | Stop   | Free         | Free    | Free   | Free    | Free  | Free    |                     |
| RT Channelized         |            |       | None |        |       | None   |              |         | None   |         | - N   | None    |                     |
| Storage Length         | -          |       |      | -      | -     | -      | e manan<br>P |         | -      | 4       | 1     | -       |                     |
| Veh in Median Storage, | <b>#</b> - |       | 1994 | -      | 0     | 20. S  | 1. S. C      | 0       |        | 123.525 | 0     | 9 8 4 F |                     |
| Grade, %               | -          | 0     | -    | -      | 0     | -      | -            | 0       | -      | -       | 0     | -       |                     |
| Peak Hour Factor       | 92         | 92    | 92   | 92     | 92    | 92     | 50           | 92      | 92     | 92      | 38    | 95      |                     |
| Heavy Vehicles, %      | 0          | 0     | 0    | 0      | 0     | 0      | 0            | 0       | 0      | 0       | 0     | 0       |                     |
| Mymt Flow              | 0          | 0     | 0    | 1      | 1     | 9      | 16           | 330     | 0      | 2       | 37    | 141     |                     |
|                        |            |       |      |        |       |        |              |         |        |         |       |         |                     |
| Major/Minor            |            |       | P    | /inor1 |       |        | Major1       |         | N      | Major2  | -     |         |                     |
| Conflicting Flow All   |            |       |      | 474    | 544   | 330    | 178          | 0       | 0      | 330     | 0     | 0       |                     |
| Stage 1                |            |       |      | 362    | 362   |        |              | 1110    |        | -       | i i   | a di s  |                     |
| Stage 2                |            |       |      | 112    | 182   |        |              |         |        | -       | -<br> | -       |                     |
| Critical Hdwy          |            |       |      | 6.4    | 6.5   | 6.2    | 4.1          | -       |        | 4.1     |       |         |                     |
| Critical Hdwy Stg 1    |            |       |      | 5.4    | 5.5   | -      | -            | -       | -      | - 10.00 | -     |         |                     |
| Critical Hdwy Stg 2    |            |       |      | 5.4    | 5.5   | a de   | S            |         |        | 3       | 1.814 | 10.677  |                     |
| Follow-up Hdwy         |            |       |      | 3.5    | 4     | 3.3    | 2.2          | -       | -      | 2.2     |       | -       |                     |
| Pot Cap-1 Maneuver     |            |       |      | 553    | 449   | 716    | 1410         | · · · - |        | 1241    | 5. S. | 101100  | Martin Santa Incola |
| Stage 1                |            |       |      | 709    | 629   | -      | -            | -       |        | -       |       |         |                     |
| Stage 2                |            |       |      | 918    | 753   |        |              |         | 10.2   | -       |       |         |                     |
| Platoon blocked, %     |            |       |      | 195.05 | 1.55  |        |              | -       | -      |         | -     | -       |                     |
| Mov Cap-1 Maneuver     |            |       |      | 544    | 0     | 716    | 1410         | ÷.      |        | 1241    |       |         |                     |
| Mov Cap-2 Maneuver     |            |       |      | 544    | 0     |        |              |         |        | -       |       | 1.000   |                     |
| Stage 1                |            |       |      | 699    | Ő     | 1.5725 |              |         | 1      |         | 21 L  |         |                     |
| Stage 2                |            |       |      | 916    | 0     |        | -            |         | -<br>- |         |       |         |                     |
| olugo 2                |            |       |      | 0.0    | Ŭ     |        |              |         |        |         |       |         |                     |
| Approach               |            |       |      | WB     |       |        | NB           |         |        | SB      |       |         |                     |
| HCM Control Delay, s   | 5.3        | 0113  |      | 10.3   |       | 10.00  | 0.4          | 1.11    |        | 0.1     |       |         |                     |
| HCM LOS                |            |       |      | B      |       |        | 0.4          |         |        | 0.1     |       |         |                     |
| Minor Lane/Major Mvmt  |            | NBL   | NBT  | NBRV   | VBLn1 | SBL    | SBT          | SBR     |        |         |       |         |                     |
| Capacity (veh/h)       |            | 1410  |      | -      | 692   | 1241   |              |         |        |         |       |         |                     |
| HCM Lane V/C Ratio     |            | 0.011 |      | -      | 0.016 |        |              |         |        |         |       |         |                     |
| HCM Control Delay (s)  |            | 7.6   | 0    |        | 10.3  | 7.9    | 0            |         |        |         |       |         |                     |
| HCM Lane LOS           |            | A     | A    | 10.535 | B     | A      | A            |         |        |         |       |         |                     |
|                        |            |       |      |        | -     |        |              |         |        |         |       |         |                     |

| Int Delay, s/veh       | 8.3        |              |              |             |                                                    |              |
|------------------------|------------|--------------|--------------|-------------|----------------------------------------------------|--------------|
| Movement               | NBL        | NBT          | SBT          | SBR         | SEL                                                | SER          |
| Lane Configurations    |            | Ť            | Ť            |             | Y                                                  |              |
| Traffic Vol, veh/h     | 0          | 37           | 6            | 0           | 237                                                | 0            |
| Future Vol, veh/h      | 0          | 37           | 6            | 0           | 237                                                | 0            |
| Conflicting Peds, #/hr | 0          | 0            | 0            | 0           | 0                                                  | 0            |
| Sign Control           | Free       | Free         | Free         | Free        | Stop                                               | Stop         |
| RT Channelized         | -          | None         | -            | None        | Stop                                               | None         |
| Storage Length         | a presente | Hone         |              | None        | 0                                                  | None         |
| Veh in Median Storage, | # -        | 0            | 0            | 22122       | 0                                                  |              |
| Grade, %               |            | 0            | 0            |             | 0                                                  |              |
| Peak Hour Factor       | 92         | 58           | 92           | 92          | 86                                                 | 25           |
| Heavy Vehicles, %      | 0          | 0            | 0            | 0           | 0                                                  | 0            |
| Mymt Flow              | 0          | 64           | 7            | 0           | 276                                                | 0            |
|                        | U          | UT           |              | U           | 210                                                | U            |
|                        |            |              | 10104        |             |                                                    |              |
|                        | lajor1     | N            | Major2       |             | Vinor2                                             | a hai        |
| Conflicting Flow All   | •          | 0            | -            | 0           | 71                                                 | 7            |
| Stage 1                | · -        |              | 13.84        | 9 (Y 14)    | 7                                                  |              |
| Stage 2                |            | -            | -            | -           | 64                                                 | -            |
| Critical Hdwy          |            |              | 1.4          | -           | 6.4                                                | 6.2          |
| Critical Hdwy Stg 1    |            | -            | -            | -           | 5.4                                                | 5 <b>4</b> 5 |
| Critical Hdwy Stg 2    | 1.14       |              | 1 2          | -           | 5.4                                                | -            |
| Follow-up Hdwy         | -          | -            | -            | -           | 3.5                                                | 3.3          |
| Pot Cap-1 Maneuver     | 0          |              | (14).        | 0           | 938                                                | 1081         |
| Stage 1                | 0          | -            | -            | 0           | 1021                                               | -            |
| Stage 2                | 0          | 1.1.14       | 1.1.4        | 0           | 964                                                | 100          |
| Platoon blocked, %     |            | -            | 14           |             |                                                    |              |
| Mov Cap-1 Maneuver     | 1.2        | 1. 1.2       |              |             | 938                                                | 1081         |
| Mov Cap-2 Maneuver     |            | 2            | 8 <b>4</b> 1 |             | 938                                                | -            |
| Stage 1                |            | 5.5          | 4            | 194         | 1021                                               |              |
| Stage 2                | 2          | 2            | -            | 4           | 964                                                |              |
|                        |            |              |              |             |                                                    |              |
| Approach               | NB         |              | SB           |             | SE                                                 |              |
| HCM Control Delay, s   | 0          |              | 0            |             | 10.4                                               |              |
| HCM LOS                | v          |              | U            |             | B                                                  |              |
|                        |            |              |              |             |                                                    |              |
|                        |            | 100000000    |              | n an an tài |                                                    |              |
| Minor Lane/Major Mvmt  |            | NBT S        |              | SBT         | $\  f \ _{\mathcal{T}} \leq \  f \ _{\mathcal{T}}$ |              |
| Capacity (veh/h)       |            | 1 . X        | 938          |             |                                                    |              |
| HCM Lane V/C Ratio     |            | ~            | 0.294        | -           |                                                    |              |
| HCM Control Delay (s)  |            |              | 10.4         | 1.1         |                                                    |              |
| HCM Lane LOS           |            | 5 <u>4</u> 3 | В            | 2           |                                                    |              |
| ICM 95th %tile Q(veh)  |            |              | 1.2          | 4.1         |                                                    |              |

| Intersection                                                                                                    | 5.0     |             | an shi ƙ         |           |            |           |
|-----------------------------------------------------------------------------------------------------------------|---------|-------------|------------------|-----------|------------|-----------|
| Int Delay, s/veh                                                                                                | 5.6     |             |                  |           |            |           |
| Movement                                                                                                        | EBL     | EBT         | WBT              | WBR       | SBL        | SBR       |
| Lane Configurations                                                                                             |         | ર્લ         | Þ                |           | 74         |           |
| Traffic Vol, veh/h                                                                                              | 6       | 4           | 1                | 1         | 1          | 5         |
| Future Vol, veh/h                                                                                               | 6       | 4           | 1                | 1         | 1          | 5         |
| Conflicting Peds, #/hr                                                                                          | 0       | 0           | 0                | 0         | 0          | 0         |
| Sign Control                                                                                                    | Free    | Free        | Free             | Free      | Stop       | Stop      |
| RT Channelized                                                                                                  | Stud 4  | None        |                  | None      |            | None      |
| Storage Length                                                                                                  | -       | -           | 2                |           | 0          | -         |
| Veh in Median Storage,                                                                                          | ,# -    | 0           | 0                | 1998      | 0          |           |
| Grade, %                                                                                                        | -       | 0           | 0                | · 22      | 0          | -         |
| Peak Hour Factor                                                                                                | 50      | 50          | 25               | 25        | 25         | 25        |
| Heavy Vehicles, %                                                                                               | 0       |             | 0                | 0         | 0          | 0         |
| Mvmt Flow                                                                                                       | 12      | 8           | 4                | 4         | 4          | 20        |
|                                                                                                                 |         |             |                  |           |            |           |
| Major/Minor N                                                                                                   | /lajor1 |             | Major2           |           | Minor2     |           |
| Conflicting Flow All                                                                                            | 8       | 0           | Viajoiz          | 0         | 38         | 6         |
| Stage 1                                                                                                         | 0       | U           | and the l        | 0         | 6          | 0         |
| Stage 2                                                                                                         | 871217  |             |                  |           | 32         | 11667     |
| Critical Hdwy                                                                                                   | 4.1     |             |                  | าเคมอิง   | 6.4        | 6.2       |
| Critical Hdwy Stg 1                                                                                             | 7.1     | Sel 12/1152 | 1903)<br>        |           | 5.4        | 0.2       |
| Critical Hdwy Stg 2                                                                                             | สหม     | E LAND      | 100              | Cher Star | 5.4        |           |
| Follow-up Hdwy                                                                                                  | 2.2     |             | - 1 - P          | -         | 3.5        | 3.3       |
| Pot Cap-1 Maneuver                                                                                              | 1625    |             |                  |           | 979        | 1083      |
| Stage 1                                                                                                         | 1025    | 1.00        |                  |           | 1022       | 1005      |
| Stage 2                                                                                                         |         |             | a Refa           |           | 996        | winning . |
| Platoon blocked, %                                                                                              | - / -   |             |                  | -         | 990        | 1.1.1     |
| Mov Cap-1 Maneuver                                                                                              | 1625    |             | e:<br>Si ini ini | , i       | 070        | 1000      |
|                                                                                                                 | 1025    | -           |                  |           | 972<br>972 | 1083      |
| Mov Cap-2 Maneuver<br>Stage 1                                                                                   |         | eus ŵ       | - 42             |           | 1015       | st si s   |
|                                                                                                                 | 1.2     |             | 10 U T           | 1103      | 996        |           |
| Stage 2                                                                                                         | a di si | bu si la    |                  |           | 990        |           |
| H., M. C. (1987) (H. C. (1997) (H. C. (19 |         |             |                  |           |            |           |
| Approach                                                                                                        | EB      | 1999 - A    | WB               |           | SB         | da da     |
| HCM Control Delay, s                                                                                            | 4.3     |             | 0                |           | 8.5        |           |
| HCM LOS                                                                                                         |         |             |                  |           | Α          |           |
|                                                                                                                 |         |             |                  |           |            |           |
| Minor Lane/Major Mvmt                                                                                           |         | EBL         | EBT              | WBT       | WBR        | SBI n1    |
| Capacity (veh/h)                                                                                                |         | 1625        |                  | -         |            | 1063      |
| HCM Lane V/C Ratio                                                                                              |         | 0.007       | Structure Co     |           | 0.01273.9  | 0.023     |
| HCM Control Delay (s)                                                                                           |         | 7.2         | 0                |           | an i       | 8.5       |
| HCM Lane LOS                                                                                                    |         | A           | A                | 2012      | 2211.0     | 0.5<br>A  |
| HCM 95th %tile Q(veh)                                                                                           |         | Ô           | -                | See all S | inain      | 0.1       |
|                                                                                                                 |         | U           |                  |           | 100.53     | 0.1       |

| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|-----------------------|-------------------------------------------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EBL                                                                                                             | EBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T WBT    | WBR                | SBL                   | SBR                                       |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    | W                     | CDIT                                      |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                    |                       | 3                                         |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                    |                       | 3                                         |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       | 0                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       |                                           |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Free                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    | and the second second | Stop                                      |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                               | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | е -      | None               | -                     | None                                      |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | -                  | 0                     |                                           |
| Veh in Median Storage,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # -                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    | 0                     |                                           |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                       |                                           |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       | 92                                        |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    |                       | 0                                         |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 7      | 0                  | 0                     | 3                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       |                                           |
| Major/Minor M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ajor1                                                                                                           | 17.51Å7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Major2   |                    | Minor2                |                                           |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0                  | 20                    | 7                                         |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a de la composición d | - United of the second se | -        | U                  | 7                     | NUMBER OF                                 |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.127                                                                                                           | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1975-517 |                    | 13                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1                                                                                                             | n NA ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anet- in | A Star N           | 6.4                   | 6.0                                       |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.1                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N. 19    |                    |                       | 6.2                                       |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    | 5.4                   | in an |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | S 250 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 9 W S *            | 5.4                   |                                           |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -                  | 3.5                   | 3.3                                       |
| Compared and the second s | 1627                                                                                                            | 14-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | - 1 - <del>1</del> | 1002                  | 1081                                      |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -                  | 1021                  |                                           |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    | 1015                  | 1.01                                      |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | 2 <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | -                  |                       |                                           |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1627                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -                  | 1001                  | 1081                                      |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -                  | 1001                  | -                                         |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | 1.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                    | 1020                  | 1.12                                      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                    | 1015                  | 2                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       |                                           |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EB                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WB       |                    | SB                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 213151-58<br>1111  |                       |                                           |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        |                    | 8.3                   |                                           |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    | A                     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    |                       |                                           |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | se a È o                                                                                                        | EBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ EBT    | WBT                | WBR                   | SBLn1                                     |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 1627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 -      | 100                |                       | 1081                                      |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 -      | 4                  |                       | 0.003                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                    | 25 M 🗄                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2                  |                       |                                           |
| HCM 95th %tile Q(veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 11-12-510          | No Itorida            | 0                                         |
| ICM Control Delay (s)<br>ICM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 7.2<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A A      |                    |                       | 8.3<br>A                                  |

| Intersection                                                                                                    | 10      |                       |                   | 120122             |         | V. and a         |
|-----------------------------------------------------------------------------------------------------------------|---------|-----------------------|-------------------|--------------------|---------|------------------|
| Int Delay, s/veh                                                                                                | 1.3     |                       |                   |                    |         |                  |
| Movement                                                                                                        | WBL     | WBR                   | NBT               | NBR                | SBL     | SBT              |
| Lane Configurations                                                                                             | Y       |                       | ţ.                |                    |         | ર્લ              |
| Traffic Vol, veh/h                                                                                              | 2       | 32                    | 272               | 2                  | 11      | 3                |
| Future Vol, veh/h                                                                                               | 2       | 32                    | 272               | 2                  |         | 3                |
| Conflicting Peds, #/hr                                                                                          | 0       | 0                     | 0                 | 0                  | 0       | 0                |
| Sign Control                                                                                                    | Stop    | Stop                  | Free              | Free               | Free    | Free             |
| RT Channelized                                                                                                  | 1.55    | None                  |                   | None               |         | None             |
| Storage Length                                                                                                  | 0       | ÷                     | ž                 |                    | -       | -                |
| Veh in Median Storage                                                                                           | ,# 0    |                       | 0                 |                    |         | 0                |
| Grade, %                                                                                                        | 0       | ÷                     | 0                 |                    |         | 0                |
| Peak Hour Factor                                                                                                | 92      | 92                    | 92                | 92                 | 92      | 92               |
| Heavy Vehicles, %                                                                                               | 0       | 0                     | 0                 | 0                  | 0       | 0                |
| Mvmt Flow                                                                                                       | 2       | 35                    | 296               | 2                  | 12      | 3                |
|                                                                                                                 |         |                       |                   |                    |         |                  |
| Major/Minor N                                                                                                   | Minor1  |                       | Major1            |                    | Major2  |                  |
| Conflicting Flow All                                                                                            | 324     | 297                   | 0                 | 0                  | 298     | 0                |
| Stage 1                                                                                                         | 297     | 291                   | 0                 | 0                  | 290     | U.               |
| Stage 2                                                                                                         | 257     |                       | 0.531894          | 103 jož            | 1999.00 | 66 60 <b>7</b> 3 |
| Critical Hdwy                                                                                                   | 6.4     | 6.2                   | Literit)          | -                  | 4.4     | -                |
| Critical Hdwy Stg 1                                                                                             | 5.4     | 0.2                   | , Ardine          |                    | 4.1     | 49.25            |
| Critical Hdwy Stg 1                                                                                             | 5.4     |                       |                   |                    |         | dans.ht          |
| Follow-up Hdwy                                                                                                  | 3.5     | 3.3                   |                   |                    |         |                  |
|                                                                                                                 | 674     |                       |                   |                    | 2.2     | -                |
| Pot Cap-1 Maneuver                                                                                              | 758     | 747                   |                   | 0.107              | 1275    | 10.0             |
| Stage 1                                                                                                         |         |                       |                   | <del>ن</del> ە:    |         |                  |
| Stage 2                                                                                                         | 1001    | 1 ( <b>1</b> )        | 신날한               | 1.5                | 19 10 - | -                |
| Platoon blocked, %                                                                                              | 000     | 747                   | -                 |                    | 1075    | -                |
| Mov Cap-1 Maneuver                                                                                              | 668     | 747                   | -                 | 0 os 5             | 1275    | 304              |
| Mov Cap-2 Maneuver                                                                                              | 668     |                       | - 110             | -<br>-             | i       |                  |
| Stage 1                                                                                                         | 758     |                       |                   | - 1 <del>4</del> 1 |         | -                |
| Stage 2                                                                                                         | 992     | یو:<br>ایران در ایران |                   | ین<br>این          | 2       | 72               |
|                                                                                                                 |         |                       |                   |                    |         |                  |
| Approach                                                                                                        | WB      |                       | NB                |                    | SB      |                  |
| HCM Control Delay, s                                                                                            | 10.1    | 1518                  | 0                 |                    | 6.2     |                  |
| HCM LOS                                                                                                         | В       |                       |                   |                    |         |                  |
|                                                                                                                 |         |                       |                   |                    |         |                  |
| Minor Lane/Major Mvmt                                                                                           | 15 auch | NBT                   | NBRV              | /Pl n1             | SBL     | SBT              |
| Contraction of the second s |         |                       | C C UNITED        |                    |         | 8.000            |
| Capacity (veh/h)<br>HCM Lane V/C Ratio                                                                          |         | -                     | 이 가는 옷을           | 742                | 1275    | -                |
|                                                                                                                 |         | 90<br>10              | -<br>Ficial de la |                    | 0.009   | -                |
| HCM Control Delay (s)                                                                                           |         |                       |                   | 10.1               | 7.8     | 0                |
| HCM Lane LOS                                                                                                    |         | -                     | Katali            | B                  | A       | A                |
| HCM 95th %tile Q(veh)                                                                                           |         | 10 H                  | ्र क्रि           | 0.2                | 0       |                  |

|                                                            | ۶          | -           | ¥     | *          | -           | *      | 1       | 1     | 1        | 1     | Ļ                | 1         |
|------------------------------------------------------------|------------|-------------|-------|------------|-------------|--------|---------|-------|----------|-------|------------------|-----------|
| Lane Group                                                 | EBL        | EBT         | EBR   | WBL        | WBT         | WBR    | NBL     | NBT   | NBR      | SBL   | SBT              | SBR       |
| Lane Configurations                                        | ሻ          | <b>≜</b> î≽ |       | ሻ          | <b>≜</b> t} |        | ሻ       | ĥ     |          | ሻ     | ĥ                |           |
| Traffic Volume (vph)                                       | 123        | 724         | 26    | 96         | 950         | 147    | 29      | 158   | 130      | 121   | 191              | 110       |
| Future Volume (vph)                                        | 123        | 724         | 26    | 96         | 950         | 147    | 29      | 158   | 130      | 121   | 191              | 110       |
| Ideal Flow (vphpl)                                         | 1900       | 1900        | 1900  | 1900       | 1900        | 1900   | 1900    | 1900  | 1900     | 1900  | 1900             | 1900      |
| Lane Util. Factor                                          | 1.00       | 0.95        | 0.95  | 1.00       | 0.95        | 0.95   | 1.00    | 1.00  | 1.00     | 1.00  | 1.00             | 1.00      |
| Frt                                                        |            | 0.991       |       |            | 0.978       |        |         | 0.927 | e h li k |       | 0.947            | in Coler  |
| Fit Protected                                              | 0.950      |             |       | 0.950      |             |        | 0.950   |       |          | 0.950 | - 50-535°        |           |
| Satd. Flow (prot)                                          | 1805       | 3578        | 0     | 1805       | 3531        | 0      | 1805    | 1761  | 0        | 1805  | 1793             | 0         |
| Flt Permitted                                              | 0.950      |             |       | 0.950      |             |        | 0.268   |       |          | 0.253 | 4 10. okt 1550 ( |           |
| Satd. Flow (perm)                                          | 1805       | 3578        | 0     | 1805       | 3531        | 0      | 509     | 1761  | 0        | 481   | 1793             | 0         |
| Right Turn on Red                                          |            |             | Yes   |            |             | Yes    |         |       | Yes      | 101   |                  | Yes       |
| Satd. Flow (RTOR)                                          |            | 8           |       |            | 22          | 100800 |         | 40    | 100      |       | 23               |           |
| Link Speed (mph)                                           |            | 40          |       |            | 40          |        |         | 25    |          |       | 25               |           |
| Link Distance (ft)                                         |            | 512         |       |            | 642         |        |         | 750   |          |       | 338              |           |
| Travel Time (s)                                            |            | 8.7         |       |            | 10.9        |        |         | 20.5  |          |       | 9.2              |           |
| Peak Hour Factor                                           | 0.70       | 0.94        | 0.50  | 0.62       | 0.94        | 0.83   | 0.59    | 0.84  | 0.74     | 0.85  | 0.83             | 0.89      |
| Heavy Vehicles (%)                                         | 0%         | 0%          | 0%    | 0%         | 0%          | 0%     | 0%      | 0%    | 0%       | 0.00  | 0%               | 1%        |
| Adj. Flow (vph)                                            | 176        | 770         | 52    | 155        | 1011        | 177    | 49      | 188   | 176      | 142   | 230              | 124       |
| Shared Lane Traffic (%)                                    | 110        | 110         | 02    | 100        | IOTT        | 111    | 40      | 100   | 170      | 142   | 200              | 124       |
| Lane Group Flow (vph)                                      | 176        | 822         | 0     | 155        | 1188        | 0      | 49      | 364   | 0        | 142   | 354              | 0         |
| Enter Blocked Intersection                                 | No         | No          | No    | No         | No          | No     | No      | No    | No       | No    | No               | No        |
| Lane Alignment                                             | Left       | Left        | Right | Left       | Left        | Right  | Left    | Left  |          | Left  |                  |           |
| Median Width(ft)                                           | Leit       | 12          | Tagit | Leit       | 12          | Nynt   | Leit    | 12    | Right    | Leit  | Left<br>12       | Right     |
| Link Offset(ft)                                            |            | 0           |       |            | 0           |        |         | 0     |          |       |                  |           |
| Crosswalk Width(ft)                                        |            | 16          |       |            | 16          |        |         | 16    |          |       | 0<br>16          |           |
| Two way Left Turn Lane                                     |            | 10          |       |            | 10          |        |         | 10    |          |       | 10               |           |
| Headway Factor                                             | 1.00       | 1.00        | 1.00  | 1.00       | 1.00        | 1.00   | 1.00    | 1.00  | 1.00     | 1.00  | 1.00             | 1.00      |
| Turning Speed (mph)                                        | 1.00       | 1.00        | 9     | 1.00       | 1.00        | 1.00   | 1.00    | 1.00  | 1.00     | 1.00  | 1.00             | 1.00<br>9 |
| Number of Detectors                                        | 1          | 2           | 9     | 13         | 2           | 9      | 15      | 2     | 9        | 15    | 2                | 9         |
| Detector Template                                          | Left       | Thru        |       | Left       | Thru        |        | Left    | Thru  |          | Left  | 2<br>Thru        |           |
| Leading Detector (ft)                                      | 20         | 100         |       | 20         | 100         |        | 20      | 100   |          |       | Thru             |           |
| Trailing Detector (ft)                                     | 0          | 0           |       | 20         | 0           |        | 20      | 001   |          | 20    | 100              |           |
| Detector 1 Position(ft)                                    | 0          | 0           |       |            |             |        |         |       |          | 0     | 0                |           |
| Detector 1 Size(ft)                                        | 20         | 6           |       | 0<br>20    | 0<br>6      |        | 0<br>20 | 0     |          | 0     | 0                |           |
| Detector 1 Type                                            | CI+Ex      | CI+Ex       |       | CI+Ex      | CI+Ex       |        |         | 6     |          | 20    | 6                |           |
| Detector 1 Channel                                         | CI+EX      | CI+EX       |       | CI+EX      | UI+EX       |        | CI+Ex   | CI+Ex |          | CI+Ex | CI+Ex            |           |
| Detector 1 Extend (s)                                      | 0.0        | 0.0         |       | 0.0        | 0.0         |        | 0.0     | 0.0   |          | 0.0   | 0.0              |           |
| Detector 1 Queue (s)                                       | 0.0<br>0.0 | 0.0<br>0.0  |       | 0.0<br>0.0 | 0.0         |        | 0.0     | 0.0   |          | 0.0   | 0.0              |           |
|                                                            |            |             |       |            | 0.0         |        | 0.0     | 0.0   |          | 0.0   | 0.0              |           |
| Detector 1 Delay (s)                                       | 0.0        | 0.0         |       | 0.0        | 0.0         |        | 0.0     | 0.0   |          | 0.0   | 0.0              |           |
| Detector 2 Position(ft)                                    |            | 94          |       |            | 94          |        |         | 94    |          |       | 94               |           |
| Detector 2 Size(ft)                                        |            | 6           |       |            | 6           |        |         | 6     |          |       | 6                |           |
| Detector 2 Type<br>Detector 2 Channel                      |            | CI+Ex       |       |            | CI+Ex       |        |         | CI+Ex |          |       | CI+Ex            |           |
| Detector 2 Extend (s)                                      |            | 0.0         |       |            | 0.0         |        |         | 0.0   |          |       | 0.0              |           |
| Store and state and a compare where the state of the state | Deat       |             |       | Deat       | 0.0         |        | Darre   | 0.0   |          | Dem   | 0.0              |           |
| Turn Type<br>Protected Phases                              | Prot<br>7  | NA          |       | Prot       | NA          |        | Perm    | NA    |          | Perm  | NA               |           |
|                                                            | 1          | 4           |       | 3          | 8           |        | •       | 2     |          | -     | 6                |           |
| Permitted Phases                                           | 7          | 4           |       |            | 0           |        | 2       | 0     |          | 6     |                  |           |
| Detector Phase<br>Switch Phase                             | 1          | 4           |       | 3          | 8           |        | 2       | 2     |          | 6     | 6                |           |

20033 - Spyglass at Lakes Bay NBM

Build PM 05/01/2020

|                                                                                                             | ٨     | -         | 7          | 1          | -        | ×                                                                                                               | 1     | 1     | 1   | 1             | ŧ                     | 1   |
|-------------------------------------------------------------------------------------------------------------|-------|-----------|------------|------------|----------|-----------------------------------------------------------------------------------------------------------------|-------|-------|-----|---------------|-----------------------|-----|
| Lane Group                                                                                                  | EBL   | EBT       | EBR        | WBL        | WBT      | WBR                                                                                                             | NBL   | NBT   | NBR | SBL           | SBT                   | SBR |
| Minimum Initial (s)                                                                                         | 5.0   | 55.0      | 124 Marill | 5.0        | 55.0     | u, ≤ti te s                                                                                                     | 10.0  | 10.0  |     | 10.0          | 10.0                  |     |
| Minimum Split (s)                                                                                           | 9.0   | 60.0      |            | 9.0        | 60.0     |                                                                                                                 | 15.0  | 15.0  |     | 15.0          | 15.0                  |     |
| Total Split (s)                                                                                             | 19.0  | 60.0      |            | 19.0       | 60.0     |                                                                                                                 | 41.0  | 41.0  |     | 41.0          | 41.0                  |     |
| Total Split (%)                                                                                             | 15.8% | 50.0%     |            | 15.8%      | 50.0%    |                                                                                                                 | 34.2% | 34.2% |     | 34.2%         | 34.2%                 |     |
| Maximum Green (s)                                                                                           | 15.0  | 55.0      |            | 15.0       | 55.0     |                                                                                                                 | 36.0  | 36.0  |     | 36.0          | 36.0                  |     |
| Yellow Time (s)                                                                                             | 3.0   | 4.0       |            | 3.0        | 4.0      |                                                                                                                 | 3.0   | 3.0   |     | 3.0           | 3.0                   |     |
| All-Red Time (s)                                                                                            | 1.0   | 1.0       |            | 1.0        | 1.0      |                                                                                                                 | 2.0   | 2.0   |     | 2.0           | 2.0                   |     |
| Lost Time Adjust (s)                                                                                        | 0.0   | 0.0       |            | 0.0        | 0.0      |                                                                                                                 | 0.0   | 0.0   |     | 0.0           | 0.0                   |     |
| Total Lost Time (s)                                                                                         | 4.0   | 5.0       |            | 4.0        | 5.0      |                                                                                                                 | 5.0   | 5.0   |     | 5.0           | 5.0                   |     |
| Lead/Lag                                                                                                    | Lead  | Lag       |            | Lead       | Lag      |                                                                                                                 |       |       |     | SNE:          | 202                   |     |
| Lead-Lag Optimize?                                                                                          |       |           |            |            | Ŭ        |                                                                                                                 |       |       |     |               |                       |     |
| Vehicle Extension (s)                                                                                       | 2.0   | 2.0       |            | 2.0        | 2.0      |                                                                                                                 | 2.0   | 2.0   |     | 2.0           | 2.0                   |     |
| Recall Mode                                                                                                 | None  | C-Min     |            | None       | C-Min    | 1                                                                                                               | None  | None  |     | None          | None                  |     |
| Act Effct Green (s)                                                                                         | 14.0  | 60.5      |            | 13.3       | 59.8     |                                                                                                                 | 32.2  | 32.2  |     | 32.2          | 32.2                  |     |
| Actuated g/C Ratio                                                                                          | 0.12  | 0.50      |            | 0.11       | 0.50     |                                                                                                                 | 0.27  | 0.27  |     | 0.27          | 0.27                  |     |
| v/c Ratio                                                                                                   | 0.84  | 0.46      |            | 0.78       | 0.67     |                                                                                                                 | 0.36  | 0.73  |     | 1.10          | 0.71                  |     |
| Control Delay                                                                                               | 83.6  | 21.2      |            | 76.7       | 25.8     |                                                                                                                 | 42.0  | 43.6  |     | 150.4         | 44.8                  |     |
| Queue Delay                                                                                                 | 0.0   | 0.0       |            | 0.0        | 0.0      |                                                                                                                 | 0.0   | 0.0   |     | 0.0           | 0.0                   |     |
| Total Delay                                                                                                 | 83.6  | 21.2      |            | 76.7       | 25.8     |                                                                                                                 | 42.0  | 43.6  |     | 150.4         | 44.8                  |     |
| LOS                                                                                                         | F     | С         |            | E          | С        |                                                                                                                 | D     | D     |     | F             | D                     |     |
| Approach Delay                                                                                              |       | 32.2      |            |            | 31.6     |                                                                                                                 |       | 43.4  |     | का जानि जिन   | 75.0                  |     |
| Approach LOS                                                                                                |       | С         |            |            | С        |                                                                                                                 |       | D     |     |               | E                     |     |
| Intersection Summary                                                                                        |       |           |            |            |          |                                                                                                                 |       |       |     |               |                       |     |
| Area Type:<br>Cycle Length: 120<br>Actuated Cycle Length:<br>Offset: 115 (96%), Refer<br>Natural Cycle: 105 |       | e 4:EBT a | nd 8:WB    | T, Start o | f Yellow | de la contra da la c |       |       |     | n (K)<br>Désk | elije de<br>Griedelij |     |

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.10

Intersection Signal Delay: 39.9

Intersection Capacity Utilization 93.6% Analysis Period (min) 15 Intersection LOS: D ICU Level of Service F

Splits and Phases: 8: Franklin Boulevard & Route 40/322

| ≪ <b>1</b> ø2 | <b>√</b> Ø3            | →Ø4 (R)     |  |
|---------------|------------------------|-------------|--|
| 41 s          | 19 s                   | 60 s        |  |
| Ø6            | <i>▶</i> <sub>Ø7</sub> | <<br>Ø8 (R) |  |
| 41 s          | 19 s                   | 60 s        |  |

|                            | ٨                  | -       | ¥      | *     | +     | •     | 1              | Ť       | r          | 1           | Ļ         | 1     |
|----------------------------|--------------------|---------|--------|-------|-------|-------|----------------|---------|------------|-------------|-----------|-------|
| Lane Group                 | EBL                | EBT     | EBR    | WBL   | WBT   | WBR   | NBL            | NBT     | NBR        | SBL         | SBT       | SBR   |
| Lane Configurations        |                    | \$      |        |       | \$    |       |                | *       |            |             | 4         |       |
| Traffic Volume (vph)       | 16                 | 70      | 31     | 91    | 55    | 37    | 16             | 378     | 48         | 32          | 328       | 16    |
| Future Volume (vph)        | 16                 | 70      | 31     | 91    | 55    | 37    | 16             | 378     | 48         | 32          | 328       | 16    |
| Ideal Flow (vphpl)         | 1900               | 1900    | 1900   | 1900  | 1900  | 1900  | 1900           | 1900    | 1900       | 1900        | 1900      | 1900  |
| Lane Util. Factor          | 1.00               | 1.00    | 1.00   | 1.00  | 1.00  | 1.00  | 1.00           | 1.00    | 1.00       | 1.00        | 1.00      | 1.00  |
| Frt                        |                    | 0.951   |        |       | 0.973 |       |                | 0.982   |            |             | 0.992     |       |
| Flt Protected              |                    | 0.993   |        |       | 0.976 |       |                | 0.998   |            |             | 0.995     |       |
| Satd. Flow (prot)          | 0                  | 1794    | 0      | 0     | 1804  | 0     | 0              | 1862    | 0          | 0           | 1875      | 0     |
| Flt Permitted              |                    | 0.936   |        |       | 0.748 |       |                | 0.971   | 6575111150 | 0,4073,0030 | 0.921     |       |
| Satd. Flow (perm)          | 0                  | 1691    | 0      | 0     | 1383  | 0     | 0              | 1812    | 0          | 0           | 1736      | 0     |
| Right Turn on Red          | Constraint on Para |         | Yes    |       | 10.00 | Yes   |                |         | Yes        |             |           | Yes   |
| Satd. Flow (RTOR)          |                    | 39      | 278172 |       | 17    |       |                | 20      | 100        |             | 8         | 100   |
| Link Speed (mph)           |                    | 25      |        |       | 25    |       |                | 25      |            |             | 25        |       |
| Link Distance (ft)         |                    | 431     |        |       | 451   |       |                | 469     |            |             | 268       |       |
| Travel Time (s)            |                    | 11.8    |        |       | 12.3  |       |                | 12.8    |            |             | 7.3       |       |
| Peak Hour Factor           | 0.63               | 0.83    | 0.50   | 0.68  | 0.63  | 0.68  | 0.67           | 0.96    | 0.73       | 0.70        | 0.90      | 0.63  |
| Heavy Vehicles (%)         | 0%                 | 0%      | 0%     | 0%    | 0%    | 0%    | 0%             | 0.50    | 0%         | 0%          | 0.30      | 0.03  |
| Adj. Flow (vph)            | 25                 | 84      | 62     | 134   | 87    | 54    | 24             | 394     | 66         | 46          | 364       | 25    |
| Shared Lane Traffic (%)    | 20                 | 04      | 02     | 104   | 01    | J4    | 24             | 394     | 00         | 40          | 304       | 20    |
| Lane Group Flow (vph)      | 0                  | 171     | 0      | 0     | 275   | 0     | 0              | 484     | 0          | 0           | 435       | 0     |
| Enter Blocked Intersection | No                 | No      | No     | No    | No    | No    | No             | No      | No         | No          | 435<br>No | No    |
| Lane Alignment             | Left               | Left    | Right  | Left  | Left  | Right | Left           | Left    |            | Left        |           |       |
| Median Width(ft)           | LOIL               | 0       | Tagit  | Len   | 0     | Right | Leit           |         | Right      | Leit        | Left      | Right |
| Link Offset(ft)            |                    | 0       |        |       | 0     |       |                | 0<br>0  |            |             | 0         |       |
| Crosswalk Width(ft)        |                    | 16      |        |       | 16    |       |                | 16      |            |             | 0<br>16   |       |
| Two way Left Turn Lane     |                    | 10      |        |       | 10    |       |                | 10      |            |             | 10        |       |
| Headway Factor             | 1.00               | 1.00    | 1.00   | 1.00  | 1.00  | 1.00  | 1.00           | 1.00    | 1.00       | 4.00        | 1 00      | 4.00  |
| Turning Speed (mph)        | 1.00               | 1.00    | 1.00   | 1.00  | 1.00  | 1.00  | 1.00<br>15     | 1.00    | 1.00<br>9  | 1.00        | 1.00      | 1.00  |
| Turn Type                  | Perm               | NA      | 9      |       | NA    | 9     |                | NIA     | 9          | 15          |           | 9     |
| Protected Phases           | reim               | NA<br>4 |        | Perm  | 8     |       | Perm           | NA<br>2 |            | Perm        | NA        |       |
| Permitted Phases           | 4                  | 4       |        | 0     | 0     |       | 0              | 2       |            |             | 6         |       |
|                            | 4<br>23.0          | 23.0    |        | 8     | 02.0  |       | 2              | 47.0    |            | 6           | 17.0      |       |
| Minimum Split (s)          | 23.0               | 23.0    |        | 23.0  | 23.0  |       | 47.0           | 47.0    |            | 47.0        | 47.0      |       |
| Total Split (s)            |                    |         |        | 23.0  | 23.0  |       | 47.0           | 47.0    |            | 47.0        | 47.0      |       |
| Total Split (%)            | 32.9%              | 32.9%   |        | 32.9% | 32.9% |       | 67.1%          | 67.1%   |            | 67.1%       | 67.1%     |       |
| Maximum Green (s)          | 18.0               | 18.0    |        | 18.0  | 18.0  |       | 42.0           | 42.0    |            | 42.0        | 42.0      |       |
| Yellow Time (s)            | 4.0                | 4.0     |        | 4.0   | 4.0   |       | 4.0            | 4.0     |            | 4.0         | 4.0       |       |
| All-Red Time (s)           | 1.0                | 1.0     |        | 1.0   | 1.0   |       | 1.0            | 1.0     |            | 1.0         | 1.0       |       |
| Lost Time Adjust (s)       |                    | 0.0     |        |       | 0.0   |       |                | 0.0     |            |             | 0.0       |       |
| Total Lost Time (s)        |                    | 5.0     |        |       | 5.0   |       |                | 5.0     |            |             | 5.0       |       |
| Lead/Lag                   |                    |         |        |       |       |       |                |         |            |             |           |       |
| Lead-Lag Optimize?         |                    |         |        |       |       |       | e<br>Malandina |         |            |             |           |       |
| Act Effct Green (s)        |                    | 18.0    |        |       | 18.0  |       |                | 42.0    |            |             | 42.0      |       |
| Actuated g/C Ratio         |                    | 0.26    |        |       | 0.26  |       |                | 0.60    |            |             | 0.60      |       |
| v/c Ratio                  |                    | 0.37    |        |       | 0.75  |       |                | 0.44    |            |             | 0.42      |       |
| Control Delay              |                    | 19.0    |        |       | 37.3  |       |                | 8.8     |            |             | 8.8       |       |
| Queue Delay                |                    | 0.0     |        |       | 0.0   |       |                | 0.0     |            |             | 0.0       |       |
| Total Delay                |                    | 19.0    |        |       | 37.3  |       |                | 8.8     |            |             | 8.8       |       |
| LOS                        |                    | В       |        |       | D     |       |                | Α       |            |             | Α         |       |
| Approach Delay             |                    | 19.0    |        |       | 37.3  |       |                | 8.8     |            |             | 8.8       |       |

20033 - Spyglass at Lakes Bay NBM

|                                   | ۶            | -        | *      | *          | +          | *          | 1                               | Ť   | 1      | 1   | ţ       | 1   |
|-----------------------------------|--------------|----------|--------|------------|------------|------------|---------------------------------|-----|--------|-----|---------|-----|
| Lane Group                        | EBL          | EBT      | EBR    | WBL        | WBT        | WBR        | NBL                             | NBT | NBR    | SBL | SBT     | SBR |
| Approach LOS                      |              | В        |        |            | D          |            |                                 | Α   |        |     | Α       |     |
| Intersection Summary              |              |          |        |            |            |            |                                 |     |        |     |         |     |
| Area Type:                        | Other        |          | 18     | tense.     |            | 20 St 19   | 1970 - 100 - 1115<br>1773 - 177 |     | 46.2.5 |     | al Wage |     |
| Cycle Length: 70                  |              |          |        |            |            |            |                                 |     |        |     |         |     |
| Actuated Cycle Length: 70         |              |          |        |            |            |            |                                 |     |        |     |         |     |
| Offset: 0 (0%), Referenced t      | to phase 2:1 | VBTL and | 6:SBTL | Start of ( | Green      |            |                                 |     |        |     |         |     |
| Natural Cycle: 70                 |              |          |        |            |            |            |                                 |     |        |     |         |     |
| Control Type: Pretimed            |              |          |        |            |            |            |                                 |     |        |     |         |     |
| Maximum v/c Ratio: 0.75           |              |          |        |            |            |            |                                 |     |        |     |         |     |
| Intersection Signal Delay: 15     | 5.9          |          |        | In         | tersectior | LOS: B     |                                 |     |        |     |         |     |
| Intersection Capacity Utilization |              |          |        |            |            | of Service | В                               |     |        |     |         |     |
| Analysis Period (min) 15          |              |          |        |            |            |            | -7-11-0                         |     |        |     |         |     |

Splits and Phases: 3: Main Street & Decatur Avenue

| ∫ <sup>≪</sup> ¶ Ø2 (R) |             |           |
|-------------------------|-------------|-----------|
| 47 s                    | 23 s        |           |
| Ø6 (R)                  | <b>▼</b> Ø8 |           |
| 47 s                    | 23 s        | 5.050-361 |

Build PM 05/01/2020

| 시민들은 것 것 같은 것 것은 것 가지 못을 것 것 것 같은 것 같은 것 같은 것 같은 것을 수 없는 |
|----------------------------------------------------------|
| 4.3                                                      |
| WBL WBR NBT NBR SBL SBT                                  |
| ions 🌱 🏳 🖨                                               |
| n 175 32 421 220 2 441                                   |
| n 175 32 421 220 2 441                                   |
| ,#/hr 0 0 0 0 0 0                                        |
| Stop Stop Free Free Free Free                            |
| - None - None - None                                     |
| 0                                                        |
| torage, # 0 - 0 0                                        |
| 0 - 0 0                                                  |
| or 92 92 92 92 92 92                                     |
| % 0 0 0 0 0                                              |
| 190 35 458 239 2 479                                     |
|                                                          |
| Minor1 Major1 Major2                                     |
| All 1061 578 0 0 697 0                                   |
| 578                                                      |
| 483                                                      |
| 5.5 5 3.5 -                                              |
| j1 5                                                     |
| 2 5                                                      |
| 3 3 2 -                                                  |
| uver 357 678 1102 -                                      |
| 678                                                      |
| 745                                                      |
| %                                                        |
| euver 356 678 1102 -                                     |
| euver 356                                                |
| 678                                                      |
| 744                                                      |
|                                                          |
| WB NB SB                                                 |
|                                                          |
| lay, s 26.8 0 0                                          |
|                                                          |
|                                                          |
| r Mvmt NBT NBRWBLn1 SBL SBT                              |
| 384 1102 -<br>Ratio 0.586 0.002 -                        |
|                                                          |
| ay (s) 26.8 8.3 0                                        |
| D A A                                                    |
| Q(veh) 3.6 0 -                                           |

| Intersection           |        |       |          |        |        | - राज्य                                |        |            |         |          |            |           |  |
|------------------------|--------|-------|----------|--------|--------|----------------------------------------|--------|------------|---------|----------|------------|-----------|--|
| Int Delay, s/veh       | 5.2    |       |          |        |        |                                        |        |            |         |          |            |           |  |
| Movement               | EBL    | EBT   | EBR      | WBL    | WBT    | WBR                                    | NBL    | NBT        | NBR     | SBL      | SBT        | SBR       |  |
| Lane Configurations    |        | 4     |          |        | 4      |                                        |        | 4          |         |          | 4          |           |  |
| Traffic Vol, veh/h     | 17     | 17    | 43       | 18     |        | 28                                     | 22     | 596        | 27      | 25       | 572        | 14        |  |
| Future Vol, veh/h      | 17     |       | 43       | 18     |        | 28                                     | 22     | 596        | 27      | 25       | 572        | 14        |  |
| Conflicting Peds, #/hr | 0      |       | 0        | 0      |        | 0                                      | 0      | 0          | 0       | 0        | 0          | 0         |  |
| Sign Control           | Stop   |       | Stop     | Stop   |        | Stop                                   | Free   | Free       | Free    | Free     | Free       | Free      |  |
| RT Channelized         |        | 10.00 | None     |        | altal. | None                                   |        | WIRE       | None    |          |            | None      |  |
| Storage Length         | -      | -     |          | -      | -      |                                        | -      | -          | -       | -        | 1          | -         |  |
| Veh in Median Storage  | .# -   | 0     | - 11 - 1 | 6584   | 0      | -                                      |        | 0          |         |          | 0          |           |  |
| Grade, %               | -      | 0     | -        | -      | 0      | en curan                               | -      | 0          |         |          | 0          | 1001000   |  |
| Peak Hour Factor       | 50     |       | 75       | 88     |        | 63                                     | 88     | 94         | 50      | 67       | 87         | 56        |  |
| Heavy Vehicles, %      | 0      |       | 0        | 0      |        | 0                                      | 0      | 0          | 0       | 0        | 0          | 0         |  |
| Mymt Flow              | 34     | 24    | 57       | 20     | 100    | 44                                     | 25     | 634        | 54      | 37       | 657        | 25        |  |
|                        |        |       | 01       | 20     | 10     |                                        | 20     | 004        | 04      | 01       | 007        | 20        |  |
| Major/Minor M          | Ainor2 |       |          | Minor1 |        | A.C.                                   | Major1 |            | N       | Major2   |            |           |  |
| Conflicting Flow All   | 1485   | 1482  | 670      | 1495   | 1467   | 661                                    | 682    | 0          | 0       | 688      | 0          | 0         |  |
| Stage 1                | 744    | 744   |          | 711    | 711    |                                        |        | 0.000      |         | -        |            |           |  |
| Stage 2                | 741    | 738   |          | 784    | 756    | -                                      |        | WILLOW SYN | -       |          | 0.00000    |           |  |
| Critical Hdwy          | 6.5    | 6     | 6        | 6.5    | 6      | 6                                      | 3.5    | 12.01      | i en E  | 3.5      |            |           |  |
| Critical Hdwy Stg 1    | 5.5    | 5     | -        | 5.5    | 5      |                                        | 0.0    |            | 0.000   | 0.0      |            |           |  |
| Critical Hdwy Stg 2    | 5.5    | 5     |          | 5.5    | 5      |                                        | - 34 E | a the da   | 1.15    | i nexter | 1413       |           |  |
| Follow-up Hdwy         | 3      | 3.5   | 3        | 3      | 3.5    | 3                                      | 2      |            |         | 2        |            |           |  |
| Pot Cap-1 Maneuver     | 143    | 164   | 513      | 141    | 167    | 519                                    | 1114   |            | 15.5    | 1110     | e de la    |           |  |
| Stage 1                | 517    | 514   | 010      | 537    | 531    | 010                                    | 1114   |            |         | 1110     | 9993       | 10.0      |  |
| Stage 2                | 518    | 517   |          | 493    | 508    | 11 - S                                 | 7      | 100        |         |          |            |           |  |
| Platoon blocked, %     | 010    | 017   |          | 400    | 500    |                                        |        |            |         |          | 생님은        | -         |  |
| Mov Cap-1 Maneuver     | 112    | 149   | 513      | 102    | 152    | 519                                    | 1114   |            | 11/2615 | 1110     | 100        | -<br>Long |  |
| Mov Cap-2 Maneuver     | 112    | 149   | -        | 102    | 152    | 515                                    | 1114   |            |         | 1110     | - T        | 100       |  |
| Stage 1                | 498    | 486   |          | 517    | 511    |                                        | -helle |            |         |          |            | ana in    |  |
| Stage 2                | 430    | 400   |          | 394    | 481    | 101                                    |        | N M STR    |         |          |            | ×.        |  |
| Stage 2                | 442    | 490   | ÷.       | 394    | 401    |                                        |        | (1941)     | 1990 (  | 1.5      | -<br>Nel-i | atisi i   |  |
| Approach               | EB     |       |          | WB     |        |                                        | NB     |            |         | SB       |            |           |  |
| HCM Control Delay, s   | 45.1   |       |          | 33.1   |        | 1000 1000 1000 1000 1000 1000 1000 100 | 0.3    |            |         | 0.4      |            |           |  |
| HCM LOS                | E      |       |          | D      |        |                                        | 0.0    |            |         | 0.4      |            |           |  |
|                        |        |       |          |        |        |                                        |        |            |         |          |            |           |  |
| Minor Lane/Major Mvmt  |        | NBL   | NBT      | NBR    | EBLn1V |                                        | SBL    | SBT        | SBR     | 장관       | 76.54      |           |  |
| Capacity (veh/h)       |        | 1114  |          |        | 200    | 207                                    | 1110   |            |         | 2 8 C    | Stores.    |           |  |
| HCM Lane V/C Ratio     |        | 0.022 |          | -      | 0.578  |                                        | 0.034  | -          | -       |          |            |           |  |
| HCM Control Delay (s)  |        | 8.3   | 0        | i de   | 45.1   | 33.1                                   | 8.4    | 0          | •       |          |            |           |  |
| HCM Lane LOS           |        | Α     | Α        | -      | Е      | D                                      | А      | Α          |         |          |            |           |  |
| HCM 95th %tile Q(veh)  |        | 0.1   | 28       | 1000   | 3.2    | 1.7                                    | 0.1    |            | 10.00   |          |            |           |  |

| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3     |         |         |         |        |                 |        |        |                    |        |           |                 |                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|--------|-----------------|--------|--------|--------------------|--------|-----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL     | EBT     | EBR     | WBL     | WBT    | WBR             | NBL    | NBT    | NBR                | SBL    | SBT       | SBR             |                                                                                                                                                                                                                                       |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |         |         | \$     |                 |        | 4      |                    |        | 4         |                 |                                                                                                                                                                                                                                       |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0       | 0       | 0       | 1      | 4               | 3      | 267    | 0                  | 8      | 32        | 203             |                                                                                                                                                                                                                                       |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 0       | 0       | 0       | 1      | 4               | 3      | 267    | 0                  | 8      | 32        | 203             |                                                                                                                                                                                                                                       |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0       | 0       | 0       | 0       | 0      | 0               | 0      | 0      | 0                  | 0      | 0         | 0               |                                                                                                                                                                                                                                       |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop    | Stop    | Stop    | Stop    | Stop   | Stop            | Free   | Free   | Free               | Free   | Free      | Free            |                                                                                                                                                                                                                                       |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 1,170   | None    | 20152   | 1270   | None            | 1.4-12 |        | None               |        |           | None            |                                                                                                                                                                                                                                       |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       | -       | 14      | -       | 2      | -               | -      | -      | -                  |        |           |                 |                                                                                                                                                                                                                                       |
| /eh in Median Storage, #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 -     |         | - 10.4  |         | 0      | が出し、家           | 100    | 0      | 550 A.M.           | 1.12   | 0         |                 |                                                                                                                                                                                                                                       |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -       | 0       | -       | 121     | 0      | -               | -      | 0      |                    | -      | 0         |                 |                                                                                                                                                                                                                                       |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92      | 92      | 92      | 92      | 92     | 92              | 50     | 92     | 92                 | 92     | 75        | 76              |                                                                                                                                                                                                                                       |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 0       | 0       | 0       | 0      | 0               | 0      | 0      | 0                  | 0      | 0         | 0               |                                                                                                                                                                                                                                       |
| Nvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0       | 0       | 0       | 1      | 4               | 6      | 290    | 0                  | 9      | 43        | 267             |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |         |        |                 |        |        | Victorial Com      |        |           |                 |                                                                                                                                                                                                                                       |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         | N       | Minor1  |        |                 | Major1 |        | N                  | Major2 | 1221      |                 |                                                                                                                                                                                                                                       |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |         | 497     | 630    | 290             | 310    | 0      | 0                  | 290    | 0         | 0               |                                                                                                                                                                                                                                       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | 302     | 302    | - 12            |        |        | 8:10 <b>-</b> 1    |        | 4         | -               |                                                                                                                                                                                                                                       |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | 195     | 328    | -               | -      |        |                    |        | -         |                 |                                                                                                                                                                                                                                       |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |         | 6.4     | 6.5    | 6.2             | 4.1    |        | 10-14 <sup>1</sup> | 4.1    | s - 2 -   | 1 n. <b>-</b> 1 |                                                                                                                                                                                                                                       |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |         | 5.4     | 5.5    | -               |        |        | -                  | -      | -         | -               |                                                                                                                                                                                                                                       |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |         | 5.4     | 5.5    |                 | 1200   |        | - D                |        |           | 111             |                                                                                                                                                                                                                                       |
| ollow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |         | 3.5     | 4      | 3.3             | 2.2    |        |                    | 2.2    |           |                 |                                                                                                                                                                                                                                       |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |         | 536     | 401    | 754             | 1262   | -      | 1.4                | 1283   | 15147     |                 |                                                                                                                                                                                                                                       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | 755     | 668    |                 | -      |        |                    | -      | -         | ~               |                                                                                                                                                                                                                                       |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | 843     | 651    |                 |        | - ¥    |                    | 1.1    | 100       |                 |                                                                                                                                                                                                                                       |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |         |         |        |                 |        |        |                    |        |           |                 |                                                                                                                                                                                                                                       |
| Nov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |         | 528     | 0      | 754             | 1262   |        |                    | 1283   |           | 17 A 4          |                                                                                                                                                                                                                                       |
| Nov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |         | 528     | 0      | 10 (Total Inc.) |        | -      | -                  | -      | 2         | 14              |                                                                                                                                                                                                                                       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | 750     | 0      |                 | t (g   |        | - 4                | 1.54   | 1         |                 |                                                                                                                                                                                                                                       |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | 835     | 0      | -               |        |        | -                  | -      |           | -               |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | 23,4    |         |        |                 | 52.5%  |        |                    |        |           |                 |                                                                                                                                                                                                                                       |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | gyll 15 | Melago, | WB      | 900.57 |                 | NB     |        | 김학습                | SB     | line at a | 1.5             |                                                                                                                                                                                                                                       |
| ICM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |         | 9.8     |        |                 | 0.2    |        |                    | 0.2    |           |                 |                                                                                                                                                                                                                                       |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |         | A       |        |                 |        |        |                    |        |           |                 |                                                                                                                                                                                                                                       |
| /inor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | NBL     | NBT     | NRRV    | VBLn1  | SBL             | SBT    | SBR    |                    |        |           |                 | 2017년에 가장감하게 가입니다.<br>1917년에 1월 1일 - 1917년 - 1917년<br>1917년 - 1917년 - |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | North A | 1262    | -       | NDIN    | 754    | 1283            | - 301  | JUC    |                    | 7.55   |           |                 |                                                                                                                                                                                                                                       |
| ICM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 0.005   | aust Te |         |        |                 |        |        |                    |        |           |                 |                                                                                                                                                                                                                                       |
| ICM Control Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.     |         | -       |         | 0.007  |                 | -      | a si a |                    |        |           |                 |                                                                                                                                                                                                                                       |
| Contraction of the second seco |         | 7.9     | 0       | 아는 것 같아 | 9.8    | 7.8             | 0      | 0.00   |                    |        |           |                 |                                                                                                                                                                                                                                       |
| ICM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | A       | A       | -       | А      | A<br>0          | A      | -      |                    |        |           |                 |                                                                                                                                                                                                                                       |

| Intersection<br>Int Delay, s/veh | 8.9                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |           |          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------|----------|
| 4                                |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |           | 12.000   |
| Movement                         | NBL                                                                                                                                     | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SBT                  | SBR                 | SEL       | SER      |
| Lane Configurations              |                                                                                                                                         | <b>↑</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>↑</b>             |                     | Υ.        |          |
| Traffic Vol, veh/h               | 0                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                    | 0                   | 228       | 1        |
| Future Vol, veh/h                | 0                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                    | 0                   | 228       | 1        |
| Conflicting Peds, #/hr           | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                    | 0                   | 0         | 0        |
| Sign Control                     | Free                                                                                                                                    | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Free                 | Free                | Stop      | Stop     |
| RT Channelized                   |                                                                                                                                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | None                | 1         | None     |
| Storage Length                   | -                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                    | -                   | 0         | -        |
| Veh in Median Storage,           | # -                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                    | -                   | 0         |          |
| Grade, %                         | e de la composition<br>La composition de la c | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                    |                     | 0         | BERNAR   |
| Peak Hour Factor                 | 92                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                   | 92                  | 81        | 25       |
| Heavy Vehicles, %                | 92                                                                                                                                      | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                   | 92                  |           |          |
|                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     | 0         | 0        |
| Mvmt Flow                        | 0                                                                                                                                       | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                    | 0                   | 281       | 4        |
|                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |           |          |
| Major/Minor M                    | ajor1                                                                                                                                   | ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Major2               |                     | Ainor2    |          |
| Conflicting Flow All             |                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 0                   | 43        | 4        |
| Stage 1                          |                                                                                                                                         | U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | U                   | 43        | 4        |
| Stage 2                          | 9103120                                                                                                                                 | 1912 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                     |           | 20.23    |
| Critical Hdwy                    | awa                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     | 39<br>6.4 | 6.2      |
|                                  |                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ÷.                  |           | 6.2      |
| Critical Hdwy Stg 1              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                    | -                   | 5.4       | and days |
| Critical Hdwy Stg 2              | -                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | 4 - A               | 5.4       | - 10A.   |
| Follow-up Hdwy                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (#)                  | -                   | 3.5       | 3.3      |
| Pot Cap-1 Maneuver               | 0                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 (s <del>. 4</del> | 0                   | 973       | 1085     |
| Stage 1                          | 0                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                    | 0                   | 1024      | -        |
| Stage 2                          | 0                                                                                                                                       | 1 ( <b>1</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                    | 0                   | 989       | 1.1.4    |
| Platoon blocked, %               |                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | а.<br>С              |                     |           |          |
| Mov Cap-1 Maneuver               | 1                                                                                                                                       | a de la seconda de | -                    | 1                   | 973       | 1085     |
| Mov Cap-2 Maneuver               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | -                   | 973       | -        |
| Stage 1                          |                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 10.28               | 1024      | 1        |
| Stage 2                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                    | -                   | 989       |          |
| Oldge 2                          | 10.1                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.6.3                | 1.12                | 303       | dan bi   |
|                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |           |          |
| Approach                         | NB                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB                   | $\sqrt{2} \sqrt{2}$ | SE        |          |
| HCM Control Delay, s             | 0                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                    |                     | 10.2      | 2.11     |
| HCM LOS                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     | В         |          |
|                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     | a di s    |          |
|                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |           |          |
| Minor Lane/Major Mvmt            |                                                                                                                                         | NBT S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | SBT                 | 1.0       |          |
| Capacity (veh/h)                 |                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 974                  |                     | 100       |          |
| HCM Lane V/C Ratio               |                                                                                                                                         | ( <b>a</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.293                |                     |           |          |
| HCM Control Delay (s)            |                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2                 | State!              |           |          |
| HCM Lane LOS                     |                                                                                                                                         | 2010 A 2010<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B                    | -                   |           |          |
| HCM 95th %tile Q(veh)            |                                                                                                                                         | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                  | é disalt            |           |          |
| in cour route a(veri)            |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2                  | 51 E 10 R           |           |          |

| Int Delay, s/veh       | 4.4          |                |                                           |                 |             |                 |
|------------------------|--------------|----------------|-------------------------------------------|-----------------|-------------|-----------------|
| Movement               | EBL          | EBT            | WBT                                       | WBR             | SBL         | SBR             |
| Lane Configurations    | LUL          | <u>ୁ</u><br>କୀ | 12                                        | TUI             | - ODL       | ODIX            |
| Traffic Vol, veh/h     | 7            |                | ۲<br>9                                    | 2               | 1<br>1      | 12              |
| Future Vol, veh/h      | 7            | 6              | 9                                         | 2               |             | 12              |
|                        | 0            | 0              | 9                                         | 0               | 1           |                 |
| Conflicting Peds, #/hr |              |                |                                           |                 |             | 0               |
| Sign Control           | Free         | Free           | Free                                      | Free            | Stop        | Stop            |
| RT Channelized         |              | None           |                                           | None            | -           | None            |
| Storage Length         | -            | -              |                                           |                 | 0           | -               |
| Veh in Median Storage  | e,# -        | 0              | 0                                         |                 | 0           | 영법 활동           |
| Grade, %               | ÷            | 0              | 0                                         | -               | 0           |                 |
| Peak Hour Factor       | 50           | 75             | 38                                        | 50              | 25          | 50              |
| Heavy Vehicles, %      | 0            | 0              | 0                                         | 0               | 0           | 0               |
| Mvmt Flow              | 14           | 8              | 24                                        | 4               | 4           | 24              |
|                        |              |                |                                           |                 |             |                 |
| Major/Minor M          | Major1       | 1              | Major2                                    |                 | Minor2      |                 |
| Conflicting Flow All   | 28           | 0              | viajoi z                                  | 0               | 62          | 26              |
| Stage 1                | 20           | Ŭ              | 0.00                                      | U               | 26          |                 |
| Stage 2                | 20.00        |                |                                           | erespond.       | 36          | 9041 <u>8</u> 1 |
| Critical Hdwy          | 4.1          |                | i at di ti                                | a de la com     | 6.4         | 6.2             |
|                        | 4.1          |                | 1.1                                       |                 |             | 0.2             |
| Critical Hdwy Stg 1    |              |                | -                                         |                 | 5.4         |                 |
| Critical Hdwy Stg 2    | -            | 11. A          |                                           |                 | 5.4         |                 |
| Follow-up Hdwy         | 2.2          |                | ( <b>-</b> )                              | -               | 3.5         | 3.3             |
| Pot Cap-1 Maneuver     | 1599         | 1.1.4          | - 1                                       |                 | 949         | 1056            |
| Stage 1                | -            | -              | -                                         | -               | 1002        | 2               |
| Stage 2                | •            |                |                                           | -               | 992         | 11.33           |
| Platoon blocked, %     |              | -              | -                                         |                 |             |                 |
| Mov Cap-1 Maneuver     | 1599         |                | -                                         |                 | 940         | 1056            |
| Mov Cap-2 Maneuver     | -            |                | -                                         | ш.<br>Эл        | 940         | 2               |
| Stage 1                | dan e        | 191 4-         | 1.1                                       |                 | 993         | 12.54           |
| Stage 2                | ; <b>=</b> ; | -              | -                                         | -               | 992         | -               |
|                        |              |                |                                           |                 |             |                 |
| Approach               | EB           |                | WB                                        |                 | SB          |                 |
| HCM Control Delay, s   | 4.6          |                |                                           |                 |             |                 |
| HCM LOS                | 4.0          |                | 0                                         |                 | 8.6         |                 |
|                        |              |                |                                           |                 | A           |                 |
|                        |              |                |                                           |                 |             |                 |
| Minor Lane/Major Mvmt  | t            | EBL            | EBT                                       | WBT             | WBR S       | SBLn1           |
| Capacity (veh/h)       | 18 E.C       | 1599           | in an |                 | -           | 1038            |
| HCM Lane V/C Ratio     |              | 0.009          | -                                         | 2               |             | 0.027           |
| HCM Control Delay (s)  |              | 7.3            | 0                                         |                 |             | 8.6             |
| HCM Lane LOS           |              | A              | A                                         | 1000 CI ()<br>2 |             | A               |
| HCM 95th %tile Q(veh)  |              | 0              |                                           | nor files       | a de la com | 0.1             |
| on con nuic a(ven)     |              | U              | 12 1 20                                   | A DI CHP        | STREET.     | 0.1             |

| Intersection           |         | 01<br>1164 - 11 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 - L     |          |
|------------------------|---------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| Int Delay, s/veh       | 1       |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |
| Movement               | EBL     | EBT             | WBT               | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBL        | SBR      |
| Lane Configurations    |         | ÷               | ĥ                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y          |          |
| Traffic Vol, veh/h     | 4       |                 | 21                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 1        |
| Future Vol, veh/h      | 4       |                 | 21                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 1        |
| Conflicting Peds, #/hr | 0       | 0               | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 0        |
| Sign Control           | Free    | Free            | Free              | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop       | Stop     |
| RT Channelized         |         | None            | U ITY             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          | None     |
| Storage Length         | -       | -               | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | -        |
| Veh in Median Storage, | ,# -    | 0               | 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0          | 1911     |
| Grade, %               | -       | 0               | 0                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 141      |
| Peak Hour Factor       | 92      | 92              | 92                | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92         | 92       |
| Heavy Vehicles, %      | 0       | 0               | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 0        |
| Mvmt Flow              | 4       |                 | 23                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          | 1        |
|                        |         |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |
| Major/Minor N          | /lajor1 | ,               | Major2            | Set Store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minor2     |          |
| Conflicting Flow All   | 23      |                 | viajuiz           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45         | 23       |
| Stage 1                | - 23    |                 | itiba B           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23         | 23       |
| Stage 2                | 0 D.N.  |                 | 일정은 관계            | 이 아이지?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23         | 5 (B) 75 |
| Critical Hdwy          | 4.1     | -               |                   | 1914-191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4        | 6.2      |
| Critical Hdwy Stg 1    | 4.1     | 5-5-5-5         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4<br>5.4 | 0.2      |
|                        |         |                 |                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | -        |
| Critical Hdwy Stg 2    | 2.2     | 11 B ( ) - 0    |                   | - 3%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.4        | -        |
| Follow-up Hdwy         | 1605    |                 | یں۔<br>اور 199    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5        | 3.3      |
| Pot Cap-1 Maneuver     | 1605    |                 | 9.5. <del>1</del> | 4.1178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 970        | 1060     |
| Stage 1                |         | -               |                   | an:<br>An an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1005       | RUL AND  |
| Stage 2                | 5.7 57  | 1.0             | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1006       |          |
| Platoon blocked, %     | 4005    |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07       | 1000     |
| Mov Cap-1 Maneuver     | 1605    | 1 - Sec. (#1)   | •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 967        | 1060     |
| Mov Cap-2 Maneuver     | -       | ~               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 967        |          |
| Stage 1                | 1.1     |                 | . •2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1002       | 1.1      |
| Stage 2                |         |                 |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1006       | HEIDILI  |
|                        |         |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |
| Approach               | EB-     |                 | WB                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB         |          |
| HCM Control Delay, s   | 1.7     |                 | 0                 | 1751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4        | 100      |
| HCM LOS                |         |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А          |          |
|                        |         |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |
| Minor Lane/Major Mvmt  |         | EBL             | EBT               | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WBR S      | SBI n1   |
| Capacity (veh/h)       | Sarts   | 1605            |                   | 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          | 1060     |
| HCM Lane V/C Ratio     |         | 0.003           | 195 D - 70        | 10-10-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0.001    |
| HCM Control Delay (s)  |         | 7.2             | 0                 | National                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in an sta  | 8.4      |
| HCM Lane LOS           |         | 7.2<br>A        | A                 | - <b>-</b> - |            |          |
| HCM 95th %tile Q(veh)  |         |                 | A                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | A        |
| iow sour whe Q(ven)    |         | 0               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5.1      | 0        |

| Intersection                          |            |                |                 | (and the | W ROUT           |                                        |
|---------------------------------------|------------|----------------|-----------------|----------|------------------|----------------------------------------|
| Int Delay, s/veh                      | 1.4        |                |                 |          |                  |                                        |
| Movement                              | WBL        | WBR            | NBT             | NBR      | SBL              | SBT                                    |
| ane Configurations                    | Y          |                | Þ               |          |                  | ÷Î                                     |
| Traffic Vol, veh/h                    | 1          | 20             | 248             | 6        | 29               | 3                                      |
| Future Vol, veh/h                     | 1          | 20             | 248             | 6        |                  | 3                                      |
| Conflicting Peds, #/hr                | 0          | 0              | 0               | 0        | 0                | 0                                      |
| Sign Control                          | Stop       | Stop           | Free            | Free     | Free             | Free                                   |
| RT Channelized                        | illax.     | None           |                 | None     |                  | None                                   |
| Storage Length                        | 0          |                |                 | -        |                  |                                        |
| Veh in Median Storage,                | # 0        |                | 0               | -        | -                | 0                                      |
| Grade, %                              | 0          | /*             | 0               | -        | -                | 0                                      |
| Peak Hour Factor                      | 92         | 92             | 92              | 92       | 92               | 92                                     |
| Heavy Vehicles, %                     | 0          | 0              | 0               | 0        |                  | 0                                      |
| Mvmt Flow                             | 1          | 22             | 270             | 7        |                  | 3                                      |
|                                       |            | COLUMN STREET  | 1854257         |          | No.              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
| Major/Minor M                         | inor1      |                | Major1          |          | Major2           |                                        |
| Conflicting Flow All                  | 341        | 274            | 0               | 0        |                  | 0                                      |
| Stage 1                               | 274        | 214            | U               | U        | 211              | U                                      |
| Stage 2                               | 67         |                |                 |          |                  |                                        |
| Critical Hdwy                         | 6.4        | 6.2            | utratto         |          | 4.1              | ana ing                                |
| Critical Hdwy Stg 1                   | 6.4<br>5.4 | 0.2            | 94 J 195        | 2        | 4.1              |                                        |
|                                       |            | -              |                 |          |                  |                                        |
| Critical Hdwy Stg 2                   | 5.4        |                |                 | - 15     | -                | 34 10 4 9                              |
| Follow-up Hdwy                        | 3.5        | 3.3            |                 |          | 2.2              |                                        |
| Pot Cap-1 Maneuver                    | 659        | 770            | 2 M 🔿           | 1        | 1298             |                                        |
| Stage 1                               | 777        | ÷.             | 9)<br>111 - 111 |          | -                | -                                      |
| Stage 2                               | 961        |                | Sec. 1          | े ् ह    |                  | - "Lines a                             |
| Platoon blocked, %                    | 040        | 770            |                 | 7        | 1000             | 5 <del>75</del>                        |
| Mov Cap-1 Maneuver                    | 643        | 770            |                 |          | 1298             |                                        |
| Mov Cap-2 Maneuver                    | 643        | (7)<br>(1)     |                 | -        | <del>ب</del> تر. | 875                                    |
| Stage 1                               | 777        |                |                 | -        |                  | n je se s                              |
| Stage 2                               | 937        |                | -               | -        |                  |                                        |
|                                       |            |                |                 |          |                  |                                        |
| Approach                              | WB         |                | NB              |          | SB               |                                        |
| HCM Control Delay, s                  | 9.9        | 28. H i.       | 0               | 877. 4   | 7.1              | SU223                                  |
| HCM LOS                               | А          |                | 1.01            |          |                  |                                        |
|                                       |            |                |                 |          |                  |                                        |
| Minor Lane/Major Mvmt                 |            | NBT            | NBRV            | VBLn1    | SBL              | SBT                                    |
| Capacity (veh/h)                      |            |                | -               | 763      | 1298             | -                                      |
| HCM Lane V/C Ratio                    |            |                | -               |          | 0.024            |                                        |
| ICM Control Dalay (a)                 |            |                |                 | 9.9      | 7.8              | 0                                      |
| TCIVI CONTROL DEIAV (S)               |            |                |                 | 3.5      | 1.0              | U                                      |
| HCM Control Delay (s)<br>HCM Lane LOS |            | - 100 F 2<br>- | -               | 9.9<br>A | 7.0<br>A         | A                                      |

CAL3QHC - (DATED 95221)

CALIZQHC PC (32 BIT) VERSION 3.0.0 (C) COPYRIGHT 1993-2000, TRINITY CONSULTANTS

5/01/2020 at 7:11:29 Began on Run JOB: ROUTE 40 & FRANKLIN BOULEVARD

RUN: NO-BUILD

: 05/01/2020 : 07:11:29 DATE TIME

The MODE flag has been set to C for calculating CO averages

0.0 17.1 0.0 13.4 0.0 13.4 0.0 13.4 0.0 13.4 0.0 13.4 0.0 13.4 0.0 13.7 0.0 3.7 0.0 3.7 0.0 3.7 0.0 3.7 0.0 3.7 (W) 3 (W) Ξ (IW/D) 0.0 PPM EE 861. 967. 11177. 1080. 226. 226. 226. 2280. 125. 150. 150. 150. 150. 99. 99. **VPH** 11 AMB TYPE Σ 270. 90. 90. 270. 270. 180. 270. 270. 270. 270. 270. 180. 180. 360. 360. BRG (DEG) .000I LENGTH 305. 305. 305. 305. 305. 152. 152. 152. 152. 152. 152. 38. 38. 38. 38. 37. 36. 36. 37. 36. (W) li HXIW \* \* -3.7 -5.5 3.7 3.7 -5.5 -152.5 -152.5 -152.5 -152.5 -14.5 -14.5 -14.5 -14.5 -14.5 -14.5 -28.5 -28.5 -28.5 CM MINUTES Y2 11. -305.0 305.0 305.0 305.0 -305.0 -305.0 -3.7 -29.5 -29.5 64.3 64.3 64.3 -3.7 -3.7 LINK COORDINATES (M) X2 II. 11 Z0 ATIM Υl CM/S <u>(</u>) 0.0 4 SITE & METEOROLOGICAL VARIABLES X1 ĬĬ. VD = CLAS \* × \* \* \* \* \* \* \* \* \* \* \* APP DEP DEP DEP DEP DEP DEP LINK DESCRIPTION TR ЧH TR Ц 0.0 CM/S EB EB NB NB SB SB EB EB EB LINK VARIABLES 1.0 M/S ROUTE 40 1 ROUTE 40 1 ROUTE 40 1 FRANKLIN FRANKLIN FRANKLIN 40 ROUTE 40 FRANKLIN ROUTE 40 FRANKLIN ROUTE 40 FRANKLIN ROUTE ROUTE US = 11 D QUEUE (NEH) -

V/C

3.5 6.3 6.7 6.7 6.7

0.42 0.36 0.63 0.04 0.50 0.22 0.53

L L

FRANKLIN FRANKLIN

0.56

гĤ

RUN: NO-BUILD

2

PAGE

JOB: ROUTE 40 & FRANKLIN BOULEVARD

DATE : 05/01/2020 TIME : 07:11:29 ADDITIONAL QUEUE LINK PARAMETERS

| NOTIFICAL DESCRIPTION       | *   | CYCLE  | RED      | CLEARANCE | APPROACH | SATURATION | IDLE    | SIGNAL | ARRIVAL |
|-----------------------------|-----|--------|----------|-----------|----------|------------|---------|--------|---------|
|                             | *   | LENGTH | TIME     | LOST TIME | VOL      | FLOW RATE  | EM FAC  | TYPE   | RATE    |
|                             | * + | (SEC)  | (SEC)    | (SEC)     | (HAV)    | (NPH)      | (gm/hr) |        |         |
| ROUTE 40 EB                 | *   | 120    | 102      | 2.0       | 123      | 1900       | 54.87   | - m    | <br>0   |
|                             | *   | 120    | 61       | 2.0       | 738      | 1900       | 54.87   | m      | т       |
| ROUTE 40 WB                 | *   | 120    | 102      | 2.0       | 80       | 1900       | 54.87   | ന      | m       |
| ROUTE 40 WB                 | *   | 120    | 19       | 2.0       | 1097     | 1900       | 54.87   | ς      | м       |
| 13. FRANKLIN NB L           | *   | 120    | 81       | 2.0       | 20       | 1900       | 54.87   | m      | м       |
| FRANKLIN NB                 | ×   | 120    | 81       | 2.0       | 276      | 1900       | 54.87   | С      | i m     |
| 15. FRANKLIN SB L           | *   | 120    | 81       | 2.0       | 121      | 1900       | 54.87   | m      | с       |
| 16. FRANKLIN SB TR          | *   | 120    | 81       | 2.0       | 296      | 1900       | 54.87   | m      | m       |
| RECEPTOR LOCATIONS          |     |        |          |           |          |            |         |        |         |
|                             | *   | 0      | COORDINA | ES (M)    | *        |            |         |        |         |
| RECEPTOR                    | *   | ×      | Х        | 22        | *        |            |         |        |         |
|                             | *   |        |          |           | *        |            |         |        |         |
| 1. NORTHWEST                | *   | -9.0   |          |           | 1.8 *    |            |         |        |         |
| 2. NORTHEAST                | ¥   | 6.0    |          |           | 1.8 *    |            |         |        |         |
| <ol><li>SOUTHEAST</li></ol> | *   | 9.1    |          | -12.7     | * 0.1    |            |         |        |         |
| C OLT TITUTE OF             | ,   | 0      |          |           | 1.0      |            |         |        |         |

## RUN: NO-BUILD

JOB: ROUTE 40 & FRANKLIN BOULEVARD

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-350.

| WIND<br>ANGLE | *          |      | NTRATI(<br>(PPM) | NC   |      |
|---------------|------------|------|------------------|------|------|
| (DEGR)        | *          | REC1 | REC2             | REC3 | REC4 |
| 0.            | *          | 0.4  | 0.3              | 1.1  | 1.3  |
| 5.            | $_{\star}$ | 0.6  | 0.1              | 1.2  | 1.5  |
| 10.           | *          | 0.7  | 0.1              | 1.1  | 1.3  |
| 15.           | *          | 0.7  | 0.0              | 1.0  | 1.2  |
| 20.           | *          | 0.8  | 0.0              | 1.0  | 1.1  |
| 25.           | *          | 0.8  | 0.0              | 1.0  | 0.9  |
| 30.           | *          | 0.7  | 0.0              | 1.1  | 0.8  |
| 35.           | *          | 0.8  | 0.0              | 1.1  | 1.0  |
| 40.           | *          | 0.8  | 0.0              | 1.2  | 0.9  |
| 45.           | *          | 0.8  | 0.0              | 1.1  | 0.9  |
| 50.           | *          | 0.8  | 0.0              | 1.1  | 1.2  |
| 55.           | *          | 0.7  | 0.0              | 1.0  | 1.2  |
| 60.           | *          | 0.7  | 0.0              | 1.2  | 1.3  |
| 65.           | *          | 0.7  | 0.0              | 1.2  | 1.4  |
| 70.           | *          | 0.7  | 0.1              | 1.2  | 1.5  |
| 75.           | *          | 0.7  | 0.1              | 1.2  | 1.5  |
| 80.           | *          | 0.9  | 0.2              | 1.2  | 1.4  |
| 85.           | *          | 1.1  | 0.6              | 1.0  | 1.6  |
| 90.           | *          | 1.6  | 1.0              | 0.7  | 1.2  |
| 95.           | *          | 1.7  | 1.4              | 0.4  | 0.8  |
| 100.          | *          | 1.9  | 1.6              | 0.2  | 0.5  |
| 105.          | *          | 1.8  | 1.6              | 0.1  | 0.5  |
| 110.          | *          | 1.6  | 1.5              | 0.0  | 0.4  |
| 115.          | *          | 1.4  | 1.5              | 0.0  | 0.4  |
| 120.          | *          | 1.2  | 1.4              | 0.0  | 0.4  |
| 125.          | *          | 1.2  | 1.2              | 0.0  | 0.4  |
| 130.          | *          | 1.0  | 1.3              | 0.0  | 0.4  |
| 135.          | *          | 0.9  | 1.2              | 0.0  | 0.4  |
| 140.          | *          | 0.9  | 1.3              | 0.0  | 0.4  |
| 145.          | *          | 0.8  | 1.3              | 0.0  | 0.4  |
| 150.          | *          | 0.9  | 1.3              | 0.0  | 0.4  |
| 155.          | *          | 1.0  | 1.2              | 0.0  | 0.5  |
| 160.          | *          | 1.0  | 1.1              | 0.0  | 0.4  |
| 165.          | *          | 0.9  | 1.1              | 0.0  | 0.4  |
| 170.          | *          | 1.0  | 1.2              | 0.0  | 0.3  |
| 175.          | *          | 1.2  | 1.3              | 0.2  | 0.3  |
| 180.          | *          | 1.0  | 1.3              | 0.2  | 0.2  |
| 185.          | *          | 1.0  | 1.4              | 0.5  | 0.1  |
| 190.          | *          | 0.9  | 1.2              | 0.6  | 0.0  |
| 195.          | *          | 0.9  | 1.1              | 0.6  | 0.0  |
| 200.          | *          | 0.9  | 0.9              | 0.7  | 0.0  |
| 205.          | *          | 0.9  | 0.8              | 0.6  | 0.0  |

PAGE 3

| PAGE | 4    |       |    |   |          |           |
|------|------|-------|----|---|----------|-----------|
|      | JOB: | ROUTE | 40 | & | FRANKLIN | BOULEVARD |

| WIND   | *    | CONCE | NTRATI | NC   |      |
|--------|------|-------|--------|------|------|
| ANGLE  | *    |       | (PPM)  |      |      |
| (DEGR) | *    | REC1  | REC2   | REC3 | REC4 |
|        | . *. |       |        |      |      |
| 210.   | *    | 1.0   | 1.0    | 0.5  | 0.0  |
| 215.   | *    | 1.1   | 1.1    | 0.5  | 0.0  |
| 220.   | *    | 1.1   | 1.0    | 0.5  | 0.0  |
| 225.   | *    | 1.1   | 1.0    | 0.5  | 0.0  |
| 230.   | *    | 1.1   | 1.2    | 0.5  | 0.0  |
| 235.   | *    | 1.2   | 1.1    | 0.5  | 0.0  |
| 240.   | *    | 1.1   | 1.4    | 0.5  | 0.0  |
| 245.   | ×    | 1.2   | 1.6    | 0.5  | 0.0  |
| 250.   | *    | 1.0   | 1.5    | 0.6  | 0.0  |
| 255.   | *    | 1.0   | 1.5    | 0.5  | 0.1  |
| 260.   | *    | 1.1   | 1.4    | 0.6  | 0.1  |
| 265.   | *    | 1.1   | 1.4    | 0.9  | 0.5  |
| 270.   | ×    | 0.8   | 1.2    | 1.4  | 0.7  |
| 275.   | *    | 0.5   | 0.8    | 1.6  | 1.2  |
| 280.   | ×    | 0.2   | 0.7    | 1.7  | 1.3  |
| 285.   | *    | 0.1   | 0.6    | 1.7  | 1.3  |
| 290.   | *    | 0.1   | 0.6    | 1.6  | 1.3  |
| 295.   | *    | 0.0   | 0.6    | 1.4  | 1.4  |
| 300.   | *    | 0.0   | 0.6    | 1.2  | 1.4  |
| 305.   | *    | 0.0   | 0.7    | 1.1  | 1.4  |
| 310.   | *    | 0.0   | 0.7    | 0.8  | 1.3  |
| 315.   | *    | 0.0   | 0.7    | 0.8  | 1.2  |
| 320.   | *    | 0.0   | 0.7    | 0.9  | 1.2  |
| 325.   | *    | 0.0   | 0.7    | 0.9  | 1.2  |
| 330.   | *    | 0.0   | 0.7    | 1.0  | 1.2  |
| 335.   | *    | 0.0   | 0.7    | 1.1  | 1.1  |
| 340.   | *    | 0.0   | 0.6    | 1.1  | 1.1  |
| 345.   | *    | 0.0   | 0.6    | 1.2  | 1.1  |
| 350.   | *    | 0.1   | 0.6    | 1.4  | 1.1  |
| MAX    | *    | 1.9   | 1.6    | 1.7  | 1.6  |
| DEGR.  | *    | 100   | 100    | 280  | 85   |

THE HIGHEST CONCENTRATION OF 1.90 PPM OCCURRED AT RECEPTOR REC1 .

RUN: NO-BUILD

CAL3QHC - (DATED 95221)

CAL3QHC PC (32 BIT) VERSION 3.0.0 (C) COPYRIGHT 1993-2000, TRINITY CONSULTANTS

Began on 5/01/2020 at 7:16:11 Run

RUN: Build JOB: ROUTE 40 & FRANKLIN BOULEVARD

DATE : 05/01/2020 TIME : 07:16:11

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

| LINK VARTABLES<br>LINK DESCRIPTION * LINK COORDINATES (M) * LENGTH BRG TYPE VPH EF H W V/C<br>* X1 Y1 X2 Y2 (M) (DEG) (G/MI) (M) (M)<br>* X1 Y1 X2 Y2 Y2 (M) (DEG) (G/MI) (M) (M)<br>2 NOUTE 40 EB DEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $270.$ AG $973.$ 10.1 0.0 17.1<br>2 NOUTE 40 BB DEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $270.$ AG $973.$ 10.1 0.0 17.1<br>2 NOUTE 40 BB DEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $270.$ AG $973.$ 10.1 0.0 17.1<br>4 NOUTE 40 BB DEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $200.$ AG $973.$ 10.1 0.0 17.1<br>4 NOUTE 40 BB DEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $200.$ AG $973.$ 10.1 0.0 17.1<br>4 NOUTE 40 BEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $200.$ AG $973.$ 10.1 0.0 17.1<br>4 NOUTE 40 BEP * 0.0 $-3.7$ $-305.0$ $-3.7$ $305.$ $200.$ AG $973.$ 10.1 0.0 17.1<br>4 NOUTE 40 BEP * 0.0 $-3.7$ $-152.5$ $152.$ 180. AG $317.$ $9.9$ 0.0 $13.4$<br>5 FRANKLIN BB DEP * 1.8 0.0 $-3.7$ $-152.5$ $152.$ 180. AG $317.$ $9.9$ 0.0 $13.4$<br>8 NOUTE 40 BE T $-8.5$ 0.0 $-23.7$ $-152.5$ $152.$ 180. AG $327.0.00$ 0.0 $3.7$ 0.43<br>10 NOUTE 40 BE T $-8.5$ 0.0 $-23.7$ $-152.5$ $152.$ 180. AG $221.000.$ 0.0 $3.7$ 0.43<br>11 NOUTE 40 BE T $-8.5$ 0.0 $-24.9$ 0.0 $-24.9$ 0.0 $2.7$ 0.0 $3.7$ 0.43<br>12. NOUTE 40 BE T $-8.5$ 0.0 $-24.9$ 0.0 $-24.9$ 0.0 $2.7$ 0.0 $2.7$ 0.05<br>13. FRANKLIN BE T $-8.5$ 0.0 $-224.5$ 0.0 $-24.9$ 0.0 $0.0 3.7$ 0.05<br>13. RANKLIN BE T $-8.5$ 0.0 $-12.2$ 0.0 $-16.1$ $41.$ 360. AG 99. 1000.0 0.0 $3.7$ 0.52<br>13. FRANKLIN BE T $-3.7$ 0.05<br>14. S60. AG 99. 1000.0 0.0 0.0 $3.7$ 0.52<br>15. FRANKLIN BE T $-3.7$ 0.55<br>16. RANKLIN BE T $-3.7$ 0.55<br>16. FRANKLIN BE T $-3.7$ 0.55<br>16. FRANKLIN BE T $-3.7$ 0.55<br>17. 25<br>18. RANKLIN BE T $-3.7$ 0.55<br>19. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | SD  | DILE & MELEURULUGICAL VARIABLES<br> | /S              | VARIA<br>VD =<br>CLAS | 0.5  | CM/S<br>(D) P | Z0 = 1<br>ATIM = 6 | 11. CM<br>60. MIN | CM<br>MINUTES | ΤW  | MIXH = 10 | 1000. M | AMB  |      | 0.0 PPM |     |         |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------|-----------------|-----------------------|------|---------------|--------------------|-------------------|---------------|-----|-----------|---------|------|------|---------|-----|---------|-----|-----|
| *         X1         Y1         Y1         X2         Y2         (M)         (DEG)         (G/M1)         (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 | LINK VARIABLES                      | S<br>-<br>PTION | *                     | LI   | NK COORI      | INATES (           | (M)               |               | *   | LENGTH    | BRG     | TYPE | HdV  | н<br>Ц  | Ξ   | М       | V/C |     |
| ROUTE 40 EB APP       *       0.0       -3.7       -305.0       -3.7       *       305.       270. AG       873. 10.1       0.0 17.1         ROUTE 40 EB APP       *       0.0       -5.5       *       305.       270. AG       873. 10.1       0.0 17.1         ROUTE 40 EB DEP       *       0.0       -5.5       305.0       -5.5       305.0       -5.5       100.1       0.0 17.1         ROUTE 40 WB DEP       *       0.0       5.5       -152.5       *       305.       270. AG       873. 10.1       0.0 17.1         ROUTE 40 WB DEP       *       0.0       5.5       -305.0       5.5       *       305.       270. AG       873. 10.1       0.0 17.1         ROUTE 40 WB DEP       *       0.0       5.5       -152.5       *       152.       360. AG       422.9       9.9       0.0 13.4         FRANKLIN NB DEP       *       -1.8       0.0       -1.1.8       152.5       *       152.3       360. AG       422.9       9.9       0.0 13.4         FRANKLIN NB DEP       *       -1.8       152.5.5       152.5       152.5       360. AG       422.9       9.9       0.0 13.4       37       0.56       36       8.5 <td< td=""><td></td><td></td><td></td><td>*</td><td>4</td><td>ГX</td><td>X2</td><td></td><td>Y2</td><td>*</td><td>(W)</td><td>(DEG)</td><td></td><td></td><td>(IW/S)</td><td>(W)</td><td>(M)</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                     |                 | *                     | 4    | ГX            | X2                 |                   | Y2            | *   | (W)       | (DEG)   |      |      | (IW/S)  | (W) | (M)     |     |     |
| ROUTE         40         E         0.0         -3.7         -305.0         -3.7         *         305.0         AC         B75.10         10.1         0.0         17.1           ROUTE         40         EB         P         *         0.0         -5.5         305.0         -5.5         *         305.0         5.5         *         305.0         5.5         *         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         7.8         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |                                     |                 | *                     |      |               |                    |                   |               | **- |           |         | i    |      |         |     |         |     | -   |
| ROUTE 40         EB         *         0.0         -5.5         305.0         -5.5         *         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         305.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0         307.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ч   | 40                                  |                 | *                     | 0.0  |               |                    | 0.0               | -3.7          | *   | 305.      | 270.    |      |      | 10.1    |     | 17.1    |     |     |
| ROUTE 40         WB         APP         *         0.0         3.7         305.0         5.5         *         305.         50.0         AG         1193.1         0.0         17.1           ROUTE 40         WB         DEP         *         0.0         5.5         -305.0         5.5         *         305.         270.         AG         1193.1         0.0         13.4           FRANKLIN NB         DEP         *         1.8         -152.5         *         152.1         180.         AG         317.9         9.9         0.0         13.4           FRANKLIN NB         DEP         *         -1.8         152.5         *         152.1         360.         AG         422.9         9.9         0.0         9.8           FRANKLIN NB         DEP         *         -1.8         152.5         152.1         180.         AG         422.9         9.9         0.0         9.8         0.0         9.8         0.0         9.3         0.0         9.3         0.43         6         3.7         0.56         37         0.56         37         0.56         37         0.56         37         0.56         37         0.56         37         0.56         37 <td>2</td> <td>40</td> <td></td> <td>*</td> <td>0.0</td> <td>-5.5</td> <td></td> <td>.0</td> <td>-5.5</td> <td>×</td> <td>305.</td> <td>90.</td> <td></td> <td></td> <td>10.1</td> <td></td> <td>13.4</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2   | 40                                  |                 | *                     | 0.0  | -5.5          |                    | .0                | -5.5          | ×   | 305.      | 90.     |      |      | 10.1    |     | 13.4    |     |     |
| ROUTE 40 WB DEP         *         0.0         5.5         -305.0         5.5         *         305.         270. AG         100.1         0.0         13.4           FRANKLIN NB APP         *         1.8         -152.5         *         152.         180. AG         317.         9.9         0.0         13.4           FRANKLIN NB DEP         *         3.7         0.0         3.7         152.5         *         152.         360. AG         428.         9.9         0.0         9.8           FRANKLIN NB DEP         *         -1.8         0.0         -1.52.5         *         152.         360. AG         428.         9.9         0.0         9.8           FRANKLIN SB DEP         *         -1.8         0.0         -1.18         152.5         360. AG         422.         9.9         0.0         9.3         7         0.56         3           FRANKLIN SB DEP         *         -3.7         -152.5         152.1         360. AG         422.         9.9         0.0         0.3         7         0.56         3         3         0.43         5         5         5         5         5         0.0         0.0         0.0         0.0         5         5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Э   | ROUTE 40                            |                 | *                     | 0.0  | с.<br>С       |                    | 0.                | 3.7           | *   | 305.      | .06     |      |      | 10.1    |     | 17.1    |     |     |
| FRANKLIN NB APP       *       1.8       -152.5 *       152.       180. AG       317.       9.9       0.0       13.4         FRANKLIN NB DEP       *       3.7       0.0       3.7       152.5 *       152.       360. AG       428.       9.9       0.0       9.8         FRANKLIN NB DEP       *       -1.8       0.0       3.7       152.5 *       152.       360. AG       428.       9.9       0.0       9.8         FRANKLIN NB DEP       *       -1.8       0.0       -1.8       152.5 *       152.       360. AG       428.       9.9       0.0       9.8         FRANKLIN SB DEP       *       -3.7       0.0       -1.8       152.5 *       152.       180. AG       428.       9.9       0.0       0.9       8       37       0.56       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4   | ROUTE 40                            |                 | *                     | 0.0  | 5.5           |                    | 0.                | 5.5           | *   | 305.      | 270.    |      |      | 10.1    |     | 13.4    |     |     |
| FRANKLIN NB DEP       *       3.7       0.0       3.7       152.5 *       152.       360. AG       428.       9.9       0.0       9.8         FRANKLIN SB APP       *       -1.8       0.0       -1.8       152.5 *       152.       360. AG       428.       9.9       0.0       9.8         FRANKLIN SB APP       *       -1.8       0.0       -1.8       152.5 *       152.       360. AG       422.       9.9       0.0       9.8         FRANKLIN SB DEP       *       -3.7       -152.5 *       152.1       180. AG       313.       9.9       0.0       9.9       0.0       9.8         ROUTE 40 EB L       *       -85.5       -55.5 *       16.       90. AG       125.1       0.0       7.3       0.43       6         ROUTE 40 BE TR       *       -85.5       -55.5 *       16.1       90. AG       1250.100.0       0.0       7.3       0.43       6       70.43       2       270. AG       1250.100.0       0.0       7.3       0.56       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŋ   | FRANKLIN                            |                 | *                     | 1.8  | 0.0           |                    | ∞.                | -152.5        | ×   | 152.      | 180.    |      |      | 9.9     |     | 13.4    |     |     |
| FRANKLIN SB APP       *       -1.8       0.0       -1.8       152.5       *       152.       360.       AG       422.       9.9       0.0       13.4         FRANKLIN SB DEP       *       -3.7       0.0       -3.7       -152.5       *       152.       180.       AG       422.       9.9       0.0       9.8         ROUTE 40 EB L       *       -3.7       0.0       -29.5       0.00       *       21.       270.       AG       125.       100.0       0.0       3.7       0.56       3         ROUTE 40 EB L       *       -85.5       -55.5       -46.7       -55.5       38.       270.       AG       125.       100.0       0.0       3.7       0.56       3         ROUTE 40 MB L       *       85.5       0.0       25.5       56.       90.       AG       1250.       100.0       0.0       3.7       0.55       6       55.5       56.       99.       100.0       0.0       3.7       0.52       6       55.5       55.5       56.       99.       100.0       0.0       3.7       0.52       6       55.5       6       59.       100.0       0.0       3.7       0.52       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6   | FRANKLIN                            |                 | ×                     | 3.7  | 0.0           |                    | ٢.                | 152.5         | *   | 152.      | 360.    |      |      | 9.9     |     | 8.<br>8 |     |     |
| FRANKLIN SB DEP       *       -3.7       0.0       -3.7       -152.5 *       152.       180. AG       313.       9.9       0.0       9.8         ROUTE 40 EB L       *       -8.5       0.0       -29.5       0.0       *       21.       270. AG       125.       100.0       0.0       3.7       0.56       3         ROUTE 40 EB L       *       -8.5       -5.5       -46.7       -5.5 *       38.       270. AG       125.       100.0       0.0       7.3       0.43       6         ROUTE 40 WB L       *       8.5       0.0       24.9       0.0       *       16.       90. AG       125.       100.0       0.0       7.3       0.43       5         ROUTE 40 WB L       *       8.5       0.0       24.9       0.0       *       16.       90. AG       120.0       0.0       0.7       3       0.43       5         ROUTE 40 WB L       *       8.5       5.5       56.       90. AG       120.0       0.0       0.0       3.7       0.53       05       07       05       07       05       05       06       07       05       07       05       06       07       05       06 <t< td=""><td>5</td><td>FRANKLIN</td><td></td><td>*</td><td>-1.8</td><td>0.0</td><td></td><td>∞.</td><td>152.5</td><td>*</td><td>152.</td><td>360.</td><td></td><td></td><td>9.9</td><td></td><td>13.4</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5   | FRANKLIN                            |                 | *                     | -1.8 | 0.0           |                    | ∞.                | 152.5         | *   | 152.      | 360.    |      |      | 9.9     |     | 13.4    |     |     |
| ROUTE 40 EB L       *       -8.5       0.0       -29.5       0.0       *       21.       270. AG       125. 100.0       0.0       3.7       0.56       3         ROUTE 40 EB TR       *       -8.5       -5.5       -46.7       -5.5       *       38.       270. AG       125. 100.0       0.0       7.3       0.43       6         ROUTE 40 EB TR       *       8.5       -5.5       -46.7       -5.5       *       38.       270. AG       125. 100.0       0.0       7.3       0.43       6         ROUTE 40 WB L       *       8.5       5.5       64.3       5.5       56.       90. AG       125. 100.0       0.0       7.3       0.63       9         ROUTE 40 WB TR       *       8.5       5.5       64.3       5.5       56.       90. AG       120.0       0.0       7.3       0.63       9       7       0.05       0       73       0.65       0       6       7       16.1       8       180. AG       99. 100.0       0.0       3.7       0.52       6       6       180. AG       99. 100.0       0.0       3.7       0.52       6       6       6       100.0       0.0       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00  | FRANKLIN                            |                 | ×                     | -3.7 | 0.0           |                    | ۲.                | -152.5        | *   | 152.      | 180.    |      |      | 9.9     |     | 9.8     |     |     |
| ROUTE 40 EB TR       *       -8.5       -5.5       -46.7       -5.5 *       38.       270.       AG       150.       100.0       0.0       7.3       0.43       6         ROUTE 40 WB L       *       8.5       0.0       24.9       0.0       *       16.       90.       AG       125.       100.0       0.0       7.3       0.43       2         ROUTE 40 WB L       *       8.5       5.5       64.3       5.5 *       56.       90.       AG       125.       100.0       0.0       7.3       0.63       9         ROUTE 40 WB L       *       8.5       5.5       64.3       5.5 *       56.       90.       AG       150.       100.0       0.0       7.3       0.63       9         FRANKLIN NB L       *       0.0       -12.2       0.0       -16.1       *       4.       180.       AG       99.       100.0       0.0       3.7       0.52       6         FRANKLIN NB T       *       3.7       -51.1       39.       180.       AG       99.       100.0       0.0       3.7       0.52       6       6       6       6       0.0       2.7       0.52       6       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5   | ROUTE 40                            |                 | ×                     | -8.5 | 0.0           |                    | ۰5<br>د           | 0.0           | *   | 21.       | 270.    |      |      | 100.0   |     | 0       | .56 | 3.5 |
| ROUTE 40 WB L       *       8.5       0.0       24.9       0.0       *       16.       90. AG       125. 100.0       0.0       3.7       0.43       2         ROUTE 40 WB TR       *       8.5       5.5       64.3       5.5       5.5       56.       90. AG       150. 100.0       0.0       7.3       0.63       9         ROUTE 40 WB TR       *       8.5       5.5       64.3       5.5       5.5       56.       90. AG       150. 100.0       0.0       7.3       0.63       9         FRANKLIN NB L       *       0.0       -12.2       0.0       -16.1       4.       180. AG       99. 100.0       0.0       3.7       0.52       6         FRANKLIN NB TR       *       3.7       -51.1       *       39.       180. AG       99. 100.0       0.0       3.7       0.52       6         FRANKLIN SB L       *       0.0       12.2       0.0       28.5       41.       360. AG       99. 100.0       0.0       3.7       0.22       2         FRANKLIN SB TR       *       -3.7       52.8       41.       360. AG       99. 100.0       0.0       3.7       0.54       6         FRANKLIN SB TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10  | ROUTE 40                            |                 | *                     | -8.5 | -5.0          |                    | 1.                | -5.5          | *   | 38.       | 270.    |      |      | 100.0   |     | 0       | .43 | 6.4 |
| ROUTE 40 WB TR       *       8.5       5.5       5.5       56.       90. AG       150. 100.0       0.0       7.3       0.63       9         FRANKLIN NB L       *       0.0       -12.2       0.0       -16.1       *       4.       180. AG       99. 100.0       0.0       3.7       0.05       0         FRANKLIN NB L       *       3.7       -12.2       0.0       -16.1       *       4.       180. AG       99. 100.0       0.0       3.7       0.52       6         FRANKLIN NB TR       *       3.7       -12.2       3.7       -51.1       39.       180. AG       99. 100.0       0.0       3.7       0.52       6         FRANKLIN SB L       *       0.0       12.2       0.0       28.5       41.       360. AG       99. 100.0       0.0       3.7       0.22       2         FRANKLIN SB TR       *       -3.7       12.2       -3.7       52.8       41.       360. AG       99. 100.0       0.0       3.7       0.54       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E   | ROUTE 40                            |                 | ×                     | 8.5  | 0.0           |                    | 6.                | 0.0           | ۲   | 16.       | .06     |      |      | 100.0   |     | 0       | .43 | 2.7 |
| FRANKLIN NB L       *       0.0       -12.2       0.0       -16.1       *       4.       180. AG       99.       100.0       0.0       3.7       0.05       0         FRANKLIN NB TR       *       3.7       -12.2       3.7       -51.1       *       39.       100.0       0.0       3.7       0.52       6         FRANKLIN NB TR       *       3.7       -12.2       3.7       -51.1       *       39.       180. AG       99.       100.0       0.0       3.7       0.52       6         FRANKLIN SB L       *       0.0       12.2       0.0       28.5       16.       360. AG       99.       100.0       0.0       3.7       0.22       2         FNANKLIN SB TR       *       -3.7       52.8       41.       360. AG       99.       100.0       0.0       3.7       0.54       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12  | ROUTE 40                            |                 | ¥                     | 8.5  | с.<br>С       |                    | <i>.</i>          | 5.5           | *   | 56.       | .06     | AG   |      | 100.0   |     | 0       | .63 | 9.3 |
| FRANKLIN NB TR       *       3.7       -12.2       3.7       -51.1 *       39.       180. AG       99.       100.0       0.0       3.7       0.52       6         FRANKLIN SB L       *       0.0       12.2       0.0       28.5 *       16.       360. AG       99.       100.0       0.0       3.7       0.22       2         FRANKLIN SB L       *       -3.7       12.2       -3.7       52.8 *       41.       360. AG       99.       100.0       0.0       3.7       0.54       6         FRANKLIN SB TR       *       -3.7       52.8 *       41.       360. AG       99.       100.0       0.0       3.7       0.54       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m   | FRANKLIN                            |                 | *                     | 0.0  | -12.2         |                    | 0.                | -16.1         | *   | 4.        | 180.    | AG   | .66  | 100.0   |     | 0       | .05 | 0.7 |
| FRANKLIN SB L * 0.0 12.2 0.0 28.5 * 16. 360. AG 99. 100.0 0.0 3.7 0.22 2 FRANKLIN SB TR * -3.7 12.2 -3.7 52.8 * 41. 360. AG 99. 100.0 0.0 3.7 0.54 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14  | FRANKLIN                            |                 | *                     | 3.7  | -12.2         |                    | ٢.                | -51.1         | *   | 39.       | 180.    | AG   | .99  | 100.0   |     | 0       | .52 | 6.5 |
| FRANKLIN SB TR * -3.7 12.2 -3.7 52.8 * 41. 360. AG 99. 100.0 0.0 3.7 0.54 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5   | FRANKLIN                            | зĽ              | *                     | 0.0  | 12.2          |                    | 0.                | 28.5          | *   | 16.       | 360.    | AG   | . 66 | 100.0   |     | 0       | .22 | 2.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16  | FRANKLIN                            | 3 TR            | *                     | -3.7 | 12.2          |                    | ۲.                | 52.8          | *   | 41.       | 360.    | AG   | . 66 | 100.0   |     | 0       | .54 | 6.8 |

×

Ч

RUN: Build

JOB: ROUTE 40 & FRANKLIN BOULEVARD

DATE : 05/01/2020 TIME : 07:16:11

ADDITIONAL QUEUE LINK PARAMETERS 1111

| NOTI JTUNCIN WITH           | ×   | CYCLE  | RED             | CLEARANCE | APPROACH | SATURATION |         | SIGNAL | ARRIVAL |
|-----------------------------|-----|--------|-----------------|-----------|----------|------------|---------|--------|---------|
|                             | *   | LENGTH | TIME            | LOST TIME | NOL      | FLOW RATE  |         | TYPE   | RATE    |
|                             | * * | (SEC)  | (SEC)           | (SEC)     | (HAV)    | (HAN)      | (gm/hr) |        |         |
| BB                          | *   | 120    | 102             | 2.0       | 123      | 1900       | 54.87   |        |         |
| EB                          | *   | 120    | 61              | 2.0       | 750      | 1900       | 54.87   | ) (*1  | ) (°    |
| 11. ROUTE 40 WB L           | *   | 120    | 102             | 2.0       | 96       | 1900       | 54.87   | ) m    | ) (M    |
| MB                          | *   | 120    | 61              | 2.0       | 1097     | 1900       | 54.87   | с      | e en    |
| RB                          | *   | 120    | 18              | 2.0       | 29       | 1900       | 54.87   | С      | m       |
| FRANKLIN NB                 | *   | 120    | 81              | 2.0       | 288      | 1900       | 54.87   | m      | 6       |
| SB                          | *   | 120    | 81              | 2.0       | 121      | 1900       | 54.87   | 6      | ) m     |
| FRANKLIN SB                 | *   | 120    | 81              | 2.0       | 301      | 1900       | 54.87   | i m    | ) M     |
| RECEPTOR LOCATIONS          |     |        |                 |           |          |            |         |        | ×       |
|                             | *   |        | COORDINATES (M) | (M) SE    | *        |            |         |        |         |
| RECEPTOR                    | *   | ×      | Y               | 2         | *        |            |         |        |         |
|                             | *   |        |                 |           | *        |            |         |        |         |
| 1. NORTHWEST                | *   | -9.0   |                 | 2.6       | 1.8 *    |            |         |        |         |
| <ol><li>NORTHEAST</li></ol> | *   | 9.1    |                 | 2.6       | 1.8 *    |            |         |        |         |
| 3. SOUTHEAST                | *   | 9.1    |                 | -12.7     | 1.8 *    |            |         |        |         |
| 4. SOUTHWEST                | ¥   | -9.0   |                 | 2.6       | 1.8 *    |            |         |        |         |

PAGE 3 JOB: ROUTE 40 & FRANKLIN BOULEVARD

RUN: Build

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-350.

| WIND   | * |      | NTRATI( | NC   |      |
|--------|---|------|---------|------|------|
| ANGLE  | * |      | (PPM)   |      |      |
| (DEGR) | * | REC1 | REC2    | REC3 | REC4 |
| 0.     | * | 0.4  | 0.3     | 1.1  | 1.3  |
| 5.     | * | 0.6  | 0.1     | 1.2  | 1.5  |
| 10.    | * | 0.7  | 0.1     | 1.1  | 1.3  |
| 15.    | * | 0.8  | 0.0     | 1.0  | 1.2  |
| 20.    | * | 0.8  | 0.0     | 1.0  | 1.1  |
| 25.    | * | 0.8  | 0.0     | 1.0  | 0.9  |
| 30.    | * | 0.7  | 0.0     | 1.1  | 0.8  |
| 35.    | * | 0.8  | 0.0     | 1.1  | 1.1  |
| 40.    | * | 0.8  | 0.0     | 1.2  | 0.9  |
| 45.    | * | 0.8  | 0.0     | 1.2  | 0.9  |
| 50.    | * | 0.8  | 0.0     | 1.1  | 1.2  |
| 55.    | * | 0.7  | 0.0     | 1.1  | 1.2  |
| 60.    | * | 0.7  | 0.0     | 1.3  | 1.4  |
| 65.    | * | 0.7  | 0.0     | 1.2  | 1.4  |
| 70.    | * | 0.7  | 0.1     | 1.2  | 1.5  |
| 75.    | * | 0.7  | 0.1     | 1.2  | 1.5  |
| 80.    | * | 0.9  | 0.2     | 1.2  | 1.4  |
| 85.    | * | 1.1  | 0.6     | 1.1  | 1.6  |
| 90.    | * | 1.6  | 1.0     | 0.7  | 1.2  |
| 95.    | * | 1.8  | 1.4     | 0.4  | 0.8  |
| 100.   | * | 1.9  | 1.6     | 0.2  | 0.5  |
| 105.   | * | 1.8  | 1.7     | 0.1  | 0.5  |
| 110.   | * | 1.6  | 1.6     | 0.0  | 0.4  |
| 115.   | * | 1.4  | 1.5     | 0.0  | 0.5  |
| 120.   | * | 1.2  | 1.5     | 0.0  | 0.4  |
| 125.   | * | 1.2  | 1.3     | 0.0  | 0.4  |
| 130.   | * | 1.0  | 1.3     | 0.0  | 0.4  |
| 135.   | * | 0.9  | 1.3     | 0.0  | 0.4  |
| 140.   | * | 0.9  | 1.3     | 0.0  | 0.4  |
| 145.   | * | 0.8  | 1.3     | 0.0  | 0.4  |
| 150.   | * | 0.9  | 1.3     | 0.0  | 0.5  |
| 155.   | * | 1.0  | 1.2     | 0.0  | 0.5  |
| 160.   | * | 1.1  | 1.2     | 0.0  | 0.4  |
| 165.   | * | 0.9  | 1.2     | 0.0  | 0.4  |
|        | * | 1.1  | 1.2     | 0.0  | 0.4  |
|        | * | 1.3  | 1.3     | 0.2  | 0.3  |
| T00.   | * | 1.0  | 1.3     | 0.2  | 0.3  |
| 100.   | * | 1.0  | 1.4     | 0.5  | 0.1  |
| 150.   | * | 0.9  | 1.3     | 0.6  | 0.1  |
| 195.   | * | 0.9  | 1.1     | 0.6  | 0.0  |
| 200.   | * | 0.9  | 1.0     | 0.7  | 0.0  |
| 205.   | × | 0.9  | 0.9     | 0.7  | 0.0  |

| PAGE | 4    |       |    |   |          |           |
|------|------|-------|----|---|----------|-----------|
|      | JOB: | ROUTE | 40 | & | FRANKLIN | BOULEVARD |

| WIND  | *       | CONCER | TRATI | ON   |      |
|-------|---------|--------|-------|------|------|
| ANGLE | *       |        | (PPM) |      |      |
| (DEGR | ) *     | REC1   | REC2  | REC3 | REC4 |
|       | _*.     |        |       |      |      |
| 210.  | *       | 1.0    | 1.0   | 0.5  | 0.0  |
| 215.  | *       | 1.1    | 1.1   | 0.5  | 0.0  |
| 220.  | *       | 1.1    | 1.1   | 0.5  | 0.0  |
| 225.  | *       | 1.1    | 1.0   | 0.5  | 0.0  |
| 230.  | *       | 1.1    | 1.2   | 0.5  | 0.0  |
| 235.  | *       | 1.3    | 1.2   | 0.5  | 0.0  |
| 240.  | *       | 1.1    | 1.4   | 0.5  | 0.0  |
| 245.  | *       | 1.2    | 1.6   | 0.6  | 0.0  |
| 250.  | *       | 1.0    | 1.5   | 0.6  | 0.0  |
| 255.  | *       | 1.1    | 1.5   | 0.5  | 0.1  |
| 260.  | *       | 1.1    | 1.4   | 0.6  | 0.1  |
| 265.  | *       | 1.1    | 1.4   | 0.9  | 0.5  |
| 270.  | *       | 0.8    | 1.2   | 1.4  | 0.8  |
| 275.  | *       | 0.5    | 0.8   | 1.6  | 1.2  |
| 280.  | *       | 0.2    | 0.7   | 1.8  | 1.3  |
| 285.  | *       | 0.1    | 0.6   | 1.7  | 1.4  |
| 290.  | *       | 0.1    | 0.6   | 1.6  | 1.4  |
| 295.  | *       | 0.0    | 0.6   | 1.4  | 1.4  |
| 300.  | *       | 0.0    | 0.6   | 1.2  | 1.4  |
| 305.  | *       | 0.0    | 0.7   | 1.1  | 1.4  |
| 310.  | *       | 0.0    | 0.7   | 0.9  | 1.3  |
| 315.  | *       | 0.0    | 0.7   | 0.9  | 1.2  |
| 320.  | *       | 0.0    | 0.7   | 0.9  | 1.2  |
| 325.  | $\star$ | 0.0    | 0.7   | 0.9  | 1.2  |
| 330.  | *       | 0.0    | 0.7   | 1.0  | 1.2  |
| 335.  | *       | 0.0    | 0.7   | 1.1  | 1.1  |
| 340.  | ×       | 0.0    | 0.6   | 1.2  | 1.1  |
| 345.  | *       | 0.0    | 0.6   | 1.2  | 1.1  |
| 350.  | *       | 0.1    | 0.6   | 1.4  | 1.1  |
| MAX   | *       | 1.9    | 1.7   | 1.8  | 1.6  |
| DEGR. | *       | 100    | 105   | 280  | 85   |

THE HIGHEST CONCENTRATION OF 1.90 PPM OCCURRED AT RECEPTOR REC1 .

RUN: Build

CAL3QHC - (DATED 95221)

CAL3QHC PC (32 BIT) VERSION 3.0.0 (C) COPYRIGHT 1993-2000, TRINITY CONSULTANTS

Run Began on 5/01/2020 at 7:28:44

JOB: Main Street & Decatur Avenue

RUN: No-Build

DATE : 05/01/2020 TIME : 07:28:44

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

|        | SITE & METEOROLOGICAL VARIABLES | VARIABL        | ES       |             |                  |                |               |    |           |         |      |       |         |     |     |         |
|--------|---------------------------------|----------------|----------|-------------|------------------|----------------|---------------|----|-----------|---------|------|-------|---------|-----|-----|---------|
|        | VS = 0.0 CM/S<br>U = 1.0 M/S    | VD =<br>CLAS = | 0.0<br>4 | CM/S<br>(D) | Z0 =<br>ATIM =   | 11. 0<br>60. 1 | CM<br>MINUTES | ĽΨ | MIXH = 10 | 1000. M | AMB  |       | 0.0 PPM |     |     |         |
|        | LINK VARIABLES                  |                |          |             |                  |                |               |    |           |         |      |       |         |     |     |         |
| OTETTE | LINK DESCRIPTION                | *              | Ц        | INK COC     | LINK COORDINATES | S (M)          |               | *  | LENGTH    | BRG 7   | TYPE | HdV   | EF      | Н   | М   | V/C     |
| (VEH)  | ×                               | * X1           |          | Υl          | X2               | 2              | Y2            | *  | (W)       | (DEG)   |      |       | (IW/S)  | (W) | (W) |         |
|        |                                 | *              |          |             |                  |                |               | ** |           |         |      |       |         |     |     |         |
|        | 1. Main NB App                  | *              | 1.8      | 0           | 0.               | 1.8            | -305.0        | *  | 305.      | 180.    | AG   | 440.  | 10.1    | 0.0 | 9.8 |         |
|        | 2. Main NB Dep                  | *              | 1.8      | 0           | 0.0              | 1.8            | 305.0         | *  | 305.      | 360.    | AG   | 427.  | 10.1    | 0.0 | 9.8 |         |
|        | 3. Main SB App                  | *              | -1.8     | 0           |                  | -1.8           | 305.0         | *  | 305.      | 360.    | AG   | 371.  | 10.1    | 0.0 | 9.8 |         |
|        |                                 | *              | -1.8     | 0           |                  | -1.8           | -305.0        | *  | 305.      | 180.    | AG   | 448.  | 10.1    | 0.0 | 9.8 |         |
|        | 5. Decatur EB App               | *              | 0.0      | Ţ           |                  | 152.5          | -1.8          | *  | 152.      | 270.    | AG   | 116.  | 10.1    | 0.0 | 9.8 |         |
|        | Decatur                         | *              | 0.0      | 1           |                  | 152.5          | -1.8          | *  | 152.      | 90.     | AG   | 146.  | 10.1    | 0.0 | 9.8 |         |
|        | 7. Decatur WB App               | *              | 0.0      |             |                  | 152.5          | 1.8           | *  | 152.      | .06     | AG   | 181.  | 10.1    | 0.0 | 9.8 |         |
|        | Decatur                         | *              | 0.0      |             |                  | 152.5          | 1.8           | *  | 152.      | 270.    | AG   | 87.   | 10.1    | 0.0 | 9.8 |         |
|        |                                 | *              | 1.8      | 1           |                  | 1.8            | -24.3         | *  | 18.       | 180.    | AG   | 50.   | 100.0   | 0.0 | 0 2 | .39 2.9 |
|        | 10. Main SB LTR                 | *              | -1.8     | 0           |                  | -1.8           | 21.6          | *  | 15.       | 360.    | AG   | 50.   | 100.0   | 0.0 | 0 2 |         |
|        | 11. Decatur EB LTR              | *              | -6.7     | Ţ           |                  | -16.0          | -1.8          | *  | .6        | 270.    | AG   | 101.  | 100.0   | 0.0 | 0   |         |
|        | 12. Decatur WB LTR              | *              | 6.7      | 12          |                  | 21.2           | 1.8           | *  | 14.       | .06     | AG   | .101. | 100.0   | 0.0 | 7 0 | .37 2.4 |
|        |                                 |                |          |             |                  |                |               |    |           |         |      |       |         |     |     |         |

н

RUN: No-Build

JOB: Main Street & Decatur Avenue

DATE : 05/01/2020 TIME : 07:28:44

ADDITIONAL QUEUE LINK PARAMETERS

|    | LINK DESCRIPTION   | *   | CYCLE  | RED             | CLEARANCE  | APPROACH | SATURATION | IDLE    | STGNAL | ARRTVAL. |
|----|--------------------|-----|--------|-----------------|------------|----------|------------|---------|--------|----------|
|    |                    | *   | LENGTH | TIME            | LOST TIME  | TON      | FLOW RATE  | EM FAC  | TYPE   | RATE     |
|    |                    | * * | (SEC)  | (SEC)           | (SEC)      | (HAN)    | (HAV)      | (gm/hr) |        |          |
| 6  | Main NB LTR        | *   | 70     | 24              | 2.0        | 440      | 1900       | 54.87   | 1      | 6        |
| 0. | 10. Main SB LTR    | *   | 70     | 24              | 2.0        | 371      | 1900       | 54.87   | -      | ) (M     |
| н. | Decatur EB LTR     | *   | 70     | 48              | 2.0        | 116      | 1900       | 54.87   |        |          |
| N  | Decatur WB LTR     | *   | 70     | 48              | 2.0        | 181      | 1900       | 54.87   | ч      | i m      |
| RE | RECEPTOR LOCATIONS |     |        |                 |            |          |            |         |        |          |
|    |                    | *   | 0      | COORDINATES (M) | (W) S      | *        |            |         |        |          |
|    | RECEPTOR           | * * | X      | Х               | 2          | * •      |            |         |        |          |
|    | 1. Northwest       | *   | -7.2   |                 | .3         | 1.8 *    |            |         |        |          |
|    | Northeast          | *   | 7.2    |                 | .2         | 1.8 *    |            |         |        |          |
| ÷. | Southeast          | *   | 7.2    |                 | с.         | 1.8 *    |            |         |        |          |
| ÷  | Southwest          | *   | -7.2   | -7.3            | <i>с</i> . | 1.8 *    |            |         |        |          |
|    |                    |     |        |                 |            |          |            |         |        |          |

JOB: Main Street & Decatur Avenue

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-350.

| WIND  | *        | CONCEN | TRATI | ON   |      |
|-------|----------|--------|-------|------|------|
| ANGLE | *        | 6      | (PPM) |      |      |
| (DEGR | ) *      | REC1   | REC2  | REC3 | REC4 |
| 0.    | -*-<br>* | 0.3    | 0.4   | 0.5  | 0.5  |
| 5.    | *        | 0.5    | 0.4   |      |      |
| 10.   | *        | 0.5    | 0.3   | 0.4  | 0.7  |
| 15.   | *        | 0.6    | 0.0   | 0.3  | 0.7  |
| 20.   | *        | 0.5    | 0.0   | 0.2  | 0.6  |
| 25.   | *        | 0.5    | 0.0   | 0.2  | 0.5  |
| 30.   | *        | 0.5    | 0.0   | 0.3  | 0.3  |
| 35.   | *        | 0.5    | 0.0   | 0.4  | 0.3  |
| 40.   | *        | 0.4    | 0.0   | 0.4  | 0.3  |
| 45.   | *        | 0.3    | 0.0   | 0.4  | 0.3  |
| 50.   | *        | 0.3    | 0.0   | 0.4  | 0.4  |
| 55.   | *        | 0.3    | 0.0   | 0.4  | 0.3  |
| 60.   | *        | 0.3    | 0.0   | 0.3  | 0.5  |
| 65.   | *        | 0.3    | 0.0   | 0.3  | 0.6  |
| 70.   | *        | 0.3    | 0.0   | 0.2  | 0.5  |
| 75.   | *        | 0.3    | 0.0   | 0.2  | 0.5  |
| 80.   | *        | 0.3    | 0.0   | 0.2  | 0.5  |
| 85.   | *        | 0.4    | 0.1   | 0.2  | 0.5  |
| 90.   | *        | 0.5    | 0.1   | 0.1  | 0.5  |
| 95.   | *        | 0.6    | 0.2   | 0.0  | 0.4  |
| 100.  | *        | 0.6    | 0.3   | 0.0  | 0.3  |
| 105.  | *        | 0.6    | 0.3   | 0.0  | 0.3  |
| 110.  | *        | 0.6    | 0.4   | 0.0  | 0.3  |
| 115.  | *        | 0.5    | 0.4   | 0.0  | 0.4  |
| 120.  | *        | 0.4    | 0.5   | 0.0  | 0.4  |
| 125.  | *        | 0.3    | 0.5   | 0.0  | 0.4  |
| 130.  | *        | 0.3    | 0.4   | 0.0  | 0.4  |
| 135.  | *        | 0.4    | 0.4   | 0.0  | 0.4  |
| 140.  | *        | 0.3    | 0.4   | 0.0  | 0.4  |
| 145.  | *        | 0.3    | 0.4   | 0.0  | 0.5  |
| 150.  | *        | 0.4    | 0.4   | 0.0  | 0.5  |
| 155.  | *        | 0.6    | 0.4   | 0.0  | 0.5  |
| 160.  | *        | 0.6    | 0.4   | 0.0  | 0.5  |
| 165.  | *        | 0.6    | 0.3   | 0.0  | 0.5  |
| 170.  | *        | 0.7    | 0.4   | 0.1  | 0.6  |
| 175.  | *        | 0.6    | 0.6   | 0.3  | 0.5  |
| 180.  | *        | 0.4    | 0.6   | 0.4  | 0.4  |
| 185.  | *        | 0.4    | 0.9   | 0.5  | 0.3  |
| 190.  | *        | 0.3    | 0.9   | 0.6  | 0.1  |
| 195.  | *        | 0.2    | 0.8   | 0.6  | 0.0  |
| 200.  | *        | 0.2    | 0.7   | 0.6  | 0.0  |
| 205.  | *        | 0.2    | 0.7   | 0.5  | 0.0  |

PAGE 3

| PAGE |      |      |        |   |         |        |
|------|------|------|--------|---|---------|--------|
|      | JOB: | Main | Street | & | Decatur | Avenue |

| WIND  | *   | CONCE                          | NTRATI | NC   |      |
|-------|-----|--------------------------------|--------|------|------|
| ANGLE | *   |                                | (PPM)  |      |      |
| (DEGR | ) * |                                | REC2   | REC3 | REC4 |
|       | *   | - 200,002,000<br>- 200,002,000 |        |      |      |
| 210.  | *   | 0.2                            | 0.4    | 0.6  | 0.0  |
| 215.  | *   | 0.2                            | 0.4    | 0.6  | 0.0  |
| 220.  | *   | 0.1                            | 0.4    | 0.6  | 0.0  |
| 225.  | *   | 0.1                            | 0.4    | 0.4  | 0.0  |
| 230.  | *   | 0.1                            | 0.4    | 0.4  | 0.0  |
| 235.  | *   | 0.0                            | 0.4    | 0.4  | 0.0  |
| 240.  | *   | 0.0                            | 0.3    | 0.4  | 0.0  |
| 245.  | *   | 0.0                            | 0.3    | 0.3  | 0.0  |
| 250.  | *   | 0.1                            | 0.3    | 0.3  | 0.0  |
| 255.  | *   | 0.2                            | 0.4    | 0.3  | 0.0  |
| 260.  | *   | 0.1                            | 0.4    | 0.3  | 0.0  |
| 265.  | *   | 0.1                            | 0.3    | 0.4  | 0.0  |
| 270.  | *   | 0.0                            | 0.3    | 0.5  | 0.1  |
| 275.  | *   | 0.0                            | 0.3    | 0.6  | 0.1  |
| 280.  | *   | 0.0                            | 0.3    | 0.4  | 0.1  |
| 285.  | *   | 0.0                            | 0.3    | 0.4  | 0.1  |
| 290.  | *   | 0.0                            | 0.3    | 0.4  | 0.2  |
| 295.  | *   | 0.0                            | 0.3    | 0.3  | 0.2  |
| 300.  | *   | 0.0                            | 0.4    | 0.4  | 0.3  |
| 305.  | *   | 0.0                            | 0.4    | 0.2  | 0.3  |
| 310.  | *   | 0.0                            | 0.4    | 0.3  | 0.2  |
| 315.  | *   | 0.0                            | 0.4    | 0.4  | 0.3  |
| 320.  | *   | 0.0                            | 0.4    | 0.3  | 0.3  |
| 325.  | *   | 0.0                            | 0.4    | 0.3  | 0.3  |
| 330.  | *   | 0.0                            | 0.4    | 0.4  | 0.3  |
| 335.  | *   | 0.0                            | 0.4    | 0.4  | 0.3  |
| 340.  | *   | 0.0                            | 0.5    | 0.6  | 0.3  |
| 345.  | *   | 0.0                            | 0.5    | 0.6  | 0.2  |
| 350.  | *   | 0.1                            | 0.5    | 0.7  | 0.3  |
| MAX   | *_  | 0.7                            | 0.9    | 0.7  | 0.7  |
| DEGR. | *   | 170                            | 185    | 350  | 15   |

THE HIGHEST CONCENTRATION OF 0.90 PPM OCCURRED AT RECEPTOR REC2 .

RUN: No-Build

|   | _  |
|---|----|
|   | 7  |
|   | 0  |
|   | 2  |
|   | 5  |
|   | 01 |
|   | 0  |
|   | H  |
|   | 2  |
|   | U  |
|   | 1  |
|   | 0  |
|   | Ĩ  |
|   | 0  |
| 1 | 3  |
|   | H  |
|   | Æ  |
| 1 | 0  |

CAL3QHC PC (32 BIT) VERSION 3.0.0 (C) COPYRIGHT 1993-2000, TRINITY CONSULTANTS

Run Began on 5/01/2020 at 7:31:31

JOB: Main Street & Decatur Avenue

RUN: Build

DATE : 05/01/2020 TIME : 07:31:31

The MODE flag has been set to C for calculating CO averages.

|                                 | 0.0 PPM                          |                | VPH EF H W V/C   | (G/MI) (M) (M) |    | 10.1 0.0       | 431. 10.1 0.0 9.8 | 10.1 0.0       | 10.1 0.0       | 10.1 0.0 | 10.1 0.0          | 10.1 0.0 | 10.1 0.0 | 100.0 0.0 3.7 0.39 | 100.0 0.0 3 7 0 33 | 100.0 0.0          |                     |
|---------------------------------|----------------------------------|----------------|------------------|----------------|----|----------------|-------------------|----------------|----------------|----------|-------------------|----------|----------|--------------------|--------------------|--------------------|---------------------|
|                                 | 1000. M AMB =                    |                | BRG TYPE V       | (DEG)          |    | AG             | 360. AG 4         | AG             | AG             | AG       | AG                | AG       | AG       | AG                 | AG                 | AG                 |                     |
|                                 | JT = HXIW                        |                | LENGTH           | (W)            |    | 305.           | 305.              | 305.           | 305.           | 152.     | 152.              | 152.     | 152.     | 18.                | 15.                | .6                 | 1                   |
|                                 | CM<br>MINUTES                    |                | *                | Y2 *           | *  | -305.0 *       | 305.0 *           | 305.0 *        | -305.0 *       | -1.8 *   | -1.00             | 1.8 *    | 1.8 *    | -24.4 *            | 21.7 *             | -1.8 *             |                     |
|                                 | ZO = 11.<br>ATIM = 60.           |                | INATES (M)       | X2             |    |                | 1.8               |                |                |          |                   |          |          |                    |                    |                    |                     |
|                                 | CM/S<br>(D) A                    |                | LINK COORDINATES | LY.            |    |                | 0.0               |                |                |          |                   |          |          |                    |                    |                    |                     |
| /ARIABLES                       | VD = 0.0<br>CLAS = 4             |                | *                | * x1           | *- | * 1.8          | * 1.8             | * -1.8         | *****          | * 0.0    | * 0.0             | * 0.0    | * 0.0    | * 1.8              | * -1.8             | * -6.7             | 1 1 1               |
| SITE & METEOROLOGICAL VARIABLES | VS = 0.0 CM/S V<br>U = 1.0 M/S 0 | LINK VARIABLES | LINK DESCRIPTION | (VEH)          |    | 1. Main NB App | 2. Main NB Dep    | 3. Main SB App | 4. Main SB Dep | Decatur  | 6. Decatur EB Dep | Decatur  |          | 9. Main NB LTR     | 10. Main SB LTR    | 11. Decatur EB LTR | 12 Deceture WD 1 TD |

 $\dashv$ 

JOB: Main Street & Decatur Avenue

RUN: Build

DATE : 05/01/2020 TIME : 07:31:31

ADDITIONAL QUEUE LINK PARAMETERS

| LINK DESCRIPTION   | *   | CYCLE  | RED             | CLEARANCE | APPROACH | SATURATION |         | STGNAL. | ARRIVAL. |
|--------------------|-----|--------|-----------------|-----------|----------|------------|---------|---------|----------|
|                    | *   | LENGTH | TIME            | LOST TIME | VOL      | FLOW RATE  |         | TYPE    |          |
|                    | * * | (SEC)  | (SEC)           | (SEC)     | (NPH)    | (HAN)      | (gm/hr) |         |          |
| 9. Main NB LTR     | *   | 70     | 24              | 2.0       | 442      | 1900       | 54.87   |         |          |
| 10. Main SB LTR    | *   | 70     | 24              | 2.0       | 376      | 1900       | 54.87   | l ei    | i m      |
| 1. Decatur EB LTR  | ×   | 70     | 48              | 2.0       | 117      | 1900       | 54.87   | l el    | i m      |
| .2. Decatur WB LTR | *   | 70     | 48              | 2.0       | 183      | 1900       | 54.87   | н       | ŝ        |
| RECEPTOR LOCATIONS |     |        |                 |           |          |            |         |         |          |
|                    | *   | 0      | COORDINATES (M) | S (M)     | *        |            |         |         |          |
| RECEPTOR           | * * | ×      | Y               | 53        | * +      |            |         |         |          |
| . Northwest        | *   | -7.2   |                 | .3        | 1.8 *    |            |         |         |          |
| 2. Northeast       | *   | 7.2    |                 |           | 1.8 *    |            |         |         |          |
| 3. Southeast       | *   | 7.2    | -7.3            |           | 1.8 *    |            |         |         |          |
| I. Southwest       | *   | -7.2   |                 |           | 1.8 *    |            |         |         |          |

JOB: Main Street & Decatur Avenue

MODEL RESULTS

PAGE 3

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-350.

| WIND            | *       | CONCEN     | VTRATIO | NC    |      |
|-----------------|---------|------------|---------|-------|------|
| ANGLE           | *       |            | (PPM)   |       |      |
| (DEGR           | ) *     | REC1       | REC2    | REC3  | REC4 |
|                 | _*_     |            |         |       |      |
| 0.              | *       | 0.3        | 0.4     | 0.5   | 0.5  |
| 5.              | *       | 0.5        | 0.3     | 0.5   | 0.7  |
| 10.             | $\star$ | 0.5        | 0.1     | 0.3   | 0.7  |
| 15.             | *       | 0.6        | 0.0     | 0.2   | 0.7  |
| 20.             | *       | 0.5        | 0.0     | 0.2   | 0.6  |
| 25.             | *       | 0.5        | 0.0     | 0.4   | 0.5  |
| 30.             | *       | 0.5        | 0.0     | 0.4   | 0.3  |
| 35.             | *       | 0.5        | 0.0     | 0.4   | 0.3  |
| 40.             | *       | 0.4        | 0.0     | 0.4   | 0.3  |
| 45.             | *       | 0.4        | 0.0     | 0.4   | 0.3  |
| 50.             | *       | 0.3        | 0.0     | 0.4   | 0.4  |
| 55.             | *       | 0.3        | 0.0     | 0.3   | 0.4  |
| 60.             | *       | 0.3        | 0.0     | 0.3   | 0.5  |
| 65.             | $\star$ | 0.3        | 0.0     | 0.3   | 0.6  |
| 70.             | *       | 0.3        | 0.0     | 0.2   | 0.6  |
| 75.             | *       | 0.3        | 0.0     | 0.2   | 0.5  |
| 80.             | *       | 0.3        | 0.0     | 0.2   | 0.5  |
| 85.             | *       | 0.4        | 0.1     | 0.2   | 0.5  |
| 90.             | $\star$ | 0.5        | 0.1     | 0.1   | 0.5  |
| 95.             | *       | 0.6        | 0.2     | 0.0   | 0.4  |
| 100.            | *       | 0.6        | 0.3     | 0.0   | 0.3  |
| 105.            | *       | 0.6        | 0.3     | 0.0   | 0.3  |
| 110.            | $\star$ | 0.6        | 0.4     | 0.0   | 0.3  |
| 115.            | $\star$ | 0.5        | 0.4     | 0.0   | 0.4  |
| 120.            | *       | 0.4        | 0.5     | 0.0   | 0.4  |
| 125.            | *       | 0.3        | 0.5     | 0.0   | 0.4  |
| 130.            | *       | 0.3        | 0.5     | 0.0   | 0.4  |
| 135.            | *       | 0.4        | 0.4     | 0.0   | 0.4  |
| 140.            | *       | 0.3        | 0.4     | 0.0   | 0.4  |
| 145.            | *       | 0.3        | 0.4     | 0.0   | 0.5  |
| 150.            | *       | 0.4        | 0.4     | 0.0   | 0.5  |
| 155.            | *       | 0.6        | 0.4     | 0.0   | 0.6  |
| 160.            | *       | 0.6        | 0.4     | 0.0   | 0.5  |
| 165.            | *       | 0.6        | 0.3     | 0.0   | 0.5  |
| 170.            | *       | 0.7        | 0.4     | 0.1   | 0.6  |
| 175.            | *       | 0.6        | 0.6     | 0.3   | 0.5  |
| 180.            | *       | 0.4        | 0.6     | 0.4   | 0.4  |
| 185.            | ×       | 0.4        | 0.9     | 0.5   | 0.3  |
| 190.            | *       | 0.3        | 0.9     | 0.7   | 0.1  |
| 195.            | *       | 0.2        | 0.8     | 0.6   | 0.0  |
| 200.            | *       | 0.2        | 0.7     | 0.6   | 0.0  |
| 205.            | *       | 0.2        | 0.7     | 0.5   | 0.0  |
| 1.7710741774725 |         | ಿದೇ ಕೊಡ್ಡಿ | 8.833   | · · · | 1    |

| PAGE         |    | 3: Maiı | a Stre | et & D            | ecatur |
|--------------|----|---------|--------|-------------------|--------|
|              |    |         |        |                   | coucur |
| WIND         | *  | CONCEN  | TRATI  | ON                |        |
| ANGLI        |    |         | (PPM)  |                   |        |
|              |    |         | REC2   | REC3              | REC4   |
|              | *- |         |        |                   |        |
| 210.         | *  |         |        | 0.6               |        |
| 215.         |    | 0.2     | 0.4    | 0.6               | 0.0    |
| 220.         |    |         | 0.4    | 0.6               | 0.0    |
| 225.         | *  | 0.1     | 0.4    | 0.4<br>0.4        | 0.0    |
| 230.         | *  | 0.1     | 0.5    | 0.4               | 0.0    |
|              |    |         |        | 0.4               |        |
|              |    |         |        | 0.4               |        |
| 245.         | *  | 0.0     | 0.3    | 0.3               | 0.0    |
| 250.         | *  | 0.1     | 0.3    | 0.3               | 0.0    |
| 255.         | *  | 0.2     | 0.4    | 0.3<br>0.3<br>0.3 | 0.0    |
| 260.         | *  | 0.1     | 0.4    | 0.3               | 0.0    |
| 265.         | *  | 0.1     | 0.3    | 0.4               | 0 0    |
| 270.         | *  | 0.0     | 0.4    | 0.5               | 0.1    |
| 275.         | *  | 0.0     | 0.3    | 0.6               | 0.1    |
| 280.         | *  | 0.0     | 0.3    | 0.4               | 0.1    |
| 285.         | *  | 0.0     | 0.3    | 0.4               | 0.1    |
| 290.<br>295. | *  | 0.0     | 0.3    | 0.4               | 0.2    |
| 295.         | *  | 0.0     | 0.3    | 0.4               | 0.2    |
| 300.         | *  | 0.0     | 0.4    | (), 4             | 0.5    |
| 305.         | *  | 0.0     | 0.4    | 0.2               | 0.3    |
| 310.         | *  | 0.0     | 0.4    | 0.3               | 0.3    |
| 315.         | ×  | 0.0     | 0.4    | 0.4               | 0.3    |
| 320.         | *  | 0.0     | 0.4    | 0.3               | 0.3    |
| 325.         | *  | 0.0     | 0.4    | 0.3               | 0.3    |
| 330.         | *  | 0.0     | 0.4    | 0.3<br>0.5<br>0.5 | 0.3    |
| 335.         | *  | 0.0     | 0.4    | 0.5               | 0.3    |
| 340.         | *  | 0.0     | 0.5    | 0.6               | 0.3    |
| 345.         | *  | 0.0     | 0.5    | 0.6               | 0.2    |
| 350.         | *  | 0.1     | 0.5    | 0.7               | 0.3    |
| MAX          |    |         | n 9    | 0.7               | 0 7    |
|              |    |         |        | 350               |        |

THE HIGHEST CONCENTRATION OF 0.90 PPM OCCURRED AT RECEPTOR REC2 .

RUN: Build